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Abstract

Background: Multiple trauma scores have been developed and validated, including the Revised Trauma Score
(RTS) and the Mechanism, Glasgow Coma Scale, Age, and Arterial Pressure (MGAP) score. However, these scores are
complex to calculate or have low prognostic abilities for trauma mortality. Therefore, we aimed to develop and
validate a trauma score that is easier to calculate and more accurate than the RTS and the MGAP score.

Methods: The study was a retrospective prognostic study. Data from patients registered in the Japan Trauma Databank
(JTDB) were dichotomized into derivation and validation cohorts. Patients’ data from the Clinical Randomisation of an
Antifibrinolytic in Significant Haemorrhage-2 (CRASH-2) trial were assigned to another validation cohort. We obtained age
and physiological variables at baseline, created ordinal variables from continuous variables, and defined integer weighting
coefficients. Score performance to predict all-cause in-hospital death was assessed using the area under the curve in
receiver operating characteristics (AUROC) analyses.

Results: Based on the JTDB derivation cohort (n= 99,867 with 12.5% mortality), the novel score ranged from 0 to 14
points, including 0–2 points for age, 0–6 points for the Glasgow Coma Scale, 0–4 points for systolic blood pressure, and
0–2 points for respiratory rate. The AUROC of the novel score was 0.932 for the JTDB validation cohort (n = 76,762 with
10.1% mortality) and 0.814 for the CRASH-2 cohort (n= 19,740 with 14.6% mortality), which was superior to RTS (0.907
and 0.808, respectively) and MGAP score (0.918 and 0.774, respectively) results.

Conclusions: We report an easy-to-use trauma score with better prognostication ability for in-hospital mortality
compared to the RTS and MGAP score. Further studies to test clinical applicability of the novel score are warranted.

Keywords: Trauma score, Revised Trauma Score, MGAP score, Prognostic accuracy study, Trauma registry, In-hospital
mortality
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Background
A prognostic score aims to provide standardized severity
metrics for a specific medical condition and to stratify pa-
tients into groups according to the probability of the prog-
nosis [1]. A trauma score could be useful in improving the
quality of care and in assisting with prognostication in the
patient group [2]. In this context, stratification by a trauma
score classifies patients into low, moderate, or high risk for
outcome [3] and can be applicable as a triage tool in disas-
ters, mass casualty incidents, or military settings [4].
Over time, multiple trauma scores have been developed.

These include trauma scores based on the patient’s infor-
mation obtained in the early trauma care, anatomical
trauma scores based on the distribution and severity of
the injury, and combined trauma scores based on early,
anatomical, and laboratory information [2]. Trauma scores
in the early trauma care typically include several predic-
tors, such as age, mechanism of injury, and physiological
status; such scores include the Revised Trauma Score
(RTS) [5, 6] and the Mechanism, Glasgow Coma Scale
(GCS), Age, and Arterial Pressure (MGAP) score [7]. To
calculate the RTS, GCS, systolic blood pressure, and re-
spiratory rate are assigned one of five categories from 0 to
4 points; this score is multiplied by the weighting coeffi-
cients of 0.9368 for GCS, 0.7326 for systolic blood pres-
sure, and 0.2908 for respiratory rate. The total of these
three items is then calculated [6]. Although using RTS in
early trauma care provides an acceptable prediction of
trauma mortality [6, 8, 9], its computation is complex,
and its weighting coefficients are reportedly out of
date [10–12]. Therefore, the MGAP score was developed
as the simple sum of the categorized values without using
the weighting coefficients [7]. Although the MGAP score
is easy to compute, its prognostic ability for trauma mor-
tality is not superior to that of the RTS [9].
This study aimed to develop and validate a novel,

easy-to-calculate trauma score with improved prognosti-
cation ability for trauma mortality compared with the
RTS and MGAP scores.

Methods
Study design and setting
This retrospective prognostic study aimed to develop and
validate a prognostic model for in-hospital mortality in
adult trauma patients. Reporting of this study adhered to
the Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis (TRIPOD)
guideline [13] and was approved by the medical ethics
committee of the Tokyo Medical and Dental University
(reference number 2192).
Data was obtained from patients’ all-available data

of the nationwide trauma registry in Japan (the Japan
Trauma Databank [JTDB]) from the year 2004 to
2015 and that of the Clinical Randomisation of an

Antifibrinolytic in Significant Haemorrhage-2 (CRASH-2)
trial from the year 2005 to 2010 [14–16]. The JTDB was
established in 2004 and involved 256 hospitals in Japan by
2015 [14, 17]. Participating hospitals in the JTDB volun-
tarily register trauma patients with an Injury Severity
Score (ISS) ≥ 9 and burn patients and include information
on demographics, the situation and mechanism of injury,
the physiological status before and after arrival at the
emergency room (ER), procedures before and after arrival
at the ER, surgeries in the ER and/or operation theater,
the Abbreviated Injury Scale (AIS) value, ISS, death, and
length of hospitalization [14, 17].
CRASH-2 was a randomized controlled trial aimed at

assessing the effects of tranexamic acid in bleeding trauma
patients in 40 countries, mainly developing countries [15,
16]. CRASH-2 also collected the following data from
trauma patients: demographics, physiological status after
arrival at the ER, death during hospitalization, and length
of hospitalization [15, 16].

Selection of participants
The present study included patients with documented
blunt or penetrating trauma, but without a burn. The
study exclusion criterion was defined as the exclusion of
patients aged < 16 years or unreported. This exclusion
criterion was determined based on the available informa-
tion before the outlier removal and multiple imputation
and applied to the multiply imputed datasets after the
outlier removal and multiple imputation.

Measurements
We randomly dichotomized the JTDB cases into deriv-
ation and validation cohorts according to a unique
identification number provided to each participating in-
stitute. Patients from institutes with an even unique
identification number were allocated to the JTDB deriv-
ation cohort, and the remaining patients were allocated
to the JTDB validation cohort. All patients from
CRASH-2 were allocated to the other validation cohort.
The JTDB derivation cohort was used for score develop-
ment, and the JTDB and CRASH-2 validation cohorts
were used for validation of the developed scoring
system.
Study predictor variables included the mechanism of

injury (blunt or penetrating) as a nominal variable and
age (years), respiratory rate (1/min), systolic blood pres-
sure (mmHg), and GCS as the continuous variables.
These variables were obtained at the initial contact with
a trauma patient in the ER and upon entering the study
according to the JTDB and CRASH-2 definition, respect-
ively. Other variables (e.g., prehospital vital signs or the
ISS) were also included and used for multiple imput-
ation, sensitivity analyses, and/or explanatory subgroup
analysis.
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To preserve statistical power and appropriately assess
the association between predictor variables and outcome
while minimizing selection bias, the JTDB derivation co-
hort datasets underwent a 2-step data preparation before
statistical analyses. The validation datasets did not
undergo this process to simulate “real-world” conditions.
The first step included the detection and removal of out-
liers from the numeric variables, using robust linear re-
gression analyses [18], followed by multiple imputation
by chained equation (MICE) with 20 iterations that gen-
erated 25 datasets with imputed missing values [19]. The
Box-Cox transformation method was used to transform
the distribution of all numerical variables into normal
distribution prior to imputation, and to transform them
back into the original distribution after imputation. For
GCS, MICE imputed 3 different elements of GCS (eye,
verbal, and motor responses) as ordered variables separ-
ately. Verbal GCS subscore was recorded as if the pa-
tient was intubated. The total GCS was recalculated as
the sum of the 3 different elements of GCS after imput-
ation. An AIS code of 9 in any section was regarded as a
missing value and was multiply imputed.

Outcomes
We defined the study reference standard as in-hospital
death from any cause.

Analysis
A logistic regression analysis, with age and physiological
status including GCS, systolic blood pressure, and re-
spiratory rate on arrival at the ER as explanatory
variables, was used to predict in-hospital mortality. Rela-
tions between several predictors and outcomes did not
assure linear and monotonic function. Therefore, in
addition to the ordinal logistic regression analysis, a
multivariable generalized additive model was used for
visual assessment of non-linear and non-monotonic
functions between the predictors and study outcome
[20]. In reference to the magnitudes of the regression
coefficients of the logistic regression analysis and the re-
sults of the generalized additive model, the ranges for all
predictors were partitioned, assigned simple integers,
and included in the prediction model, which was then
developed into a novel trauma score. A detailed method
for partitioning numeric data into integerized score
points for the novel score is provided (Additional file 1).
The primary and secondary analyses compared the

prediction of in-hospital mortality with the novel score
versus RTS or MGAP score, in both the JTDB validation
and the CRASH-2 cohorts. The primary analysis in-
volved the use of receiver operating characteristic (ROC)
analyses to evaluate the prognostic accuracy of the
scores in terms of the area under the ROC curve
(AUROC). A Hosmer-Lemeshow plot was used to assess

Fig. 1 Study participant selection tree. Outlier removal from numerical variables and multiple imputation was applied after the selection of
trauma subjects in the JTDB derivation cohort. Exclusion criteria for the JTDB derivation cohort were determined based on patient background
characteristics before outlier removal and multiple imputation and were applied after outlier removal and multiple imputation. JTDB, the Japan
Trauma Databank; CRASH-2 Clinical Randomisation of an Antifibrinolytic in Significant Haemorrhage-2
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the calibration of the predicted and observed in-hospital
mortality, estimated on both the JTDB validation and
CRASH-2 cohorts. The two best thresholds of tested
scores to predict in-hospital mortality were estimated in
the JTDB derivation cohort using Youden’s index and a
sensitivity > 0.9. These thresholds were further used to
determine sensitivity, specificity, and positive and nega-
tive predictive values of the scores predicting in-hospital
mortality in the ROC curves in the primary analysis of
validation cohorts. The required sample size for the
study’s primary analysis was estimated based on the pa-
rameters obtained from the ROC analysis, comparing
the novel score to RTS or MGAP score in the JTDB der-
ivation cohort, and the given power of 0.8 and P value of
0.025, after Bonferroni modification of multiple compar-
isons [21]. The secondary analyses included partial
AUROC analysis with restriction for a sensitivity of ≥ 0.9
and a reclassification improvement analysis. Integration
of the point estimation and variances across the multiply
imputed datasets were based on a 20,000-time boot-
strapping in the ROC, partial ROC, and reclassification
improvement analyses or Rubin’s rule, in all other ana-
lyses [19].
To test the robustness of the primary analysis, sensitivity

analyses to reassess the primary analysis were performed
on the validation datasets after outlier removal and mul-
tiple imputation and on validation datasets where the
mechanism of trauma and physiological variables were
imputed as “blunt” and normal values, respectively. To
test for the applicability of scores in prehospital settings, a
separate sensitivity analysis was performed using prehos-
pital variables instead of hospital variables. Furthermore,
explanatory subgroup analyses assessed the prediction for
in-hospital mortality with scores in the subgroups strati-
fied by age.
All statistical analyses were performed using “R 3.5.1”

for statistical computing (R Foundation for Statistical
Computing, Vienna, Austria) with several add-on
packages.

Results
Characteristics of patients enrolled in the study
This study selected 210,752 cases from among 225,616
trauma patients from the JTDB (JTDB derivation cohort,
107 hospitals, n = 99,867; JTDB validation cohort, 114
hospitals, n = 110,885; Fig. 1). Similarly, 20,197 of 20,207
patients from the CRASH-2 were assigned to the
CRASH-2 validation cohort (Fig. 1). Patients in the
JTDB derivation and validation cohorts were similar,
whereas patients in the CRASH-2 cohort were younger,
more frequently had a penetrating injury, and were more
hemodynamically unstable, with lower systolic blood
pressure and a higher heart rate at presentation than

those in the JTDB cohorts (Table 1, details provided in
Additional file 2: Table S1).

Main results
Score development
In the JTDB derivation cohort, 12,473/99,867 (12.5%)
patients died in the hospital. The logistic regression
generalized additive model used to predict in-hospital
mortality for the JTDB derivation cohort demonstrated
approximately monotonic positive and negative

Table 1 Baseline characteristics of the study population

Variables JTDB
derivation
cohort

JTDB
validation
cohort

CRASH-2
validation
cohort

Number of subjects 99,867 110,885 20,197

Multiple imputation Yes No No

Sex, n (%)

Male 63,177 (63.3) 68,132 (61.4) 16,927 (83.8)

Female 36,690 (36.7) 42,727 (38.5) 3269 (16.2)

Missing data 0 (0.0) 26 (0.0) 1 (0.0)

Age, years [range] 61 [39, 76] 63 [41, 78] 30 [24, 43]

Missing data, n (%) 0 (0.0) 0 (0.0) 0 (0.0)

Type of trauma, n (%)

Blunt injury 95,943 (96.1) 104,110 (93.9) 11,184 (55.4)

Penetrating injury 3745 (3.7) 3658 (3.3) 6549 (32.4)

Blunt and penetrating
injury

178 (0.2) 158 (0.1) 2464 (12.2)

Missing data 1 (0.0) 2959 (2.7) 0 (0.0)

Physiological signs on arrival at an emergency department

Systolic blood
pressure, mmHg
[range]

132 [110, 155] 135 [115, 156] 95 [80, 110]

Missing data, n (%) 0 (0.0) 4014 (3.6) 318 (1.6)

Heart rate, beats/
min [range]

81 [70, 96] 82 [70, 95] 105 [90, 120]

Missing data, n (%) 0 (0.0) 5594 (5.0) 137 (0.7)

Respiratory rate,
rate/min [range]

20 [16, 24] 20 [16, 24] 22 [20, 26]

Missing data, n (%) 0 (0.0) 17,539 (15.8) 191 (0.9)

Glasgow Coma Scale 15 [13, 15] 15 [14, 15] 15 [11, 15]

Missing data, n (%) 0 (0.0) 9884 (8.9) 23 (0.1)

Traumatic brain injury,
n (%)

30,666 (30.7) 30,893 (27.9) Not available

Missing data, n (%) 0 (0.0) 7515 (6.8) Not available

Injury Severity Score 13 [9, 22] 10 [9, 20] Not available

Missing data, n (%) 0 (0.0) 8226 (7.4) Not available

Categorical variables are displayed as count with percentage, and continuous
variables are displayed as median with 25th–75th interquartile range.
Traumatic brain injury was defined as having the abbreviated injury scale of ≥
3 on the head region
JTDB Japan Trauma Databank, CRASH-2 Clinical Randomisation of an
Antifibrinolytic in Significant Haemorrhage-2, mmHg millimeter of mercury
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correlations for age and GCS, respectively, and curvilin-
ear U-shaped correlations with respiratory rate and sys-
tolic blood pressure (Fig. 2). Based on the logistic
regression analysis to predict in-hospital mortality, after
assignment of simple integers to the categorized ranges
in the predictor values, we defined a novel score that
summed these 4-digit integers (the Trauma Rating Index
in Age, Glasgow Coma Scale, Respiratory rate and Sys-
tolic blood pressure [TRIAGES] score, Additional file 1).
The TRIAGES score ranges from 0 to 14 points: 0–2
points for age, 0–6 points for GCS, 0–2 points for re-
spiratory rate, and 0–4 points for systolic blood pressure
(Table 2, Additional file 3: Table S2). The required sam-
ple size for the test validation was estimated at 8237 or
13,623 for the comparison of the TRIAGES score to
RTS or MGAP score, respectively.

Score validation
In the JTDB validation and CRASH-2 cohorts, 9877/97,
428 (10.1%) and 3085/20,197 (15.3%) patients died in the
hospital, respectively. From the AUROC analysis, the
TRIAGES score showed the best prediction of in-

hospital mortality for both the JTDB validation and
CRASH-2 cohorts (Table 3, Additional file 4: Figure S1).
The TRIAGES score also showed the best calibration of
predicted and observed in-hospital mortality in terms of
the Pearson chi-square statistic estimated for both the
JTDB validation and CRASH-2 cohorts (Additional file 5:
Figure S2). For the tested scores across the validation co-
horts, sensitivity, specificity, and positive and negative
predictive values at the selected thresholds were also
assessed (Additional file 6: Table S3). In secondary ana-
lyses, the partial ROC analysis demonstrated that the
TRIAGES score had the best partial AUROC if the given
sensitivity was restricted to > 0.9 (Table 3). Another sec-
ondary analysis or a reclassification improvement ana-
lysis demonstrated that the TRIAGES score improved
the reclassification, compared with both the RTS for the
CRASH-2 cohort and the MGAP score for the JTDB
validation and CRASH-2 cohorts (Table 3). Results of
sensitivity analyses to reassess the primary analysis in
multiply imputed or single-imputed-by-the-best-value
datasets were consistent with those of the primary ana-
lyses (Table 3). Sensitivity analysis to assess the

Fig. 2 Non-linear association of physiological status variables and in-hospital mortality in a multivariable generalized additive model. A
multivariable generalized additive model (GAM), which included age, systolic blood pressure, Glasgow Coma Scale, and respiratory rate on arrival
at the emergency department as explanatory variables and in-hospital mortality as a response variable on the JTDB derivation cohort, estimated
the non-linear regression curve with a logit link function. GAM plots were estimated and integrated across multiply imputed datasets with a
number of knots of 10; line, point estimate; dotted line, upper and lower margin of 95% confidence interval
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prediction of the outcome using prehospital variables
was also consistent with that of the primary analysis
(Table 3). In the explanatory subgroup analyses stratified
by age groups, the prognostic accuracy of the tested
scores was relatively worse in elderly patients in the
JTDB validation cohort (Additional file 7: Table S4).
This association was most obvious for RTS.

Discussion
Our novel trauma score is easy to calculate and im-
proves the predictive accuracy compared with the RTS
and MGAP scores, based on AUROC analyses, partial
AUROC analysis, and reclassification improvement ana-
lysis, for both the JTDB validation cohort and CRASH-2
cohort.
The Trauma Injury Severity Score (TRISS) and Re-

vised Injury Severity Classification version II (RISC-II)

integrate the early information and delayed information
from radiological images and/or laboratory tests to
achieve the most accurate prognostication [22, 23].
However, the collection of late information requires con-
siderable delays during this critical period for trauma pa-
tients. Furthermore, late information regarding
radiological images usually involves a CT scan; therefore,
a combined trauma score is often missed or miscalcu-
lated if a CT scan lacks. Trauma scores in the early
trauma care are calculated based on the patients’ age,
mechanisms of injury, and physiological status, for which
information is easily collected during early trauma care
and within minutes after initial patient contact with
fewer missing [5–7, 9]. This facilitates the use of the
score by healthcare professionals and is expected to be
useful for triage in disasters, mass casualty incidents,
and military settings [4]. In addition, the ease of calculat-
ing the score is an indispensable feature of a trauma
score [10, 12]. Calculation of complex equations using
weighted coefficients generally requires electrical devices
that narrow the applicability to various situations. In
contrast, simplifying the score design may potentially re-
duce the accuracy of outcome prediction.
The RTS is not easy to use at the bedside or in a prehos-

pital setting because of its difficult categorization and rela-
tive complexity [5, 6]. Categorization of the parameters to
compute the RTS requires discrimination between 0 and
1–49mmHg for systolic blood pressure and between 0
and 1–5 breaths/min for respiratory rate which can be dif-
ficult to complete at the bedside within a period of sec-
onds. Moreover, many modern prediction scores no
longer use weighting coefficients with a decimal point, as
they can complicate score computation in the absence of
technological assistance. The TRIAGES and MGAP scores
both avoid the discrimination of systolic blood pressure
and respiratory rate values close to 0 and the use of
weighting coefficients with a decimal point.
Generally, in trauma care, trauma scores can be adjusted

for trauma severity for outcome research and international
or institutional benchmarking [2]. Improving the accuracy
and usability of trauma scores could also improve the
quality of observational studies. In specific situations, such
as disaster medicine or military medicine, a good trauma
triage tool should allow the extraction of patients with less
severe trauma, who need urgent treatment, as well as
dying trauma patients, who no longer require treatment.
Fulfilling these requirements can help develop a good tri-
age trauma score, capable of extracting the smaller portion
of the target population whose prognosis is modifiable,
thereby saving medical resources.
The current study has several limitations. First, the use

of a trauma database consisting of retrospectively re-
cruited, non-consecutive trauma patients (JTDB) is not
ideal for developing a prediction model. Second, the

Table 2 Predictors at presentation associated with in-hospital
death in the Japan Trauma Databank derivation cohort

Predictors Beta [95%CI] Variance
infraction
factor

P value Integerized
score point

Intercept − 5.00 [− 5.10, − 4.90] < 0.001

Age, years

16–54 Reference 0

55–74 0.70 [0.62, 0.78] 1.45 < 0.001 1

75+ 1.13 [1.05, 1.21] 1.53 < 0.001 2

Glasgow Coma Scale

3 4.19 [4.07, 4.31] 1.82 < 0.001 6

4 3.63 [3.46, 3.80] 1.25 < 0.001 5

5–7 2.91 [2.80, 3.02] 1.64 < 0.001 4

8–11 2.12 [2.01, 2.23] 1.56 < 0.001 3

12–13 1.43 [1.31, 1.55] 1.45 < 0.001 2

14 0.86 [0.75, 0.98] 1.49 < 0.001 1

15 Reference 0

Respiratory rate, 1/min

0–3 1.63 [1.42, 1.84] 1.42 < 0.001 2

4–11 0.54 [0.37, 0.71] 1.03 < 0.001 1

12–27 Reference 0

28+ 0.56 [0.48, 0.64] 1.07 < 0.001 1

Systolic blood pressure, mmHg

0–49 2.66 [2.52, 2.80] 1.37 < 0.001 4

50–79 1.31 [1.19, 1.42] 1.05 < 0.001 2

80–99 0.67 [0.56, 0.77] 1.05 < 0.001 1

100–199 Reference 0

200+ 0.58 [0.45, 0.71] 1.03 < 0.001 1

Continuous predictor variables are categorized based on the regression
coefficient (beta) estimated using logistic regression analysis. Integerized score
points were assigned as every 0.67 of the magnitude of beta
95%CI 95% confidence interval, mmHg millimeter of mercury
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advantages of the TRIAGES score including simplicity
and good prognostic accuracy are theoretically suitable
in disaster or military settings, however not tested in the
present study. Third, the use of in-hospital mortality as
the study outcome is not appropriate for predicting
long-term mortality in trauma patients. Fourth, the
CRASH-2 dataset, which consists of participants outside
of Japan, acted as an external validation dataset for this
model to test the external validity of the trauma scores.
However, CRASH-2 was a randomized controlled trial
involving hemodynamically unstable trauma patients;
therefore, the study did not include patients with critical
or less-severe trauma. To account for the drawback of
the CRASH-2 cohort as an external validation cohort,
we also used a JTDB validation cohort.

Conclusions
A novel trauma score that is easy to calculate and that
improves prognostication was developed and validated.
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Table 3 Comparisons of prognostic accuracy and reclassification improvement based on tested scores

Analyses Metrics of score performance Bootstrap comparisons

TRIAGES
score

RTS MGAP
score

TRIAGES score versus RTS TRIAGES score versus MGAP score

Difference [95%CI] P Difference [95%CI] P

Primary analysis

Area under curve

JTDB validation cohort (n = 76,762) 0.932 0.907 0.918 0.025 [0.023, 0.028] < 0.001 0.014 [0.012, 0.016] < 0.001

CRASH-2 cohort (n = 19,740) 0.814 0.808 0.774 0.006 [0.001, 0.011] 0.010 0.040 [0.033, 0.047] < 0.001

Sensitivity analyses for the primary analysis

Area under curve

Multiple imputation

JTDB validation cohort (n = 110,884) 0.917 0.894 0.902 0.023 [0.020, 0.025] < 0.001 0.015 [0.013, 0.017] < 0.001

CRASH-2 cohort (n = 20,197) 0.816 0.810 0.776 0.006 [0.002, 0.011] 0.006 0.040 [0.034, 0.046] < 0.001

Single imputation by the best value

JTDB validation cohort (n = 97,248) 0.911 0.889 0.899 0.022 [0.019, 0.024] < 0.001 0.012 [0.009, 0.014] < 0.001

CRASH-2 cohort (n = 20,197) 0.813 0.806 0.776 0.006 [0.002, 0.011] 0.006 0.037 [0.031, 0.043] < 0.001

Prehospital variables

JTDB validation cohort (n = 110,885) 0.858 0.786 0.833 0.072 [0.066, 0.078] < 0.001 0.025 [0.021, 0.030] < 0.001

Secondary analyses

Partial area under curve (sensitivity ≥ 0.9)

JTDB validation cohort (n = 110,885) 0.764 0.652 0.722 0.112 [0.102, 0.121] < 0.001 0.042 [0.033, 0.050] < 0.001

CRASH-2 cohort (n = 20,197) 0.629 0.592 0.560 0.037 [0.026, 0.048] < 0.001 0.069 [0.057, 0.081] < 0.001

Net reclassification improvement

JTDB validation cohort (n = 110,885) 0.465 [0.441, 0.489] < 0.001 0.422 [0.396, 0.447] < 0.001

CRASH-2 cohort (n = 20,197) 0.230 [0.177, 0.312] 0.004 0.239 [0.176, 0.318] < 0.001

Point estimation with 95%CI and P values of the metrics of score performance were computed by bootstrap estimation repeated 20,000 times (800 times per each
dataset if bootstrapping was performed on multiply imputed datasets)
TRIAGES Trauma Rating Index in Age, Glasgow Coma Scale, Respiratory rate and Systolic blood pressure; RTS Revised Trauma Score; MGAP Mechanism, Glasgow
Coma Scale, Age, and Arterial Pressure; 95%CI 95% confidence interval; JTDB Japan Trauma Databank; CRASH-2 Clinical Randomisation of an Antifibrinolytic in
Significant Haemorrhage-2
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ER: Emergency room; GCS: Glasgow Coma Scale; ISS: Injury Severity Score;
JTDB: Japan Trauma Databank; MGAP: Mechanism, Glasgow Coma Scale,
Age, and Arterial Pressure; MICE: Multiple imputation by chained equation;
RISC-II: Revised Injury Severity Classification version II; ROC: Receiver
operating characteristics; RTS: Revised Trauma Score; TRIAGES: Trauma Rating
Index in Age, Glasgow Coma Scale, Respiratory rate and Systolic blood
pressure; TRISS: Trauma Injury Severity Score
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