Kim et al. Critical Care (2019) 23:279
https://doi.org/10.1186/513054-019-2561-z

Critical Care

RESEARCH Open Access

A deep learning model for real-time
mortality prediction in critically ill children

Soo Yeon Kim'", Saehoon Kim?", Joongbum Cho?, Young Suh Kim', In Suk Sol', Youngchul Sung? Inhyeok Cho?,
Minseop Park?, Haerin Jang', Yoon Hee Kim', Kyung Won Kim"® and Myung Hyun Sohn'

Check for
updates

Abstract

Background: The rapid development in big data analytics and the data-rich environment of intensive care units
together provide unprecedented opportunities for medical breakthroughs in the field of critical care. We developed
and validated a machine learning-based model, the Pediatric Risk of Mortality Prediction Tool (PROMPT), for real-
time prediction of all-cause mortality in pediatric intensive care units.

Methods: Utilizing two separate retrospective observational cohorts, we conducted model development and
validation using a machine learning algorithm with a convolutional neural network. The development cohort
comprised 1445 pediatric patients with 1977 medical encounters admitted to intensive care units from January
2011 to December 2017 at Severance Hospital (Seoul, Korea). The validation cohort included 278 patients with 364
medical encounters admitted to the pediatric intensive care unit from January 2016 to November 2017 at Samsung
Medical Center.

Results: Using seven vital signs, along with patient age and body weight on intensive care unit admission, PROMPT
achieved an area under the receiver operating characteristic curve in the range of 0.89-0.97 for mortality prediction
6 to 60 h prior to death. Our results demonstrated that PROMPT provided high sensitivity with specificity and
outperformed the conventional severity scoring system, the Pediatric Index of Mortality, in predictive ability. Model

performance was indistinguishable between the development and validation cohorts.

Conclusions: PROMPT is a deep model-based, data-driven early warning score tool that can predict mortality in
critically ill children and may be useful for the timely identification of deteriorating patients.
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Background

Hospitalized children, particularly those in high-acuity
environments such as the pediatric intensive care unit
(PICU), are inevitably susceptible to clinical deterioration.
Several outcome prediction models such as the Pediatric
Index of Mortality (PIM) and the Pediatric Risk of Mortal-
ity (PRISM) are widely used in PICUs [1, 2]. However,
these acuity scores are based on “snapshot” values gath-
ered during the early period following PICU admission.
These static scores fail to adapt with the patient’s clinical
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progression and offer little assistance for the management
of individual patients [3, 4].

Previous studies demonstrating that acute deterioration
in patients is often preceded by subtle changes in physio-
logical parameters [5, 6] led to the development of the Early
Warning Score (EWS) [7]. Accurate and generalizable risk
stratification tools may contribute to the timely identifica-
tion of high-risk patients and facilitate earlier clinical inter-
vention leading to improved patient outcomes [8]. Since its
introduction, the EWS has undergone many alterations,
and its modified forms are widely used in general hospitals
today [9, 10]. However, the primary target population is
usually confined to relatively healthy patients in general
wards [9, 11] or emergency department settings [12] and
may not be applicable to intensive care settings [13].
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Current literature frequently calls for the development
of diverse intensive care warning scores [14—16]. The rapid
development in machine learning, coupled with the rich-
ness of data from extensive patient monitoring in the
intensive care unit (ICU), provides unprecedented oppor-
tunities for the development of new prediction scores in
the field of critical care [17-19]. Challenges in the analytics
of PICU data, including pathologic diversity and complex-
ity [20] and the wide range of age and developmental
stages, are anticipated to be addressed by the implementa-
tion of innovative predictive modeling [18, 21].

Curtis et al. developed a cardiac arrest prediction model
by time series trend analysis using a support vector ma-
chine algorithm that achieved excellent performance [22].
In addition, Zhengping et al. adopted Gradient Boosting
Trees to learn an interpretable model, which demonstrated
strong performance for the prediction of mortality and
ventilator-free days in the PICU [23]. Despite their success-
ful application of data-driven analytics, the above studies
were limited by the lack of external validation. To allow
practical application in a real-world setting, the preliminary
results would require further refinement regarding data
elements, extraction, processing, and operation with
acceptable false alarms.

In this paper, we describe the development and evalu-
ation of a new tool, the Pediatric Risk of Mortality Predic-
tion Tool (PROMPT), for real-time mortality prediction in
PICUs. We also assessed PROMPT’s suitability for practical
application in the clinical care of critically ill children.

Methods

Study population and data sources

We used data from the electronic health records (EHRs)
of all patients under 19 years old admitted to the medical
ICU at Severance Hospital (Seoul, Korea) between
January 2011 and December 2017. The primary cohort
contained 1445 patients with 1977 ICU admissions. For
external validation, we used a separate dataset provided
by Samsung Medical Center (Seoul, Korea) containing
data on 278 patients with 364 PICU admissions from
January 2016 to November 2017. Details on these data-
sets are presented in Additional file 1: Table S1. All data
were anonymized, and a waiver was obtained from the
Institutional Review Board of each hospital (#4-2017-
0060 and #2019-09015-001, respectively).

Feature selection and data processing

The extracted data contained sets of static features, such
as demographic and clinical information, and temporal
features such as time-stamped vital signs. To construct a
mortality prediction tool, we adopted two descriptive
features—age and weight—and seven vital signs: systolic
blood pressure (SBP), diastolic blood pressure (DBP),
mean blood pressure (MBP), heart rate (HR), respiratory
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rate (RR), peripheral capillary oxygen saturation (SpOs,),
and body temperature (BT). We selected vital signs as
objective predictor variables because they are routinely
and frequently collected from all patients regardless of
clinical situation and the values are rarely affected by the
examiner. Most vital signs of ICU patients are automat-
ically measured by monitoring devices at minimum once
an hour, and the values are recorded on the EHR.

The following cleaning process ensured that the EHR
data was ready for analysis and did not contain errors.
Non-numeric values were removed. In addition, a set of
defined ranges of physiologically possible values for
selected variables were used to eliminate outliers
(Additional file 1: Table S2). Carry-forward/carry-back-
ward methods were employed for imputations. In case
of multiple measurements within an hour, the most
extreme values were used. Policy-based preprocessing
was automated and resulted in an average coverage of
96.1% of all data with an accuracy of 97.5% compared to
manual corrections. Finally, for modeling, each variable
was standardized to fit an isotropic Gaussian distribution.

Machine learning

The primary outcome was all-cause mortality in the ICU.
For this binary outcome, we extracted positive instances
from all cases who died in ICU and negative instances from
all cases who survived (Additional file 1: Figure S1). The
24-h window of vital signs up to 6 to 60 h prior to death
was extracted as a positive instance, and 24-h window of
vital signs randomly chosen from during ICU stay of the
survivor was assigned as a negative instance. For simplicity,
only a single instance was selected from each encounter,
and both sampled positive and negative instances were
designated to be similar in their mean lengths to avoid
possible biases (Additional file 1: Table S3).

Model development was carried out using convolutional
neural networks (CNNs) [24], a class of deep, feed-forward
artificial neural networks consisting of alternating convolu-
tional and subsampling layers that replicate the complex-
ities of the animal visual cortex. The convolution operation
involves combining input data with a convolution kernel to
form transformed data. The filters in the convolutional
layers are modified based on learned parameters to incorp-
orate the most useful information for a specific task. This
method adjusts automatically to determine the best feature
based on the task and has achieved great success in feature
representation learning in images [25]. Recent reports have
also demonstrated its utility in predicting sepsis in adult
[26] and pediatric populations [27] and cardiac arrhythmias
[28]. A detailed architecture of our CNN, which consisted
of two layers of one-dimensional convolutional operations
followed by max pooling is presented in the supplementary
materials for reproducibility (Additional file 1: Table S4). A
fivefold cross-validation with five repetitions on the
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development cohort was adopted to validate PROMPT’s
performance, and external validation was followed to assess
its generalizability.

Statistical analysis

We compared the performance of PROMPT with other
standard machine learning algorithms, such as Gradient
Boosting Decision Trees (GBDT) [29], Long Short-Term
Memory (LSTM) [30], and the Pediatric Index of Mor-
tality 3 (PIM 3), which is currently widely used in PICUs
[1]. Model performance was assessed based on discrim-
ination using the area under the receiver operating char-
acteristic curve (AUROC), one of the most commonly
used metrics, and the area under the precision-recall
curve (AUPRC), which, because the outcome of interest
was mortality, was calculated considering a skewed large
domain of true negatives [31]. Sensitivity, specificity,
positive predicted value (PPV), negative predicted value
(NPV), and accuracy were also evaluated for all predic-
tion tools assessed in this study.

Table 1 Summary of model mortality detection performance
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Results

Dataset statistics

As shown from the descriptive statistics for each cohort
(Additional file 1: Table S1), the development cohort
consisted of 1977 patient encounters, in which 303 cases
of mortality (15.3%) were identified. The validation co-
hort showed 9.6% mortality. Significant differences were
noted between the two datasets in terms of age, PIM 3,
mortality, length of ICU stay, and inclusion period.

Mortality prediction performance

The performance metrics of PROMPT on mortality
prediction compared to other standard machine learning
algorithms and PIM 3 are summarized in Table 1. The
best performance was achieved for predicting mortality
6 h prior to death (AUROC 0.965, AUPRC 0.831) with a
slight decrease, although still high-performance, as the time
window increased to 60 h prior to death. In detecting mor-
tality 60 h in advance, PROMPT (AUROC 0.887, AUPRC
0.565) consistently outperformed GBDT (AUROC 0.831,
AUPRC 0.419), LSTM (AUROC 0.814, AUPRC 0.429), and

Development cohort

Validation cohort

Lead time window AUROC 95% Cl AUPRC 95% Cl AUROC 95% Cl AUPRC 95% Cl
PROMPT
6h 0.965 +0.006 0831 +0018 0922 +0,004 0716 +0016
12h 0948 +0009 0745 +0029 0945 +0,004 0701 +0023
24h 0933 +0.009 0733 +0027 0946 +0.005 0605 +0.024
48h 0.899 +0013 0570 +0.041 0.849 +0.007 0360 +0023
60h 0.887 +0018 0565 +0052 0.881 +0011 0445 +0031
GBDT
6h 0944 +0008 0767 +0022 0877 +0,005 0499 +0032
12h 0927 +0008 0684 +0028 0915 +0.005 0605 +0022
24h 0908 +0014 0612 +0032 0.897 +0,007 0442 +0021
48h 0853 +0014 0452 +0031 0.805 +0,009 0342 +0025
60h 0831 +0022 0419 +0051 0790 +0012 0403 +0035
LST™
6h 0945 +0010 0808 +0019 0875 +0,006 0547 +0039
12h 0915 +0016 0703 +0031 0870 +0012 0520 +0034
24h 0.889 +0013 0644 +0032 0837 +0012 0348 +0032
48h 0844 +0014 0530 +0029 0770 +0013 0348 +0027
60h 0814 +0025 0429 +0.050 0759 +0019 0353 +0034
PIM 3
Total 0767 - 0509 - 0881 - 0500 -
Subset 17 0787 - 0315 - 0876 - 0462 -
Subset 2 0785 - 0.298 - 0876 - 0462 -

AUROC area under the receiver operating characteristic curve, C/ confidence interval, AUPRC area under the precision-recall curve, PROMPT pediatric risk of
mortality prediction tool, GBDT Gradient Boosting Decision Trees, LSTM Long Short-Term Memory, PIM 3 Pediatric Index of Mortality 3

“Subset of the cohort with data of at least 48 h
“Subset of the cohort with data of at least 60 h
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PIM 3 (AUROC 0.785, AUPRC 0.298) in the development
cohort (Table 1), also shown in the micro-averaged per-
formance comparisons (Additional file 1: Figure S2). Similar
results were found on external validation (Table 1).

Additional paired comparison metrics at a sensitivity
of 0.8 for specificity, PPV, NPV, and accuracy for each
model are presented in Table 2. Within the development
cohort, PROMPT identified 80% of patients who were to
die in 24 h, yielded 7% false alarms (specificity = 0.931),
and was the most consistently accurate of all metrics.
Comparison of sensitivity according to the number of
false alarms showed that PROMPT provided fewer false
alarms than existing models, including PIM 3, in both
cohorts (Additional file 1: Figure S3).

Visualization of prediction trajectory

PROMPT produced an averaged mortality risk score over
multiple prediction models trained from development
cohorts to predict mortality in the preceding 6, 12, 24, 48,
and 60 h (examples are presented in Fig. 1). Where ¢ is the
current time point, the input data composed of two

Table 2 Comparison of model’s accuracy for mortality prediction
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descriptive features and vital signs in a range of [£- 24, ]
transformed to an averaged risk score. The same procedure
was repeated at the £ + 1 time points to generate prediction
trajectory. A sliding window (0 to 24 h) moved hour-by-
hour through the time series to generate predicted mortal-
ity for each time point during the ICU stay.

Designation of time and feature contributions

An interpretation module that quantitatively measured
the contribution of time series features for mortality was
developed. Every time-stamped vital sign was substituted
for an age-dependent mean value and, following changes
in predicted mortality, produced quantitative contribu-
tions of each feature (%). In addition, algebraic manipu-
lation demonstrated that the contribution of each time
point was captured by the importance of six blocks in mak-
ing a prediction. This is because a temporal relationship is
lost due to pooling operations. Accordingly, 24 h data was
grouped by six blocks for which the contribution to the
prediction was computed. An average filter was then ap-
plied for smoothing the signal. Figure 2 depicts illustrative

Development cohort

Validation cohort

Lead time window Sensitivity Specificity PPV NPV Accuracy Sensitivity Specificity PPV NPV Accuracy
PROMPT
6h 0.846 0.963 0.663 0.986 0.953 0.800 0.850 0.288 0.982 0.846
12h 0.800 0.946 0.555 0.983 0.935 0.800 0.890 0336 0.985 0.884
24h 0.800 0.931 0.454 0.985 0.922 0.849 0.887 0334 0.989 0.884
48h 0.800 0.834 0.224 0.986 0.832 0.800 0.752 0.177 0.983 0.755
60 h 0.800 0.882 0.268 0.988 0.878 0.800 0.772 0.190 0.983 0.773
GBDT
6h 0.800 0.933 0.509 0.982 0.922 0.800 0.805 0.238 0.981 0.805
12h 0.801 0.898 0.398 0.982 0.891 0.800 0.854 0.276 0.984 0.850
24h 0.800 0.854 0.283 0.983 0.850 0.800 0818 0.227 0.984 0.817
48h 0.800 0.769 0.172 0.985 0.771 0.800 0.629 0.126 0.979 0.640
60 h 0.800 0.693 0.123 0.985 0.698 0.800 0.551 0.107 0976 0.567
LST™M
6h 0.800 0.951 0.588 0.982 0.939 0.800 0.770 0.209 0.981 0.772
12h 0.800 0.888 0374 0.981 0.881 0.800 0.782 0.204 0.982 0.783
24h 0.800 0.828 0251 0.983 0.826 0.800 0.740 0.170 0.982 0.743
48h 0.800 0.729 0.150 0.984 0.733 0.800 0.537 0.104 0976 0.554
60 h 0.800 0.626 0.103 0.983 0.635 0.800 0.505 0.098 0974 0.524
PIM 3
Total 0.800 0617 0.392 0.909 0.661 0.800 0.799 0.298 0974 0.799
Subset 1" 0.806 0.643 0218 0.964 0.661 0818 0.754 0.182 0.984 0.758
Subset 2 0.800 0.643 0.200 0.966 0.659 0818 0.754 0.182 0.984 0.758

PPV positive predictive value, NPV negative predictive value, PROMPT pediatric risk of mortality prediction tool, GBDT Gradient Boosting Decision Trees, LSTM Long

Short-Term Memory, PIM 3 Pediatric Index of Mortality 3
“Subset of the cohort with data of at least 48 h
“Subset of the cohort with data of at least 60 h
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(See figure on previous page.)

Fig. 1 Prediction trajectory using PROMPT. Serial trends of recorded vital signs during ICU stay and hourly calculated predicted mortality rate
using PROMPT shown for patients from the validation cohort who survived (a) and died (b), respectively. Predicted mortality was averaged over
multiple prediction models trained from development cohort using the dataset to predict mortality in the preceding k hours (where k=6, 12, 24,
48, and 60). SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; HR, heart rate; RR, respiratory rate; SpO,,
peripheral capillary oxygen saturation; BT, body temperature; ICU, intensive care unit

examples of a deceased case showing the measured contri-
bution of each time point and those of features at the most
critical time point, as well as the linear trend of vital signs
for 24 h.

Interpretability of PROMPT

Individual feature importance was plotted by computing a
sensitivity heat map on a total of 363 test instances in the
development cohort to measure the importance of individ-
ual input variables (Additional file 1: Figure S4). The
sensitivity was defined as the derivative of the predicted
mortality according to the input variables, and the relative
importance of input variables was normalized to satisfy the

sum-to-one constraint. RR showed the highest relative im-
portance among all other features, followed by SBP and HR.

Individual Conditional Expectation plots are shown in
Additional file 1: Figure S5. These six plots show the test
instances in the development cohort. The predicted
mortality probability was computed by creating variants of
each input variable while keeping all other features as it is.
For blood pressures, predicted mortality tends to increase
when pressure values are too low or too high, and it de-
clines as the feature value falls within the physiological
range. A similar trend was observed in other vital signs,
such as HR, RR, and BT. In SpO,, predicted mortality
tends to decrease as the degree of saturation increases to
100%. However, several instances were identified with a
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Fig. 2 Depiction of time and feature contributions for mortality using PROMPT. Measured contribution (%) for mortality at the critical time point and
serial trend of vital signs over 24 h are plotted on each panel. The last sub-figure presents the time contribution. The height of the graph represents
the level of importance, and the positive/negative conversion distinguishes the time point contributed to make positive or negative predictions for
mortality. In the presented case, the critical time point (i.e, a peak of time contribution) was about 10 h, of which fluctuations in SpO,, blood pressure,
and HR are shown to contribute to instability which can be associated with mortality. SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP,
mean blood pressure; HR, heart rate; RR, respiratory rate; SpO,, peripheral capillary oxygen saturation; BT, body temperature
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high mortality probability despite a high SpO,, due to the
correlation between the features.

Discussion

In this study, we developed and validated a targeted real-
time early warning score, PROMPT, based on a CNN
algorithm using a PICU dataset with routine vital signs.
Utilizing a handful of variables, PROMPT achieved high
performance with high sensitivity and specificity for pre-
dicting mortality in PICU patients. In predictive ability, it
outperformed the conventional severity scoring system,
PIM 3, as well as other models that use GBDT and LSTM.

Existing risk prediction tools in ICU use static physio-
logical parameters from early in the course of critical
illness (often within the first 24 h following admission),
along with other components, such as age and diagnosis,
to assess severity and risk of death for the purpose of
predicting outcomes [32]. For pediatric populations,
PIM and PRISM are the most representative [1, 2]. How-
ever, it is generally agreed that they are poor surrogates
for risk stratification and should not be used as the basis
for individual treatment decisions [4, 33, 34]. Generic se-
verity scores were originally developed and calibrated to
maximize the capacity for mortality risk assessment for
populations of interest, and not for clinical decision-
making concerning individuals within those populations
[4]. Moreover, utilizing the poorest values within a fixed
time window, regardless of the outcome of interventions,
fails to reflect the dynamic clinical course including
differential treatment responses. Thus, these systems are
unable to distinguish which patients are at higher risk of
developing specific acute conditions. In our study, this
was demonstrated by the notably low discriminative
ability of PIM 3 in mortality prediction.

Predictive analytics on time series monitoring data
were introduced [35, 36] based on evidence that physio-
logic signatures preceded acute deterioration of patients
prior to the arousal of clinical suspicion [5, 6, 37]. Wide-
spread adoption of EHRs which could be queried in real
time enabled the development of EWS with the ability
to identify clinically deteriorating patients in need of
intervention [8, 38]. Accordingly, a wide variety of differ-
ent tools now exist and are operated alongside rapid re-
sponse teams in different hospital contexts [9, 10, 39].
For instance, the Bedside Pediatric Early Warning Score
(PEWS) is used across the UK National Health Service
for the detection of patients in wards who are at risk of
acute deterioration, facilitating their timely upgrade to
higher level care [40, 41]. Similarly, many other EWS
systems have been developed and validated primarily on
general wards [11, 40], and their use has been extended
to emergency departments [12, 42] and prehospital
settings [43].
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The ICU environment, where patients are clinically un-
stable and change rapidly between states of improvement
and deterioration, calls for meticulous monitoring and
clinical support. This has facilitated the development of
ICU early warning systems [18, 44, 45]. The development
of more sophisticated monitoring devices has resulted in an
exponential growth in sensor data. This, coupled with re-
cent advances in machine learning, artificial intelligence
techniques, and data archiving hardware, has facilitated the
discovery of data-driven characteristics and patterns of dis-
eases [18, 36, 46—48]. However, the numerous developmen-
tal stages, baseline age-related differences in physiologic
parameters, and the wide range of underlying pathologic di-
versity present unique challenges for the analysis of PICU
patient data [20, 21]. Moreover, physiological data of the
patient is continuously influenced by clinical interventions
such as oxygen supplement, volume resuscitation, and
vasopressor use, given that the core principle of intensive
care is to maintain the steady state [20]. Because variations
in physiological data occur within a complex biological
system composed of multiple components that interact
together, more sophisticated deep learning models such as
neural networks, which automatically learn features, have
demonstrated better performance than traditional machine
learning [49].

Our study makes several significant contributions to the
existing literature on mortality prediction in the PICU set-
ting. PROMPT utilized changing vital signs of individuals;
employed CNN, a deep model primarily used in image an-
alytics; and achieved high accuracy and discriminative
ability in predicting mortality. Prediction performance
decreased slightly as the time window ahead of the event
lengthened from 6 to 60h, and the performance of this
earlier identification was relatively lower in the validation
cohort. Nevertheless, PROMPT provided AUROC above
0.88 for predicting mortality 60 h in advance from both
cohorts. Moreover, it consistently achieved higher sensi-
tivity and specificity compared to other standard machine
learning algorithms and PIM 3.

Accuracy and false alarm rate are important issues to
consider in the practical implementation of EWS in ICU
settings. Because sensitivity and specificity mutually
interact, the performance of EWS and alarm fatigue
should be weighed and optimized [50]. Notably,
PROMPT consistently provided higher specificity than
PIM 3 and other algorithms against which it was
tested. In addition, PROMPT maintained a higher
level of accuracy than other models even with a small
number of alarms (Additional file 1: Figure S3).

In this study, PROMPT used seven vital signs along with
the patient’s age and body weight on PICU admission.
The model does not require any custom data entry and
relies entirely on data elements that are usually available
from the EHRs of most hospitals. Incorporating further
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parameters such as laboratory tests would be expected to
enhance PROMPT’s performance. However, we note that
models based on continuously updated physiologic moni-
toring data are better able to provide timely warning of
pending deterioration. Thus, using only the most basic
and commonly measured critical care data streamed from
the bedside monitor has an advantage for the broader
adoption of this model in other ICUs. Relatively minimal
data requirements, few manual data entry requirements,
and automated operation on data extracted from EHRs
save additional labor and cost and may lighten the burden
of application in the clinical setting.

This study has several limitations. First, we could not de-
termine the generalizability of our results to other popula-
tions. In addition, the retrospective study design did not
allow the determination of model performance in a pro-
spective setting. Our model remains a population-based
estimate, as we did not validate its efficacy for individual
prognostication in a prospective way. Moreover, despite
PROMPT’s high performance in detecting and predicting
mortality, this knowledge alone is insufficient to affect pa-
tient outcomes. Clinician input is required to determine
clinical interventions and shape patient-centered outcomes.

However, considering that clinicians in the PICU envir-
onment face limited clinical resources and that rationing of
health care is a reality in some respects, PROMPT may
have the potential to benefit clinical practice. If the risk of
critical adverse outcomes is identified earlier, clinicians
could allocate staffing and other medical resources
with a higher level of certainty. Our model utilizes
easily collected data and, therefore, may be particu-
larly suitable for bedside prognostications in relatively
low-resourced environments.

In addition, because the predictive window of
PROMPT is up to 60h before death, earlier warnings
may give physicians more time to intervene and prevent
or mitigate mortality. Alternatively, once physicians are
alerted and prepared for the likelihood of death, there
are opportunities for preference-concordant, high-value
care in PICUs by initiating goals of care discussions earl-
ier and revising treatment plans. Hence, our future work
will focus on the practical impact of early recognition of
at-risk patients on clinically relevant outcomes.

Lastly, we would like to stress the additional implica-
tions of our model. Although our current model does
not tell the clinician precisely how to treat a deteriorat-
ing patient, the trajectory of predicted risk and designa-
tion for time and feature contributions are expected to
provide additional information, indirectly. Changes in
the trend of predicted mortality over time, coupled with
an event or specific intervention with a patient, may pro-
vide clinicians intuitive insight into potential associations
with a favorable or unfavorable clinical course in individ-
ual cases.
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Conclusion

In this two-center retrospective study, we validated an
easily implementable deep model-based real-time mor-
tality prediction system for critically ill children. Using
seven vital signs routinely recorded in standard critical
care practice, along with patient age and body weight on
ICU admission, our results indicate that PROMPT
provides high sensitivity, specificity, and discriminative
ability for the prediction of patients at high risk for
mortality up to 60h prior to death. This data-driven
early warning score may be an effective tool for the
timely recognition of deteriorating patients.
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