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Heterogeneity in sepsis: new biological
evidence with clinical applications

Aleksandra Leligdowicz'?" and Michael A. Matthay'**

Abstract

This article is one of ten reviews selected from the
Annual Update in Intensive Care and Emergency
Medicine 2019. Other selected articles can be found
online at https://www.biomedcentral.com/collections/
annualupdate2019. Further information about the
Annual Update in Intensive Care and Emergency
Medicine is available from http://www.springer.com/
series/8901.

Introduction
Since the first consensus definition of sepsis almost three
decades ago [1], our understanding of the clinical char-
acteristics that prognosticate the outcome of this com-
plex syndrome has improved [2], resulting in a simpler
classification scheme [3]. The existing definitions, how-
ever, remain imprecise and the clinical diagnosis of sep-
sis corresponds poorly with post hoc presence of
infection [4]. Furthermore, the outcome of sepsis de-
pends on factors beyond patient signs and symptoms
[5], including age [6], the infection source [7], and the
timing and appropriateness of therapeutic interventions
[8] (Fig. 1). There is currently a promising shift from
predicting outcome to a pathobiology-driven under-
standing of the heterogeneity in the host response to
sepsis, utilizing novel translational high throughput tools
and analytic methods to define distinct host response
subgroups. It is now well recognized that biological
markers improve the classification of sepsis and can fa-
cilitate identification of distinct patient subclasses, or
endotypes.

Both excessive immune activation [9] and immuno-
suppression [10] are central to the pathophysiology of
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sepsis [11]. A clinical measure of immunosuppression is
the acquisition of nosocomial infection. However, the
development of intensive care unit (ICU)-acquired infec-
tion is not unique to patients with sepsis and, in fact, its
incidence is comparable to patients admitted to the ICU
without infectious conditions [12]. This finding suggests
that mechanisms other than the immune response to in-
fection are also contributory, with the key target path-
ways being (1) endothelial activation, (2) coagulopathy
and (3) altered glucose and protein metabolism. Endo-
types with derangements in all of these pathways have
been identified, with divergent outcomes and differential
response to therapies.

In this chapter, we highlight some of the most relevant
recent advances in translational biology that assist in
deconvoluting heterogeneity in patient response to sep-
sis. We focus on the use of molecular and metabolomic
signatures as well as novel cellular function studies to
identify distinct sepsis endotypes (Table 1). Identification
of unique biological signatures in patients with sepsis
could enable rational enrollment into clinical trials and,
more importantly, enhance our approach to the diagno-
sis, prognosis, as well as individualized treatment to
modulate the response to sepsis.

Transcriptomic profiling

Interindividual transcriptome variation in sepsis has
been recently evaluated in several large cohorts, with a
dysfunctional immune response phenotype being a com-
mon theme. Clinical samples for these studies include
peripheral blood leukocytes obtained within 24-h of ICU
admission from patients with definite or probable infec-
tion. Unsupervised hierarchical clustering of approxi-
mately 25,000 genome-wide transcriptomic (gene
expression microarray and RNA sequencing) profiles is
then applied to identify distinct subgroups of patients in
a derivation cohort and subsequently the findings are
verified in at least one validation cohort. These sophisti-
cated data-driven methods have identified patterns
among expressed genes that define molecular subgroups
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Fig. 1 Heterogeneity in critically ill patients with severe infection

representing different disease states without reference to
clinical outcomes, but which could be associated to
them. This approach could also define clusters indicative
of the individual’s premorbid state (age, comorbidities),
illness stage and severity, mortality and genetic predis-
position. However, subgroup membership cannot be dis-
tinguished on the basis of these clinical characteristics,
as was the case for each of the studies summarized later.

One of the first studies to use unsupervised hierarchical
clustering to study sepsis subgroups within the ICU popu-
lation was done in a cohort of 98 children admitted to
pediatric ICUs in the United States with septic shock [13].
Three subclasses were identified by differential
genome-wide expression patterns: endotype A (29%),
endotype B (46%), and endotype C (26%). These three
classes differed significantly in clinical phenotypes includ-
ing ICU mortality (highest in endotype A at 36% relative
to 11 and 12% in endotypes B and C, respectively), illness
severity and degree of organ failure (both highest in endo-
type A), and age (youngest in endotype A). The subclasses
were also biologically plausible, with the most deranged
signaling pathways in endotype A involving repression of
genes key to the adaptive immune system, glucocorticoid
receptor signaling, as well as to zinc homeostasis.

Similar methodology has recently been applied to the
adult critically ill population. Among 265 patients admit-
ted to 29 ICUs in the UK with sepsis due to
community-acquired pneumonia (CAP) as part of the
Genomic Advances in Sepsis (GAiInS) study,

transcriptomic profiles defined two sepsis response sig-
natures (SRS1, 41% and SRS2, 59%) [14]. Relative to
SRS2 patients, patients in the SRS1 group had a higher
14-day mortality (22% vs. 10%). SRS1 assignment was as-
sociated with relative immunosuppression,
endotoxin-tolerance, T-cell exhaustion, human leukocyte
antigen (HLA) class II downregulation, and metabolic
derangements (switch from oxidative phosphorylation to
glycolysis). Of the over 3000 differentially expressed
genes, seven genes reliably predicted SRS membership.
In future studies, patients prospectively assigned into
SRS1 may benefit from therapies that boost their im-
mune system and prevent nosocomial infection.

This analytical approach was subsequently used by the
same investigators to study the gene expression patterns
in 117 patients with fecal peritonitis (FP) [15]. Two dis-
tinct groups were again identified (SRS1_FP, 46% and
SRS2_FP, 54%), with patients in the SRS1_FP group also
having a higher 14-day mortality (19% vs. 4%). The find-
ings were strongly correlated with the SRS groups iden-
tified in the CAP study [14], again showing enrichment
of endotoxin tolerance and T-cell activation but also in
cell death, apoptosis and necrosis. Of the over 1000 dif-
ferentially expressed genes, a simpler six-gene set was
derived that predicted group membership. Of note,
when gene expression patterns that distinguished SRS
groups were tested in the pediatric cohort described
above [13], the same enrichment was not observed (i.e.,
SRS1_FP [15] and endotype A [13]).
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Table 1 Cohort studies of pathobiology-driven patient phenotypic classification

Endotypes Cohort type (n)

Key biomarkers

Transcriptomic profiling
Subclass A-C [13]
SRST and SRS2 [14]

SRS1_FP and SRS2_FP
[15]

Mars1-4 [16]

Pediatric septic shock (98)
CAP (265)
Fecal peritonitis (117)

All-cause sepsis (306)

44-gene classifier
7-gene classifier: IDYRK2, DDNB1IP1, TDRD9, ZAP70, ARLT4ER, MDC1 ADGRE3
6-gene classifier: CD163, COHHC19, MME, FAM89A, ZBP1, B3GNT2

2-gene ratios: Mars1: BPGM:TAP2, Mars2: GADD45A:PCGF5, Mars3:

AHNAK:PDCD10, Mars4: IFIT5:GLTSCR2

Inflammopathic, adaptive,
coagulopathic [17]

Bacterial sepsis (700)

Neutrophil pathways [18]  Sepsis with (29) and without ARDS (28)
Metabolomics

Energy metabolism [27] Septic shock (39), ICU controls (20)

33-gene classifier

OLFM4, LCN2 2, CD24, BPI

1Glucose, 3-hydroxybutyrate, O-acetylcarnitine, succinate, creatine, creatine

phosphate
|Branched-chain amino acids and arginine

Lipid homeostasis and
tryptophan catabolism
[28]

Defect in fatty acid-3-
oxidation [29]

Septic shock (20)

Community-acquired sepsis survivors
(119) and nonsurvivors (31)

Lipid metabolism [30] SIRS (29), Sepsis (30), sepsis-induced

ARDS (31)

Lipid metabolism [31] SIRS (42), CAP (67), 1Al (60), UTI (73) BSI
(26)

Cellular function

Immunophenotype [34]  Sepsis (148)

Immunophenotype [35] Sepsis (22)

Immunophenotype [36]  Sepsis (505)

Endothelial permeability  Sepsis (35)

(37]

Endothelial permeability
[38]

Primary (12) and secondary (6) sepsis

IUnsaturated long-chain PC and LPC, kynurenine

Acylcarnitine esters, amino/nucleic acid catabolites, glycolysis/citric acid cycle
components

y-glutamylphenylalanine, y-glutamyltyrosine, 1-arachidonoyl-GPC (20:4), tauro-
chenodeoxycholate, 3-(4-hydroxyphenyl) lactate, sucrose, kynurenine

SM C22:3 and, lysoPCaC24:0, lysoPCaC26:1, putrescine, lysoPCaC18:0, SM C16:1

Neutrophil, monocyte, and T,eq phenotypes
Lymphocyte PD-1/PD-L1 expression
Monocyte and CD3, CD4, CD8 Tcell phenotypes

Supernatants from whole blood treated with LPS

Neutrophils treated with fMLP

CAP community-acquired pneumonia, PC phosphatidylcholines, LPC lysophosphatidylcholines, /Al intraabdominal infection, UTI urinary tract infection, BS/
bloodstream infection, PD programmed death, LPS lipopolysaccharide, fMLP formyl, methionyl-leucyl-phenylalanine, SIRS systemic inflammatory

response syndrome

In a group of 306 patients admitted to two ICUs in
the Netherlands as part of the Molecular Diagnosis and
Risk Stratification of Sepsis (MARS) project, four mo-
lecular endotypes (Mars1—4) were identified [16]. Mor-
tality at 28 days differed among the subgroups and was
highest in the Mars1 group at 39%, compared to 22% in
Mars2, 23% in Mars3 and 33% in Mars4. The Marsl
poor-prognosis endotype had a decrease in expression of
genes involved in innate and adaptive immune functions
(Toll-like receptor, nuclear factor-kB signaling [NF-«B],
antigen presentation, and T-cell receptor signaling) and
an increase in expression of cellular metabolic pathways
(heme biosynthesis), processes which are both analogous
to immune exhaustion. Mars2 and 4 endotype had up-
regulation of pattern recognition and cytokine pathways
(interleukin [IL]-6, NF-kB, interferon signaling, inducible
nitric oxide synthase), representing a hyperinflammatory

state. Finally, Mars3 was a lower-risk endotype with in-
creased expression of adaptive immune pathways
(T-helper cells, natural killer cells, IL-4 signaling, B-cell
development), which was highly correlated with the
low-risk SRS2 endotype [14]. A two-gene expression ra-
tio was derived to enable classification of each endotype
at the time of ICU admission.

In the most recent and comprehensive attempt to iden-
tify sepsis subtypes, data from 14 transcriptomic datasets
consisting of 700 patients revealed three robust host re-
sponse clusters across the sepsis spectrum [17]. These
were termed: (1) inflammopathic (increased innate and re-
duced adaptive immune signal marked by increased ex-
pression of IL-1 receptor, pattern recognition receptor
activity, complement activation); (2) adaptive (reduced in-
nate and high adaptive immune signal with lower mortal-
ity, marked by interferon signaling); and (3) coagulopathic
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(irregularities in the coagulation and complement systems,
including platelet degranulation and glycosaminoglycan
binding). Similar to the previous analyses, the three
groups differed in 30-day mortality, with the highest mor-
tality in the inflammopathic group at 30%, compared to
8% in the adaptive and 25% in the coagulopathic groups.
A simplified 33-gene classifier was derived to facilitate
cluster assignment. The assignment into the
high-mortality inflammopathic cluster corresponded to
SRS1 and the low-mortality adaptive cluster to SRS2 [14].

Early transcriptional changes may also have identified pa-
tients at risk of sepsis-associated complications at the time
of ICU admission. One study from our research group that
investigated 57 patients with sepsis found that the differen-
tial expression of key mediators of the initial neutrophil re-
sponse to infection identified patients with acute
respiratory distress syndrome (ARDS, # = 29) compared to
those with sepsis who did not have ARDS (# = 28), a finding
that could not be attributed to the neutrophil count [18].

To date, genome-wide expression studies in sepsis used
whole leukocyte populations. However, distinct gene
expression patterns are present among subsets of granulo-
cytes and lymphocytes which represent the specialized
function of each of these immune cells [19]. Since the
transcriptome profile depends on the inflammatory cell
type, it is possible that gene expression patterns that
distinguish subclasses reflect different leukocyte popula-
tions instead of within-cell differences in gene expression.
These findings also require validation in large cohorts
spanning different countries as variation in ethnic back-
ground is a strong determinant of gene expression [20].

Nevertheless, these studies provide evidence of distinct
categories of the host response to sepsis and potential
novel therapeutic targets based on differentially
expressed molecular pathways that distinguish patient
endotypes. Furthermore, each study proposed potential
‘downsizing’ of the high-dimensional data into manage-
able predictive signals that could be incorporated into a
simpler point-of-care test, assisting in translating the
findings to the bedside.

mRNA and protein signatures

A more established and more feasible method of bio-
logical subclassification of patients with sepsis is plasma
protein quantification and a vast number of studies have
classified sepsis using this approach [21-23], which is
beyond the scope of this review. A noteworthy method
that could offer a novel way to derive sepsis subclasses is
combining molecular and protein biomarkers to predict
outcome in patients with septic shock. This approach
was used to risk stratify pediatric septic shock using a
previously validated risk score consisting of five plasma
protein biomarkers (PERSEVERE decision tree) [23] and
combining these with four top mortality assessment
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genes [24]. An improvement was noted in the perform-
ance of the risk score estimating the risk of 28-day mor-
tality (PERSEVERE-XP, area under the receiver operating
characteristic [AUROC] curve increase from 0.78 to
0.91). The plasma biomarkers were associated with dys-
functional inflammation and cellular injury whereas the
genes were related to the tumor protein 53 (TP53, p53),
a transcriptional factor functioning as a tumor suppres-
sor, preventing the generation and persistence of cells
with genomic damage. Taken together, this approach of-
fers a plausible hypothesis regarding biological pathways
that result in a poor outcome due to septic shock.

Metabolomics

Metabolomics is an expanding and less familiar method
to decipher heterogeneity in sepsis. It refers to the global
assessment of small metabolites in any biological sample,
representing a composite ‘snapshot’ of gene expression,
enzyme activity, and the physiological landscape [25].
More than 5000 metabolites can be detected in cells, tis-
sues, or biofluids (blood components, urine) using nu-
clear magnetic resonance (NMR) spectroscopy or mass
spectrometry, the latter of which is more sensitive and
can detect low-abundant metabolites [26]. The metabo-
lites can include both endogenous (lipids, carbohydrates,
amino acids, nucleic acids) and exogenous (microbial
components and byproducts) compounds. Alteration in
endogenous metabolite concentration can be linked to
biological pathways and the magnitude of change relates
to the stage of illness, significantly magnifying transcrip-
tome and proteome-level shifts. Studies so far included
retrospective specimen collection with small sample
sizes.

"H NMR spectroscopy was used to analyze and compare
serum samples derived from adults with septic shock and
from ICU controls [27]. Sixty metabolites were recog-
nized, 31 of which could distinguish between septic shock
and ICU control patients, proposing a composite bio-
marker pattern that could differentiate between these pa-
tient groups. The metabolites were involved in energy
metabolism and included glucose, 3-hydroxybutyrate,
O-acetylcarnitine, succinate, creatine, creatine phosphate
as well a decreased level of branched-chain amino acids
and arginine. These results suggest that in early sepsis,
metabolites involved in energy metabolism have a role in
the pathophysiology of sepsis.

Alteration in metabolites involved in energy metabol-
ism has also been recognized as key in distinguishing
sepsis survivors from non-survivors using mass spec-
trometry to characterize lower concentration metabolites
in plasma. In a substudy of the ALBIOS (Albumin Italian
Outcome Sepsis) trial which enrolled 1818 patients with
severe sepsis or septic shock, day 1 and 7 plasma sam-
ples were studied in 20 patients, 45% of whom died by
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day 28 [28]. The study identified 137 metabolites, many
of which were significantly different between survivors
and non-survivors. The most notable group of metabo-
lites included a decrease in phosphatidylcholines and
lysophosphatidylcholines as well as an increase in kynur-
enine. This decline in lipid species, particularly
long-chain polyunsaturated fatty acids, may lead to in-
creased T-cell activation and an excessive immune
response.

The plasma metabolome was similarly studied using
mass spectrometry in a subset of 150 patients who were
among 1152 individuals with suspected sepsis enrolled
in the Community Acquired Pneumonia and Sepsis Out-
come Diagnostics (CAPSOD) study [29]. Of the 439
metabolites analyzed, 214 were detected at both day 0
(to) and at 24 h (t,4). Metabolites did not differ at either
time point among infectious etiologies (Streptococcus
pneumoniae, Staphylococcus aureus or Escherichia coli).
There were 76 metabolites at t, and 128 metabolites
at ty, that differed between sepsis survivors and
non-survivors at 28 days. Acylcarnitine esters of all
fatty acid length (medium- or short-chain) and
branched-chain amino acid biochemical group differences
were most pronounced between the two patient groups,
suggesting that a defect in fatty acid-p-oxidation may
occur at the level of the carnitine shuttle. Metabolites
comprising fatty acid transport, gluconeogenesis and the
citric acid cycle were also differentially deranged.

Another large cohort that used mass spectrometry for
metabolomic profiling to study metabolite biomarkers in
60 ICU survivors and 30 ICU non-survivors found that
of the 187 metabolites tested, 57 were associated with
28-day mortality [30] and 31 of them were replicated in
the CAPSOD validation cohort [29]. These metabolites
included diverse lipid, carbohydrate, amino acid and nu-
cleotide products. Higher levels of tyrosine and phenyl-
alanine catabolism products and lower levels of lipid
metabolites were associated with mortality. Although
this study used the same metabolomic datasets as the
previously described study [29], a completely different
network of metabolites was identified, which was also
predictive of 28-day mortality, implying it is premature
to focus on a single metabolite biomarker as several
could be implicated in the pathobiology of different
stages of sepsis.

The largest study to investigate metabolites using mass
spectrometry in patients with sepsis included 406 pa-
tients, 268 of whom were included in a discovery cohort
(42 patients with systemic inflammatory response syn-
drome [SIRS], 67 with CAP, 60 with intraabdominal in-
fection, 73 with urinary tract infection and 26 with
bloodstream infection) [31]. Again, acylcarnitines and
lipids were altered in sepsis relative to SIRS. A sphingo-
lipid SM C22:3 and glycerophospholipid lysoPCaC24:0

Page 5 of 8

model discriminated between these two entities with an
AUROC of 0.9. The analysis also indicated great hetero-
geneity in metabolite patterns depending on the ana-
tomic source of infection and thus a one metabolite
model was proposed to prognosticate unfavorable out-
come for each infection type.

Cellular function

While molecular, protein and metabolomic biomarkers
provide associations between sepsis and its outcome, they
cannot determine causality and mechanistic studies link-
ing these associations to sepsis pathobiology are required.
Two potentially high throughput techniques available to
study ex vivo relationships between cell function and sep-
sis pathobiology include flow cytometry [32] and electric
cell-substrate impedance sensing (ECIS) [33].

Immunophenotyping involves the use of flow cytome-
try and fluorescent-labeled monoclonal antibodies to
simultaneously label multiple cell surface markers, such
as those associated with immune dysfunction. In a group
of 138 ICU patients recruited from four ICUs in the UK,
leukocyte dysfunction defined by a combination of re-
duced neutrophil CD88 and monocyte HLA-DR as well
as an elevated proportion of regulatory T cells (CD4",
CD25**, CD127"°") was associated with the develop-
ment of nosocomial infection [34]. Lymphocyte dysfunc-
tion is also present in sepsis and can be quantified by
the expression levels of programmed death protein 1
(PD1) and its ligand PDL1, which promote apoptosis.
When peripheral blood mononuclear cells from 22 pa-
tients with sepsis were compared to healthy controls,
both PD1 and PDL1 were higher on all lymphocyte sub-
sets (CD4 T cells and B cells) in patients with sepsis
[35]. Similar to transcriptome and metabolome analyses
in sepsis, the early innate and adaptive immune status
also vary according to infection type [36]. Therefore, the
identification of patients with a prespecified source of
infection who have an immunophenotype amendable to
immunomodulatory therapy could allow for precision
medicine-guided therapy.

The endothelium is one of the primary targets in sep-
sis. Measuring endothelial cell function ex vivo is chal-
lenging but our research group developed a novel assay
(ECIS) that delineates the heterogeneity in endothelial
cell response after exposure to different patient-derived
samples. This assay is based on movement of current
across a monolayer of endothelial cells, with a decrease
in resistance indicative of an increase in vascular perme-
ability. When pulmonary endothelial cells were exposed
to lipopolysaccharide (LPS)-stimulated leukocyte super-
natants derived from 35 ICU patients with sepsis, sub-
stantial  heterogeneity in pulmonary endothelial
permeability was observed [37]. The same method was
used to test the ability of neutrophils from septic
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patients to induce endothelial damage, demonstrating
that neutrophils from septic patients with compared to
those without ARDS can induce greater endothelial
damage [38]. This in vitro model of vascular permeabil-
ity may be useful for testing therapeutic agents that
could mitigate endothelial injury in early sepsis.

Challenges and future directions

Distinguishing consistent biological heterogeneity in sepsis
will necessitate overcoming several technical hurdles. Inclu-
sion criteria ought to be uniform across sites to minimize
patient selection bias. The timing of sample collection is
critical as endotype assignment is a dynamic process and
nearly 50% of patients cross over from one endotype to an-
other over the first 5days of ICU admission, as demon-
strated by serial sampling on sequential days [15]. Similarly,
the duration of altered gene expression can vary between
patients, and tends to normalize quicker in patients who re-
cover faster [39], emphasizing that standardizing sample col-
lection timing is crucial. Data collection will also need to be
standardized to include common clinically meaningful out-
comes as studies to date use ICU, hospital, 14-, 28-, 30-, or
90-day mortality. These outcomes represent different end-
points which could be measuring different biological pro-
cesses. Early deaths are more likely to be directly attributed
to the initial episode of sepsis whereas late deaths may rep-
resent complications of sepsis beyond nosocomial infections
[40]. In the analysis phase, standardizing analytical methods
will be important to determine whether sepsis can be cate-
gorized into two, three, four or potentially more endotypes.
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It is plausible that the host response to sepsis may be
nonspecific and could be elicited to different organisms,
which invade different organs. Although there is evi-
dence that there may be a shared host response at the
transcriptome and metabolome level irrespective of the
infection type (Gram-positive sepsis and Gram-negative
sepsis) [29, 41] or the anatomic source of infection [15],
the studies to date investigating these questions have
been relatively small and when pooled data are used
[42], there is a host gene expression signature that can
discriminate sterile inflammation from bacterial or viral
infections. For this reason, the largest transcriptomic
analysis to date restricted analysis to only bacterial sepsis
[17]. Also, when gene expression data for all-cause sepsis
are re-analyzed including patients with only pneumonia
and peritonitis, the two most common anatomic sources
of infection [7], the proportion of patients assigned to an
endotype varies depending on the infection source [16].
Metabolites also vary based on infection source, with
CAP having a different metabolite pattern relative to
other sites of infection [31]. A recent analysis of the
plasma metabolome in HIN1 pneumonia successfully
differentiated viral from bacterial culture-positive pneu-
monia and ventilated ICU controls [43]. Therefore,
whether sepsis endotypes are truly independent of infec-
tion type and anatomical source will require large-scale
prospective cohort studies with enough power to address
this question.

In the future, it may be possible to treat distinct mani-
festations of the host response to sepsis based on
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signatures representing distinct biological pathways
(Fig. 2). Assignment into endotypes could facilitate tar-
geting appropriate therapies to the patient group with a
pathway derangement endotype that would most benefit.
It would also enable appropriate selection into clinical
trials investigating pathway-driven therapeutics that to
date have been unsuccessful largely due to the inclusion
of a heterogenous group of patients with sepsis.

Validation in large, multicenter, and diverse cohorts is
needed prior to transitioning from exploration and discov-
ery to testing candidate mRNA, protein, and metabolite
models. An overarching future collaborative study aim
should include prospective validation in large cohorts to
determine whether pathobiology biomarker-driven identi-
fication of sepsis endotype at the time of ICU admission
can improve clinical outcomes and personalization of
treatment.

Conclusion

Applying bioinformatics to integrate systems biology
(transcriptomics, proteomics, metabolomics) in combin-
ation with functional cellular studies has the potential to
identify biological endotypes, which cannot be predicted
using clinical covariates alone. Optimizing these novel
translational methods will require collaboration, expertise
and standardization in patient sample collection, assay
performance and data analysis. It is possible that the true
nature of the heterogeneity of the host response to sepsis
will require a combination of molecular, protein, metabo-
lomic and functional signatures that will lead to an inte-
grated, simple, and clinically useful diagnostic model that
could be rapidly used at the time of ICU admission. Hope-
fully, a parsimonious set of biological markers will be use-
ful to categorize patients into specific sub-groups that
would be useful for testing specific new therapies. Ultim-
ately, detection of key biological markers along with clin-
ical indicators at the bedside could improve our approach
to precision medicine-guided therapy and outcomes of pa-
tients with sepsis.
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