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Abstract

Background: Acute respiratory failure occurs frequently in hospitalized patients and often starts before ICU admission.
A risk stratification tool to predict mortality and risk for mechanical ventilation (MV) may allow for earlier evaluation and
intervention. We developed and validated an automated electronic health record (EHR)-based model—Accurate
Prediction of Prolonged Ventilation (APPROVE)—to identify patients at risk of death or respiratory failure requiring
>= 48 h of MV.

Methods: This was an observational study of adults admitted to four hospitals in 2013 or a fifth hospital in 2017.
Clinical data were extracted from the EHRs. The 2013 patients were randomly split 50:50 into a derivation/validation
cohort. The qualifying event was death or intubation leading to MV >= 48 h. Random forest method was used in
model derivation. APPROVE was calculated retrospectively whenever data were available in 2013, and prospectively
every 4 h after hospital admission in 2017. The Modified Early Warning Score (MEWS) and National Early Warning Score
(NEWS) were calculated at the same times as APPROVE. Clinicians were not alerted except for APPROVE in 2017cohort.

Results: There were 68,775 admissions in 2013 and 2258 in 2017. APPROVE had an area under the receiver operator
curve of 0.87 (95% CI 0.85–0.88) in 2013 and 0.90 (95% CI 0.84–0.95) in 2017, which is significantly better than the
MEWS and NEWS in 2013 but similar to the MEWS and NEWS in 2017. At a threshold of > 0.25, APPROVE had
similar sensitivity and positive predictive value (PPV) (sensitivity 63% and PPV 21% in 2013 vs 64% and 16%, respectively,
in 2017). Compared to APPROVE in 2013, at a threshold to achieve comparable PPV (19% at MEWS > 4 and 22% at NEWS
> 6), the MEWS and NEWS had lower sensitivity (16% for MEWS and NEWS). Similarly in 2017, at a comparable sensitivity
threshold (64% for APPROVE > 0.25 and 67% for MEWS and NEWS > 4), more patients who triggered an alert developed
the event with APPROVE (PPV 16%) while achieving a lower false positive rate (FPR 5%) compared to the MEWS
(PPV 7%, FPR 14%) and NEWS (PPV 4%, FPR 25%).

Conclusions: An automated EHR model to identify patients at high risk of MV or death was validated retrospectively
and prospectively, and was determined to be feasible for real-time risk identification.

Trial registration: ClinicalTrials.gov, NCT02488174. Registered on 18 March 2015.
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Background
At 784 cases per 100,000 hospitalizations, acute respira-
tory failure (ARF) is one of the most common acute organ
failures in the hospital [1] and is associated with a
6-month mortality of 30%, increased hospital readmission,
and functional impairment among survivors [2–4].
Clinical deterioration in ARF can be seen 8–48 h prior to
critical care intervention [5]. Yet delayed recognition of
clinical deterioration is common, and is associated with
worse outcomes [6]. Failure to recognize developing re-
spiratory failure is the most common reason for delayed
Rapid Response Team (RRT) activation which has been
associated with increased in-hospital mortality [7, 8].
Most early warning systems (EWS), like the Modified

Early Warning Score (MEWS) or the National Early
Warning Score (NEWS), predict ICU admission, cardiac
arrest, or death, as an indication of clinical deterioration [9,
10]. Cardiac arrest and death are infrequent and represent
the late, end result of organ dysfunction. ICU admission de-
pends as much on hospital-level factors as patient condi-
tion. However, respiratory failure requiring mechanical
ventilation (MV) is a widely accepted criterion for ICU ad-
mission and is consistently associated with increased mor-
tality and morbidity [11]. A multicenter clinical model to
predict for acute respiratory failure, in addition to death,
may be able to identify acutely ill patients in a variety of
hospitals earlier in the course of their critical illness, when
prompt interventions may be better able to affect the likeli-
hood or duration of MV, ICU admission, morbidity, death,
or unwanted life-sustaining therapies.
The goal of this study is to develop and validate a mul-

ticenter, EHR-based risk stratification tool to identify pa-
tients at high risk of death or acute respiratory failure
requiring MV that is prolonged for 48 h or beyond.

Methods
Study design and setting
The APPROVE (Accurate Prediction of Prolonged Venti-
lation) score was derived and validated retrospectively on
patients from four hospitals in a 2013 cohort and then ex-
ternally validated prospectively in a different hospital in
2017. As a comparison, the MEWS and NEWS were also
calculated in the validation cohorts in 2013 and 2017 at
the same time points when APPROVE was calculated. All
study hospitals have a comprehensive EHR system with a
data warehouse.
The study protocol was reviewed and approved by each

hospital’s Institutional Review Boards. Informed consent
was waived.

Study population
The 2013 cohort consisted of adult (> age 18 years) ad-
missions in 2013 to four hospitals within two tertiary
academic centers: Montefiore Moses division and Jack

D. Weiler Hospital in the Montefiore Health System
(Bronx, NY, USA); and St Mary’s and Rochester Method-
ist at the Mayo Clinic (Rochester, MN, USA). Each ad-
mission was randomly assigned 50:50 to either the
derivation cohort for model development or the internal
validation cohort for model verification. The 2017 exter-
nal validation cohort consisted of all adult admissions to
Wakefield Hospital in the Montefiore Health System
from January 17 to March 31, 2017. In both cohorts, pa-
tients who were mechanically ventilated prior to admis-
sion were excluded and multiple hospitalizations per
patient were included.

Data collection
Only variables that are routinely collected for clinical care
were included as candidate variables for the derivation of
APPROVE. This included baseline demographics, vital
signs, laboratory data, and hospital interventions/assess-
ments (see Additional file 1: Table S1). A site-specific data
dictionary was created for each hospital in order to unify
the collection of data. Each data element in the dictionary
was mapped to an existing field at each hospital EHR, and
site-specific abstraction and validation procedures were
developed. Two different EHR systems were used in the
four hospitals in the 2013 cohort and a different third
EHR vendor was used in the prospective 2017 cohort.

Outcomes
A composite qualifying event was defined as death in the
hospital or intubation and subsequent MV for 48 h or lon-
ger. In the EHR of the study hospitals, all patients on MV
can be identified but the reason for intubation cannot.
Most intubations were short term and reflected elective
intubation for surgery, procedures, or milder forms of re-
spiratory failure with lower mortality and morbidity. For
those reasons, we did not consider mechanical ventilation
< 48 h without death to be a qualifying event. Time of
event was defined as the time of death or initiation of MV
that lasted at least 48 h, whichever occurred first.

Model development
At multiple, randomly selected time points over the hos-
pital stay of each patient in the 2013 derivation cohort, the
closest EHR data collected prior to that time point were
used in the derivation model. A patient was considered to
have a qualifying event if the event occurred within the
next 48 h of the selected time point. The qualifying event
was a binary variable. However, in the model we used it as
a continuous dependent variable so that the predicted
values would be a continuous likelihood estimation score
from 0 to 1. The random forest (RF) was implemented
using the “randomForestSRC” R-package (http://cran.r-
project.org/web/packages/randomForestSRC/). Random for-
est models are machine learning algorithms. They fit
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multiple classification and regression trees (CART) on
random subsets of the patients and random subsets of the
variables. CART models start by including the one vari-
able that is the best predictor of the outcome, and then se-
quentially add additional variables one at a time until no
other variables improve the prediction. These multiple
models are combined using maximum likelihood methods
to create the final estimates. Missing data were imputed
using a random forest algorithm to match patients having
known values that are most similar to other patients with
the missing values at the same time point. This method is
pattern based, as opposed to more commonly used
arbitrary imputation (e.g., fixed, average, best, or worst
value imputation).
Variable importance, minimal tree depth of each vari-

able, error rates (misclassification), and predicted values
were obtained, and a maximum likelihood estimator
(MLE) was calculated and used as the APPROVE score.
Variable importance is a measure of how changes in a
variable affect the model prediction. The minimum
depth is the earliest the variable is included in any of
these multiple CART trees. Higher values of the AP-
PROVE score are associated with greater likelihood of
an event. The area under the receiver operator curve
(AUROC) was used to measure the discrimination of the
model; performance was evaluated by calculating sensi-
tivity, specificity, and positive and negative predicted
values (PPV and NPV) (see Additional file 1: Table S2).

Model validation
The model performance was first evaluated in the retro-
spective, internal validation 2013 cohort. To mimic how
APPROVE may be used prospectively in clinical practice,
the APPROVE score was calculated every time there was
a data point in the 2013 validation cohort. Each patient
was examined to determine the first time a score ex-
ceeds a certain cutoff, if ever, and then evaluated for an
event at any subsequent time. To determine the per-
formance of APPROVE, three cutoff values (0.15, 0.20,
0.25) were selected based on the derivation cohort (see
Additional file 1: Table S2). As a comparison, at each
time point that APPROVE was calculated, the MEWS
and NEWS were also calculated using the same data.
APPROVE was also validated prospectively at the exter-

nal 2017 hospital. Real-time calculation of APPROVE
whenever new data were available was not possible be-
cause of the technical and computational demand of
real-time data extraction and triggering of score calcula-
tion. Instead, APPROVE was calculated every 4 h (00:00,
04:00, 08:00, 12:00, 16:00, 20:00) for all adult patients after
admission to the hospital using the last available data. In
all calculations of APPROVE in 2013 and 2017, missing
data were replaced by the imputed values determined
from the 2013 derivation cohort. For calculating the

NEWS and MEWS, last available values were pulled for-
ward. If values were missing, they were assumed normal.
As APPROVE was not calculated until after hospital ad-

mission, patients who presented with or developed the
primary event of interest (respiratory failure requiring MV
or death) in the emergency department (ED) prior to hos-
pital admission, and calculation of any APPROVE score,
were excluded from the analysis. Clinicians could not see
scores for their patients. However, clinicians were alerted
if their patient on the hospital wards had a score > 0.25.
Calculation of scores and analyses were performed

using R version 3.1.1 (www.R-project.org), SAS version
9.4, and JMP 11.1.1 (SAS Institute Inc., Cary, NC, USA).

Results
Clinical data were abstracted from 68,775 admissions in
2013 for the retrospective derivation and internal valid-
ation cohort. In the 2017 cohort, clinical data were ab-
stracted in the same manner from 2258 adult admissions
to the Wakefield Hospital after excluding 33 patients be-
cause they presented with or had the event in the ED prior
to the calculation of any APPROVE score. The hospital
mortality for patients on mechanical ventilatio >= 48 h
was 33% in both 2013 and 2017 compared to mortality
rates of 1.4% in 2013 and < 1% in 2017 for patients with
MV < 48 h.

Study population characteristics
The baseline demographics, vital signs, and laboratory
findings of the 2013 and 2017 cohorts are presented in
Table 1. The event rate was higher in 2013 at 3% com-
pared to 2017 at 1.6%, likely because events that devel-
oped before any calculation of APPROVE which was
scheduled every 4 h were excluded from the 2017 cohort
(total event rate of 3.0% in the 2017 hospital, same as in
2013, if those patients were included). There were fewer
missing data in the prospective cohort but otherwise the
values were similar.

Model development
In developing the model, the RF model was pruned at
200 trees as additional trees did not improve the predict-
ive power of the model. The misclassification rate stabi-
lized at 0.0243. The variables included in the model and
the analysis of these variables by their importance in
predicting events (variable importance) and average min-
imal depth among the 200 trees is presented in Fig. 1.
Variables with low ranks for minimal depth and high
ranks for variable importance are important for tree
building and prediction.

Model validation
The AUROCs of APPROVE, MEWS, and NEWS to iden-
tify patients at high risk of death or MV >= 48 h in the
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Table 1 Characteristics and variables used to calculate APPROVE score in each cohort

Retrospective 2013 cohort Prospective 2017 cohort

Variable Fitting cohort
(N = 34,387)

Validation cohort
(N = 34,388)

Total
(N = 68,775)

Number (%) missing Validation cohort
(N = 2258)

Number (%) missing

Qualifying event, yes 958 (3%) 1072 (3%) 2030 (3%) 0 (0%) 35 (1.5%) 0 (0%)

Demographics

Age 57.8 ± 19.5 58.0 ± 19.5 57.9 ± 19.5 0 (0%) 55.9 ± 20.4 0 (0%)

Body mass index 29.6 ± 9.0 29.6 ± 8.9 29.6 ± 9.0 12,595 (18%) 31.3 ± 9.2 146 (6.4%)

Height (cm) 165.8 ± 12.8 165.6 ± 13.0 165.7 ± 12.9 11,900 (17%) 163.4 ± 10.4 136 (6.0%)

Sex, female 20,452 (59%) 20,595 (60%) 41,047 (60%) 0 (0%) 1658 (67%) 0 (0%)

Weight (kg) 81.6 ± 26.9 81.4 ± 26.9 81.5 ± 26.9 7907 (11%) 83.4 ± 27.7 99 (4.4%)

Medication use (yes)*

Dobutamine 24 (0%) 22 (0%) 46 (0%) 0 (0%) 0 0 (0%)

Dopamine 20 (0%) 20 (0%) 40 (0%) 0 (0%) 0 0 (0%)

Epinephrine 6 (0%) 3 (0%) 9 (0%) 0 (0%) 0 0 (0%)

Norepinephrine 165 (0%) 137 (0%) 302 (0%) 0 (0%) 4 0 (0%)

Vasopressin 17 (0%) 13 (0%) 30 (0%) 0 (0%) 2 0 (0%)

Oxygen requirement, FiO2 0.5 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0 (0%) 0.5 ± 0.3 0 (0%)

RASS −0.8 ± 1.5 −0.8 ± 1.5 −0.8 ± 1.5 59,105 (86%) −0.89 (1.76) 2245 (99.3%)

Oxygen devices 0 (0%) 0 (0%)

Room air (or no device) 30,677 (89%) 30,557 (89%) 61,234 (89%) 1684 (68%)

Flow/hood/tent/isolette/mask 76 (0%) 81 (0%) 157 (0%) 8 (0%)

Low-flow nasal cannula 3409 (10%) 3535 (10%) 6944 (10%) 650 (26%)

High-flow nasal cannula 7 (0%) 6 (0%) 13 (0%) 17 (1%)

Nonrebreather mask 66 (0%) 63 (0%) 129 (0%) 31 (1%)

CPAP, AVAPS, or BIPAP 152 (0%) 146 (0%) 298 (0%) 70 (3%)

Vital signs

Systolic blood pressure 125.9 ± 21.8 126.4 ± 21.8 126.2 ± 21.8 3575 (5%) 129.0 ± 13.6 3 (0%)

Diastolic blood pressure 68.9 ± 14.3 68.9 ± 14.3 68.9 ± 14.3 3612 (5%) 69.9 ± 13.6 3 (0%)

Heart rate 82.7 ± 16.8 82.1 ± 16.8 82.4 ± 16.8 5842 (8%) 83.3 ± 15.8 3 (0%)

Respiratory rate 19.0 ± 3.6 18.9 ± 3.4 18.9 ± 3.5 3876 (6%) 18.79 ± 3.72 2 (0%)

Oxygen saturation 97.8 ± 3.5 97.8 ± 3.5 97.8 ± 3.5 11,424 (17%) 96.9 ± 6.3 85 (4%)

Temperature (C) 36.8 ± 0.6 36.8 ± 0.5 36.8 ± 0.5 3796 (6%) 36.9 ± 0.5 3 (0%)

Laboratory findings

Arterial PaCO2 (mmHg) 39.9 ± 10.6 39.9 ± 10.4 39.9 ± 10.5 58,426 (85%) 45.3 ± 12.8 1819 (74%)

Arterial PaO2 (mmHg) 134.0 ± 80.9 134.2 ± 81.2 134.1 ± 81.1 58,430 (85%) 80.9 ± 60.0 1862 (76%)

Arterial pH 7.4 ± 0.1 7.4 ± 0.1 7.4 ± 0.1 58,422 (85%) 7.4 ± 0.1 1819 (74%)

Hematocrit (%) 31.9 ± 6.4 32.0 ± 6.4 31.9 ± 6.4 4273 (6%) 32.6 ± 6.4 81 (3%)

Hemoglobin (g/dl) 10.6 ± 2.2 10.6 ± 2.2 10.6 ± 2.2 4301 (6%) 10.9 ± 2.1 81 (3%)

Platelet count (1000/μl) 227.7 ± 113.1 227.6 ± 113.9 227.7 ± 113.5 4306 (6%) 237.3 ± 101.9 85 (4%)

White blood count (1000/μl) 10.0 ± 7.8 10.0 ± 7.8 10.0 ± 7.8 4305 (6%) 9.7 ± 4.8 85 (4%)

Lactate (arterial or venous) (nM/L) 2.8 ± 3.2 2.1 ± 2.0 2.5 ± 2.8 67,076 (98%) 2.1 ± 1.3 1888 (77%)

Serum albumin (g/dl) 3.4 ± 0.7 3.4 ± 0.7 3.4 ± 0.7 22,145 (32%) 3.5 ± 0.7 1187 (48.3%)

Serum bicarbonate (meq/l) 23.8 ± 4.2 23.8 ± 4.2 23.8 ± 4.2 7058 (10%) 24.8 ± 4.2 254 (10%)

Serum calcium (mg/dl) 8.8 ± 0.8 8.8 ± 0.8 8.8 ± 0.8 12,099 (18%) 8.8 ± 0.8 254 (10%)

Serum chloride (meq/l) 102.1 ± 6.0 102.1 ± 6.0 102.1 ± 6.0 7055 (10%) 102.1 ± 5.7 254 (10%)
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2013 retrospective validation cohort are shown in Fig. 2a.
In 2013, APPROVE had significantly better discrimination
(AUROC 0.87, 95% CI 0.85–0.88)) compared to the
MEWS (AUROC 0.68, 95% CI 0.66–0.71; p 0.0038) or
NEWS (AUROC 0.74, 95% CI 0.72–0.76; p = 0.0055).
However, the AUROC is limited in understanding how a
prediction score may work in clinical practice. For clinical
use, the sensitivity of the score to identify events must be

balanced by the number of patients who will trigger the
alert and the likelihood that an alert will predict the event.
Figure 3 shows how the PPV and the number of pa-
tients needed to be evaluated to capture one event varies
as a function of the sensitivity to detect an event if one
was to alert clinicians when a patient’s score exceeds that
value. Over a wide range of sensitivities, APPROVE had a
higher PPV (Fig. 3a) while alerting on fewer patients in

Table 1 Characteristics and variables used to calculate APPROVE score in each cohort (Continued)

Retrospective 2013 cohort Prospective 2017 cohort

Variable Fitting cohort
(N = 34,387)

Validation cohort
(N = 34,388)

Total
(N = 68,775)

Number (%) missing Validation cohort
(N = 2258)

Number (%) missing

Serum creatinine (mg/dl) 1.7 ± 1.9 1.7 ± 1.9 1.8 ± 1.9 6681 (10%) 1.6 ± 1.9 254 (10%)

Serum glucose (mg/dl) 139.2 ± 73.8 139.0 ± 74.4 139.1 ± 74.1 6836 (10%) 145.0 ± 75.6 251 (10%)

Serum potassium (meq/l) 4.1 ± 0.6 4.1 ± 0.6 4.1 ± 0.6 6883 (10%) 4.3 ± 0.6 251 (10%)

Serum sodium (meq/l) 138.1 ± 5.0 138.1 ± 5.0 138.1 ± 5.0 6858 (10%) 140.5 ± 5.0 247 (10%)

Serum total bilirubin (mg/dl) 1.6 ± 3.7 1.5 ± 3.5 1.5 ± 3.6 21,489 (31%) 1.4 ± 3.5 1192 (48%)

Anion gap 15.9 ± 3.4 15.9 ± 3.4 15.9 ± 3.4 14,453 (21%) 18.08 ± 3.50 257 (11.3%)

Data presented as counts and percentages or mean ± standard deviation
APPROVE Accurate Prediction of Prolonged Ventilation, AVAPS average volume assured pressure support, BIPAP bilevel positive airway pressure, CPAP continuous positive
airway pressure, FiO2 fraction of inspired oxygen, PaCO2 partial pressure of carbon dioxide, PaO2 partial pressure of oxygen, RASS Richmond Agitation-Sedation Scale
*Any use of indicated medication at selected time point

Fig. 1 Relative importance of included variables. Tree depth is average depth at which variable is first used in a tree split, assuming that the most
discriminatory variables will split the dataset earlier in trees at lower depths. Variable importance (VIMP) is a measure of how changes in the
variable impact prediction error. The bigger the VIMP, the more impact the variable has on prediction. Variables having smaller depth are more
discriminatory, and those with bigger importance have a greater impact on prediction. BMI body mass index, BUN blood urea nitrogen, DBP diastolic
blood pressure, FiO2 fraction of inspired oxygen, Hb hemoglobin, HCT hematocrit, PaCO2 partial pressure of carbon dioxide, PaO2 partial pressure of
oxygen, PLT platelet count, POC glucose point of care, RASS Richmond Agitation-Sedation Scale, SBP systolic blood pressure, SpO2 peripheral capillary
oxygen saturation, WBC white blood cell count
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order to capture one event (Fig. 3b) as compared to the
MEWS and NEWS.
To show how APPROVE may perform when used in

the clinical setting when clinicians may be alerted when-
ever a patient’s score exceeds a certain threshold,
Table 2 presents the sensitivity, specificity, PPV, NPV,
and false positive rate (FPR) of APPROVE, MEWS
and NEWS at different thresholds for alerting. In

general, lower thresholds are associated with higher
sensitivity but lower PPV (Table 2). The sensitivity
and specificity of APPROVE to predict for any event
subsequent to score calculation is good in 2013
(sensitivity 63–75% and specificity 83–92%). If alerts
were sent for scores that exceed the threshold of
0.25, APPROVE would have a sensitivity of 63%
(95% CI 60–66%) to detect an event, with approxi-
mately 1/5 alerted patients developing the event
(PPV 21%, 95% CI 19–22%) and a FPR of 8%. In
contrast, at a similar PPV for the MEWS at a
threshold > 4, the sensitivity was only 16% (95% CI
13–18%). At a threshold for alerts of > 6 for NEWS,
the PPV was similar at 22% (95% CI 19–25%) but,
compared to APPROVE, the false positive rate was
lower (1%) and sensitivity was also much lower at
16% (95% CI 13–18%).
In the prospective 2017 cohort, APPROVE performed

similarly to 2013 with an AUROC of 0.90 (95% CI 0.85–
0.95) (Fig. 2). However, both the MEWS and NEWS per-
formed better than they did in the 2013 cohort so that
APPROVE was not significantly different from the
MEWS and NEWS. The AUROC was 0.79 (95% CI
0.68–0.89) for the MEWS (p = 0.57 compared to AP-
PROVE) and 0.77 (95% CI 0.67–0.86) for the NEWS
(p = 0.76 compared to APPROVE). For sensitivities
greater than 30%, the PPV was higher and the number
of patients needing to be evaluated to capture one event
was lower for APPROVE compared to the MEWS and
NEWS (Fig. 3c and 3d). Similarly, Table 2 shows how
the scores performed in the 2017 hospital at different
thresholds for alerts. Again, the higher the threshold for
each score, the lower the sensitivity, the higher the PPV,
and the lower the false positive rate. At a threshold
for alerts > 0.25, APPROVE had a sensitivity of 64%
(95% CI 46–79%) similar to its performance in 2013 (sen-
sitivity 63%, 95% CI 60–66%). With that threshold, ap-
proximately 16% of patients with an alert will develop an
event (PPV 16%, 95% CI 11–23%) with a false positive rate
of 5% (95% CI 4–6%). At a similar sensitivity with a
threshold of > 4 for the MEWS and NEWS (67%, 95% CI
49–81%), the PPV was significantly lower (7%, 95% CI
5–11% for MEWS and 4%, 95% CI 3–6% for NEWS) and
the false positive rate was significantly higher (14%, 95%
CI 12–15% for MEWS and 25%, 95% CI 23–27% for
NEWS) compared to APPROVE. Using a threshold for
APPROVE of 0.20 shows similar results compared to
MEWS or NEWS > 4.
Additional exploratory, sensitivity analysis was done to

evaluate the performance of APPROVE for different
events. In the first sensitivity analysis, we explored how
well APPROVE, MEWS, and NEWS can predict for the
individual events of hospital mortality, MV > 48 h, or MV
of any duration (see Additional file 1: Figure S1). Although

b

a

Fig. 2 Area under the curve (AUCROC) for APPROVE, MEWS, and NEWS
to predict for hospital mortality or intubation leading to mechanical
ventilation > 48 h in retrospective 2013 validation cohort (a) and
prospective 2017 validation hospital (b). APPROVE, MEWS and NEWS
calculated at multiple random time points for each patient and
evaluated for a qualifying event after score calculation. APPROVE
Accurate Prediction of Prolonged Ventilation, CI confidence interval,
MEWS Modified Early Warning Score, NEWS National Early Warning Score
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APPROVE was derived to predict for the combined out-
come of hospital mortality or MV> 48 h, APPROVE was
also able to predict for the individual events of hospital
mortality (AUROC 0.91, 95% CI 0.90–0.93 in 2013;
AUROC 0.93, 95% CI 0.89–0.97 in 2017), MV > 48 h
(AUROC 0.79, 95% CI 0.77–0.80 in 2013; AUROC 0.86,
95% CI 0.73–0.94 in 2017), or MV of any duration
(AUROC 0.77, 95% CI 0.76–0.79 in 2013; AUROC 0.80,
95% CI 0.67–0.92 in 2017). In 2013, this was significantly
better than the MEWS and NEWS for hospital mortality
but not significantly different from the MEWS and NEWS
for MV. In 2017, APPROVE, MEWS and NEWS had
similar AUROC for all of the individual events.
In another exploratory analysis, we explored the time

from the first APPROVE score exceeding a given
threshold to death or intubation leading to MV> 48 h
(see Additional file 1: Table S3). The median time from
first high APPROVE score to the primary composite event
of mortality or MV > 48 h was 37.2 h (IQR 5.6–134.0),
29.5 h (IQR 4.5–121.2), and 26.8 h (IQR 4.5–111.2) at
thresholds of 0.15, 0.20, and 0.25, respectively, in 2013. A
longer time to event was seen in the 2017 validation hos-
pital: 58.8 h (IQR 14.7–171.6), 58.8 h (IQR 13.1–190.6),
and 68.6 h (IQR 10.7–193.8) at thresholds of 0.15, 0.20,
and 0.25, respectively. As expected, the time to intubation
is shorter, ranging from a median of 9.4 to 12.6 h in 2013
and from 7.4 to 32.8 h in 2017, depending on the
threshold.

We also tried to investigate where patients were when
they had an APPROVE score that would cross the
threshold for potential alert. We were only able to do
this in the 2017 prospective hospital as the ICU admis-
sion time was not reliable or accurate in the EHR sys-
tems of the 2013 hospitals. In the 2017 cohort, 85–91%
of the patients were outside of the ICU when their AP-
PROVE score crossed the threshold of 0.15, 0.20, or
0.25. For example, in the 188 patients with one or more
APPROVE scores > 0.25 in the 2017 cohort, the first
high score occurred outside of the ICU for 163 (89%)
patients. Only 28% of these patients were ultimately
transferred to an ICU and the median time from first
high score to ICU transfer was 6 h (IQR 1.0–44.5).

Discussion
Using random forest analysis, we were able to develop an
EHR-based risk stratification tool that can identify patients
at risk for in-hospital death or MV> 2 days. This was vali-
dated in a 2013 internal cohort and a 2017 prospective, ex-
ternal cohort in another hospital with AUROCs of 0.87
(95% CI 0.85–0.88) and 0.90 (95% CI 0.85–0.95), respect-
ively. APPROVE in 2013 and 2017 had with similar sensi-
tivity (63–89%), specificity (83–95%), NPV (99%), and
manageable PPV (9–21%) and false positive rate (2–15%),
depending on the threshold for alerts. In the 2013 retro-
spective validation cohort, APPROVE outperformed the
MEWS and NEWS with a significantly higher AUROC,

a b

c d

Fig. 3 Positive predictive value (Fig. 3a for 2013 and Fig. 3c for 2017) and number of patients needed to be evaluated to identify one event
(Fig. 3b for 2013 and Fig. 3d for 2017) as a function of sensitivity for APPROVE, MEWS and NEWS for the retrospective 2013 cohort (Fig. 3a and b) and
the prospective 2017 cohort (Fig. 3c and d). Qualifying event is defined as hospital mortality or mechanical ventilation > 48 h
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higher PPV, and fewer alerts needed to detect one event
over a range of score sensitivities. But in 2017, APPROVE
was not significantly different in performance as indicated
by AUROC but had less false positive at similar sensitivities.
Most early warning scores aimed to predict for ICU

admission, cardiac arrests, and/or death in the hospital.
APPROVE differs from these prior approaches in that it
aims to predict for mechanical ventilation or death in
the hospital. For common conditions such as pneumo-
nia, heart failure, COPD, pulmonary embolism, hip frac-
tures, diabetic ketoacidosis, acute myocardial infarction,
and strokes, ICU admission rates vary greatly by hospital
and can depend as much on nonclinical hospital factors
as on patient-level factors like diagnosis, severity of ill-
ness, or risk for mortality [12–17]. This is especially true
for patients who are not intubated with lower severity of
illness and risk of death (< 2%), which may constitute as
much as 50% of the ICU admission to nonsurgical ICUs
at some hospitals [15, 16]. Thus, patients with similar se-
verity of illness and risk for death would be admitted to
the ICU at some hospitals but not others, with no clear
difference in outcomes. This raises the concern that early
warning scores developed to predict for ICU admission at
one hospital may perform variably in other settings de-
pending on the ICU utilization rate and may not consist-
ently correlate with mortality across different clinical
settings. We intend APPROVE to be used in multiple hos-
pitals. Acute respiratory failure requiring MV is consist-
ently associated with increased mortality and morbidity
and is a recognized criterion in guidelines for ICU admis-
sion [2, 4, 11, 18].
Although comparison to other published early warning

scores is difficult as we aimed to predict for MV> 48 h or
death in this study and prior studies predicted for different
outcomes under different time frames and in different pop-
ulations, the performance of the MEWS and NEWS in this
study is similar to prior reports. The MEWS is reported to
have an AUROC of 0.59–0.88 at predicting ICU transfer,
cardiac arrest, or death within 24–48 h in different studies
[19–23]. In one study, the MEWS had AUROC 0.68 for
predicting ICU transfer and AUROC of 0.88 for predicting
mortality within 24 h [19]. The NEWS has a reported
AUROC of 0.65 for predicting in-hospital mortality at any
time in sepsis while in another study it had an AUROC of
0.79 for in-hospital mortality and 0.83 for 24 h mortality
among general medical patients [24, 25]. The performance
of the MEWS and NEWS in our cohorts falls within the
range of these prior reports (AUROC 0.78–0.93 for MEWS
and 0.83–0.91 for NEWS for in-hospital mortality in the
2013 and 2017 cohorts (Additional file 1: Figure S1)).
Similarly, other EHR-derived early warning scores were

derived to predict for different outcomes under different
time frames. For example, the LAPS2 score had an
AUROC of 0.88 for mortality but was derived to predict

for hospital and 30-day mortality, and, as a result, utilizes
outpatient comorbid data which are not available in most
inpatient EHR systems [26]. An EHR-based score
(eCART) had an AUROC of 0.77 for prediction of cardiac
arrest, ICU transfer, or death and 0.93 for death [19] com-
pared to APPROVE, with an AUROC of 0.87 and 0.90 for
hospital mortality or MV> 48 h and 0.91 and 0.93 for
death in 2013 and 2017, respectively [27]. The Rothman
Index predicted for hospital mortality at an AUROC of
0.93 in predicting mortality within 24 h [28] while AP-
PROVE has an AUROC of 0.91 in 2013 and 0.93 in 2017
for death and a median time to death of about 3–6 days.
In 2013, APPROVE outperforms the MEWS and NEWS

by AUROC, sensitivity, and relative balance between sen-
sitivity of the score and the PPV or number of patients
alerted to identify one event. While APPROVE’s perform-
ance in 2017 is very similar to that in 2013, APPROVE in
the 2017 cohort was not significantly different in AUROC
compared to the MEWS and NEWS. This is partly due to
the sample size in the 2017 cohort, which limits the power
to detect a difference. But it may also be due to improved
performance of the MEWS and NEWS in the 2017 pro-
spective cohort. This improvement may be due to differ-
ences between patients in the two cohorts and how the
scores were calculated retrospectively vs prospectively. In
the 2013 retrospective cohort, APPROVE, MEWS and
NEWS were calculated on all adult admissions whenever
there were data available, from the initial presentation to
the emergency department (ED) to hospital discharge. In
the 2017 prospective hospital, the calculation of
APPROVE and the other scores started after the
placement of a hospital admission order at the next
scheduled time (00:00, 04:00, 08:00, 12:00, 16:00,
20:00). Patients who presented to the ED and were
intubated or died before hospital admission and cal-
culation of any APPROVE score were excluded from
the 2017 analysis. Indeed, 33 patients or 49% of all
patients with an event in the prospective hospital
were excluded from the analysis. However, no risk
assessment model is likely to be useful in those
patients who present with respiratory failure requiring
intubation on or shortly after presentation to the ED.
So, the exclusion of these patients in the 2017 ana-
lysis may improve the performance of any prediction
score while the inclusion of similar patients in the
2013 cohort may have limited the ability of the score
to predict intubation. Nevertheless, it is likely that
APPROVE may best be used for patients admitted to
the hospital ward rather than for patients on initial
presentation to the hospital or patients in the ED
with short ED length of stays.
However, the AUROC should not be the only indicator

of how well a risk assessment tool may be used in clinical
practice. A clinically useful tool must also balance the
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sensitivity to detect an event with the number of patients
who will trigger an alert and develop the event. Alerting
on too many patients who may not develop the event can
lead to inefficient allocation of resources and contribute to
alert fatigue. Compared to the MEWS and NEWS,
APPROVE presented a higher percentage of alerted
patients who subsequently developed the event while
alerting on fewer patients in order to capture one event
(Fig. 3). If alerts are sent when scores exceed the threshold
of 0.25 in the 2017 cohort, APPROVE had a sensitivity of
64% and specificity of 95% with approximately 16% of
alerted patients developing the event at a false positive rate
of 5%. At a similar sensitivity of 67% for MEWS or NEWS
> 4, the PPV was significantly lower (7%, 95% CI 5–11%
for MEWS and 4%, 95% CI 3–6% for NEWS) and the false
positive rate was higher (14%, 95% CI 12–15% for MEWS
and 25%, 95% CI 23–27% for NEWS) than APPROVE.
Similar results are seen in the 2013 cohort for alerts at
thresholds > 0.25.
An automated risk prediction score offers a potential

advantage if it can be incorporated into the clinical set-
ting for prospective identification of at-risk patients.
Application of prediction scores in the clinical setting re-
quires linkage to some action (efferent arm) which could
include notification of the patient’s providers with or
without triggering a rapid response. Such a first-line
clinician filter will be needed as the use of APPROVE
will require a balance of early detection against false
alerts. Lowering the cutoff value will result in a higher
sensitivity but at the cost of a greater number of patient
alerts at a lower event rate. As APPROVE is a continu-
ous score, the cutoff value for alerts can be tailored for
an acceptable alert rate and intervention depending on
the risk of the intervention.
In the 2017 cohort, clinicians were alerted when their pa-

tients APPROVE score exceeded 0.25. This may have influ-
enced their behavior including their decision to intubate.
As the majority of alerts for APPROVE occur in

non-ICU patients at a median of 26–68 h prior to death
or intubation leading to MV> 48 h or 7.4–33 h before
intubation, there may be sufficient time for potential inter-
ventions. The triggering of APPROVE could activate en-
hanced monitoring, rapid response, or interventions that
could prevent progression of respiratory failure. Examples
of such interventions include earlier administration of or
escalation in diuretics, bronchodilator therapy, high-flow
nasal cannula, or noninvasive ventilation, as appropriate.
It may also mean earlier re-evaluation of patient response
to noninvasive ventilation. Since mechanical ventilation is
a life-saving intervention that will be unavoidable in some
of these patients, early and timely implementation of best
practices such as low tidal volume in ARDS may lead to
better outcomes [29–31]. In addition, APPROVE would
also allow for earlier discussion of goals of care, a

component of the Choosing Wisely Campaign that is in-
creasingly being done emergently during a RRT [32, 33].
In the prospective hospital, clinicians were alerted if their
hospital ward patient’s APPROVE score exceeded a
threshold of 0.25. Additional studies will be needed to de-
termine whether linking automated prediction scores to
alerts will result in improved clinical outcomes.
Our study has several limitations. As discussed, AP-

PROVE was not designed to predict for patients with
short-term MV. In the EHR system of the study hospitals,
MV can be reliably identified but not the reason for intub-
ation. We focused on MV> 48 h to avoid those patients
intubated electively for a procedure or surgery. Neverthe-
less, APPROVE was still able to identify patients who re-
quired MV of any duration (AUROC 0.77 and 0.80 in
2013 and 2017 cohort, respectively), although it was no
better than the MEWS or NEWS. APPROVE was also not
designed to identify less severely sick patients with isolated
nonpulmonary organ failure such as sepsis that may re-
quire vasopressors without the need for MV. However, re-
spiratory dysfunction and failure is among the most
common organ failure in septic shock, with up to 84% of
septic shock patients requiring MV, which contributes
greatly to the risk for mortality in sepsis [34, 35]. This
score was created in hospitals with a comprehensive EHR,
which may be difficult to replicate in a community hos-
pital with more limited EHR systems. We lacked accurate
data on ICU admission time in 2013 to determine how
often alerts occur outside of the ICU. However, data from
the 2017 cohort indicate that most alerts (> 85%) occur
outside of the ICU with a median of 6 h prior to ICU ad-
mission. In the 2017 hospital, APPROVE was calculated
after a hospital admission order was placed at 4-h inter-
vals, which missed a significant number of patients who
died or were intubated prior to any score calculation. We
are planning to move the trigger for score calculation to
ED triage and to real-time score calculation. We plan to
evaluate how the performance of APPROVE may change
with more timely calculation of the score. Any prediction
model has a risk of changing in sensitivity over time due
to the “effect of training”. However, validation of AP-
PROVE in 2017 still showed good performance. The sam-
ple size in 2017 was smaller than in 2013 with a lower
event rate which may have reduced the power to detect a
statistically significant difference in performance between
scores. Nevertheless, the similarity in performance of AP-
PROVE in the two cohorts is reassuring even with a
smaller sample size. Lastly, our algorithm should be tested
for accuracy, impact on decision-making, and validation
for patient-centered outcomes in a wide variety of clinical
settings and patient cohorts.
Our study has several strengths. APPROVE was

derived using random forests, a nonparametric, machine
learning approach that has been shown to outperform
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other methods [20]. Additionally, APPROVE uses ran-
dom forest imputation methods for missing data, which
outperforms most other methods of missing data imput-
ation [36]. APPROVE was compared to the NEWS and
MEWS, as they are commonly used currently as early
warning scores. Most prior studies derived and validated
their EHR-based scores at one hospital. APPROVE was
derived and validated in a total of five hospitals with three
different EHR systems. Nevertheless, despite the differ-
ences in the EHR, patient population, event rates, and
frequency of calculation of the APPROVE score in 2013
and 2017, the sensitivity, specificity, PPV, and NPV were
similar. Lastly, APPROVE was validated prospectively
which better represents how it may perform in a
real-world clinical setting and illustrates the feasibility of
operationalizing predictive analytics at the bedside.

Conclusions
We have developed a risk stratification tool to identify pa-
tients in the hospital at risk of death or acute respiratory
failure requiring MV > 48 h that performs better than the
MEWS and NEWS while alerting on fewer patients. After
validation in a multicenter cohort in 2013, APPROVE was
integrated into the EHR for automated calculation every
4 h in 2017 for prospective validation. The performance of
APPROVE was similar between the prospective and retro-
spective validation cohort, indicating the feasibility of pro-
spective integration of predictive analytics into the hospital
record system for the identification of patients at high risk
for respiratory failure or death. Additional studies will be
needed to determine whether linking automated prediction
scores to alerts will result in improved clinical outcomes.

Additional file

Additional file 1: Table S1. Variables selected for model. Table S2.
APPROVE performance in derivation cohort to predict for event within
48 h of score. Table S3. Median (interquartile range) time to event from
when APPROVE first exceeds threshold during hospitalization to primary
event of death or intubation that leads to MV > 48 h, or to individual
events of hospital death, or intubation leading to MV > 48 h in 2013 and
2017 validation cohorts. For composite qualifying event, earliest event
(death or intubation leading to MV> 48 h) was considered the time of
the event. Figure S1. Area under the curve (AUROC) for APPROVE, MEWS,
and NEWS to predict for hospital mortality (a), mechanical ventilation
(MV) > 48 h (b) and MV of any duration (c) in retrospective 2013 validation
hospital and (d, e, f, respectively) prospective 2017 validation hospital. APPROVE,
MEWS and NEWS calculated at multiple random time points for each patient
and evaluated for a qualifying event after score calculation. (DOCX 141 kb)
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