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Abstract

Background: Dosing in obese critically ill patients is challenging due to pathophysiological changes derived from
obesity and/or critical illness, and it remains fully unexplored. This study estimated the micafungin probability of
reaching adequate 24-h area under the curve (AUCq_»4n)/minimum inhibitory concentration (MIC) values against
Candida spp. for an obese/nonobese, critically ill/noncritically ill, large population.

Methods: Blood samples for pharmacokinetic analyses were collected from 10 critically ill nonobese patients, 10
noncritically ill obese patients, and 11 critically ill morbidly obese patients under empirical/directed micafungin
treatment. Patients received once daily 100-150 mg micafungin at the discretion of the treating physician following
the prescribing information and hospital guidelines. Total micafungin concentrations were determined by high-
performance liquid chromatography (HPLC). Monte-Carlo simulations were performed and the probability of target
attainment (PTA) was calculated using the AUCy_,4/MIC cut-offs 285 (C. parapsilosis), 3000 (all Candida spp.), and
5000 (nonparapsilosis Candida spp.). Intravenous once-daily 100-mg, 150-mg, and 200-mg doses were simulated

at different body weights (45, 80, 115, 150, and 185 kg) and age (30, 50, 70 and 90 years old). PTAs = 90% were
considered optimal. Fractional target attainment (FTA) was calculated using published MIC distributions. A dosing
regimen was considered successful if the FTA was 2 90%.

Results: Overall, 100 mg of micafungin was once-daily administered for nonobese and obese patients with body

mass index (BMI) <45 kg/m? and 150 mg for morbidly obese patients with BMI > 45 kg/m? (except two noncritically

ill obese patients with BMI ~ 35 kg/m? receiving 150 mg, and one critically ill patient with BMI > 45 kg/m? receiving
100 mg). Micafungin concentrations in plasma were best described using a two-compartment model. Weight and

age (but not severity score) were significant covariates and improved the model. FTAs > 90% were obtained against

C. albicans with the 200 mg/24 h dose for all body weights (up to 185 kg), and with the 150 mg/24 h for body weights
< 115 kg, and against C. glabrata with the 200 mg/24 h dose for body weights < 115 kg.
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Conclusion: The lack of adequacy for the 100 mg/24 h dose suggested the need to increase the dose to
150 mg/24 h for C. albicans infections. Further pharmacokinetic/pharmacodynamic studies should address
optimization of micafungin dosing for nonalbicans Candida infections.

Keywords: Morbid obesity, PK/PD, Monte-Carlo simulation, Intensive care unit, Candida spp.,

Background

Obesity, which is increasing at an alarming rate in
developed countries, is a significant risk factor for
nosocomial infections, especially following surgery
due to the immune dysfunction associated with
obesity [1]. In addition, pathophysiological changes in
obese patients (e.g., reduced regional blood flow,
altered cardiac output, increased fat and lean mass,
etc.) might modify the pharmacokinetic/pharmacody-
namic (PK/PD) profile of antimicrobials [2, 3]. On the
other hand, critically ill patients also present
pathophysiological changes (hepatic and/or renal
dysfunction, hypoalbuminemia or increased capillary
permeability, use of organ support modalities) that
can alter antimicrobial clearance and volume of distri-
bution [4]. Thus, dosing in obese critically ill patients
is a challenging scenario for intensivists that has not
been fully explored [5].

Micafungin is an echinocandin, a lipopeptide that
exhibits concentration-dependent fungicidal activity
against most species of Candida [6], and is licensed as
a first-line treatment for invasive candidiasis [7]. The
recently published study EUROBACT was conducted
in 162 intensive care units (ICUs) in 24 countries. It
showed that, among patients with candidemia,
Candida albicans was the most frequent fungi isolated
(57.1%), followed by Candida glabrata (15.3%),
Candida parapsilosis (10.2%), and Candida tropicalis
(6.1%) [8].

Altered serum concentrations of micafungin associ-
ated with morbid obesity in critically ill patients
might impact the achievement of therapeutic drug
exposures as defined by the area under the serum
concentration curve over a 24-h period (AUCq_z41)/
minimum inhibitory  concentration (MIC), the
pharmacodynamic index linked to clinical efficacy for
micafungin [9, 10]. A previous study conducted by
our group showed cumulative fraction responses >
90% for micafungin at the standard dose (100 mg)
against C. albicans and C. glabrata in a special popu-
lation of critically ill patients on continuous venove-
nous hemofiltration [11].

The aim of this study was to estimate the micafungin
probability of achieving adequate AUC,_»4,/MIC values
against Candida spp. for a large population using
Monte-Carlo simulations [10] and data from obese,

critically ill, and morbidly obese critically ill patients
treated with micafungin.

Methods

A pharmacokinetic study was carried out in patients
under micafungin empirical or directed treatment for
invasive candidiasis. The population consisted of 11
morbidly obese critically ill adult patients (from the
Hospital Universitario La Paz, Madrid, Spain), 10
nonobese critically ill patients, and 10 obese noncriti-
cally ill patients (from the Hospital del Mar,
Barcelona, Spain). Patients admitted to ICUs were
those considered to be critically ill. The study protocol
was approved by the Ethics Committee of the Hospital
La Paz (Madrid, Spain) and the Hospital del Mar
(Barcelona, Spain). Written informed consent was
obtained from patients (or relatives if the patient was
unable to provide due to their critical situation) before
blood sampling.

Demographic and clinical data prior to initiation of
antifungal treatment were collected. Severity (Simpli-
fied Acute Physiology Score (SAPS) II) [12], Sequen-
tial Organ Failure Assessment (SOFA) score [13], and
risk for invasive candidiasis (Candida score) [14] (ex-
cept for patients with microbiologically documented
infections) were calculated. Patients received dosage
regimens of once-daily 100 mg or 150 mg micafungin
(Astellas Pharma S.A., Spain) diluted in 100 ml
isotonic saline solution that was intravenously infused
over 60 min at the discretion of the treating physician
(following the prescribing information and hospital
treatment guidelines). On day 3, blood samples were
collected at baseline (predose) and after 1, 3, 5, 8, 18,
and 24 h. Additional blood samples at day 0 and day
7 were collected when feasible.

Sample handling and storage

Blood samples were immediately placed on ice and
centrifuged at 3000 rpm for 10 min. Following on,
they were stored at -80 °C. The samples were
transported by a commercial courier company to the
Burns Trauma and Critical Care Research Centre, The
University of Queensland, Australia, for further
analysis.



Maseda et al. Critical Care (2018) 22:94

Drug assay

Total micafungin concentrations in plasma were mea-
sured by a validated ultra-high-performance liquid chro-
matography (UHPLC)-tandem mass spectrometry (MS/
MS) method, from 0.2 to 30 pg/ml, on a Shimadzu Nexera
2 UHPLC system coupled to a Shimadzu 8030+ triple
quadruple mass spectrometer (Shimadzu, Kyoto, Japan)
[15]. Clinical samples were assayed alongside plasma
calibrators and quality controls and met batch acceptance
criteria [16].

Generation of large population data

Population pharmacokinetic modeling

To describe total micafungin concentrations, one- and
two-compartment models were developed with the non-
parametric adaptive grid algorithm within the freely avail-
able Pmetrics software package for R (Los Angeles, CA,
USA) [17, 18]. Elimination from the central compartment,
and intercompartmental distribution into the peripheral
compartment (two-compartment model), were modeled
as first-order processes. The discrimination between
different models resulted from the comparison of the -2
log-likelihood (-2LL). A p value of <0.05 was considered
statistically significant.

Population pharmacokinetics covariate screening

Age, gender, body weight, body mass index (BMI), Acute
Physiology and Chronic Health Evaluation (APACHE) II,
serum creatinine concentration, measured creatinine clear-
ance, Cockroft-Gault estimated creatinine clearance, and
serum albumin concentration were evaluated as covariates.
Covariate selection was performed using a stepwise linear
regression from R on all covariates and Bayesian posterior
parameters. Potential covariates were separately entered
into the model and statistically tested by use of the —2LL
values. If inclusion of the covariate resulted in a statistically
significant improvement in the LL values (p <0.05) and in
an improvement of the goodness-of-fit plots, then the
covariate was retained in the final model.

Model diagnostics

Goodness-of-fit was assessed by linear regression, with
an observed-predicted plot, coefficients of determin-
ation, and LL values. Predictive performance evaluation
was based on mean error of prediction (bias) and mean
bias-adjusted squared error of prediction (imprecision)
of the population and individual prediction models. The
internal validity of the population pharmacokinetic
model was assessed by the bootstrap resampling method
(n =1000) and normalized prediction distribution errors
(NPDE) [19]. Using a visual predictive check method,
parameters obtained from the bootstrap method were
plotted with the observed concentrations. NPDE plots
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were checked for normal distribution characteristics and
trends in data errors [19].

Probability of target attainment (PTA)

Monte-Carlo simulations (# = 1000) were employed using
Pmetrics software to determine the PTA of achieving the
PK/PD target of AUCy_4/MIC (285 for C. parapsilosis,
3000 for all Candida spp., and 5000 for nonparapsilosis
Candida spp.) [11] for varying MICs (0.008 to 1 pg/ml).
Intravenous once-daily doses of 100 mg, 150 mg, and
200 mg were simulated at different body weight (45, 80,
115, 150, and 185 kg) and age (30, 50, 70, and 90 years
old). PTAs = 90% were considered optimal.

Fractional target attainment (FTA) calculation

Published MIC distribution data of C. parapsilosis, non-
parapsilosis Candida spp., and all Candida spp. from the
SENTRY study [20] were used to determine the FTA,
which identifies the potential success of the treatment by
comparing the pharmacodynamic exposure (i.e, PTA)
against an MIC distribution. Specifically, PTA values
determined at each MIC were multiplied by the fraction
of isolates found at that MIC, and the sum of the products
equaled the FTA. A value of FTA = 90% against a popula-
tion of organisms was considered optimal.

Statistical analysis
Correlations were assessed by means of scatter graphs
and the Pearson correlation coefficient (r).

Results
Table 1 shows the demographic data, baseline analytical
parameters, and clinical scores for the patients distrib-
uted by obese/nonobese and critically/noncritically ill
categorization. Overall, the standard 100-mg dose of
micafungin was once-daily administered for nonobese
and obese patients with BMI <45 kg/m> The 150-mg
dose was administered for morbidly obese patients with
BMI > 45 kg/m?, with the exception of two noncritically
ill obese patients with BMI of around 35 kg/m* who
received the 150-mg dose, and one critically ill patient
with BMI > 45 kg/m?* who received the 100-mg dose.
Figure 1 shows the mean observed concentration-time
profile of micafungin concentrations for the study
population.

Pharmacokinetic model

A two-compartment linear model (including zero order
input of drug into the central compartment) best described
the time course of 242 total plasma concentrations of mica-
fungin. The goodness-of-fit of the model was improved
(p <0.05) by the inclusion of the covariate body weight
(normalized to 70 kg) and age (normalized to 60 years old
to an exponential value of 0.75) for micafungin clearance.
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Table 1 Demographic and clinical data

Variable Total Critically morbidly obese Noncritically obese Critically nonobese
Dose (mg) 100 150 100 150 100

n 31 7 4 7 3 10

Age (years), median (range) 58 (27-85) 45 (27-73) 53.5 (44-63) 58 (48-85) 58 (43-73) 72 (43-85)

% Females 71.0 100 50.0 85.7 100 40

BMI? (kg/mz), median (range) 347 (19.6-60.0)  44.2 (403-517) 528 (474-60.0) 27.7 (252-347) 355 (34.7-524) 23.1 (19.6-385)
Weight (kg), median (range) 95 (44-193) 113 (95-121) 1575 (142-170)  84.1 (62-105) 105 (105-193) 65 (44.0-92.5)
Creatinine (mg/dl), median (range) 1.0 (0.4-3.9) 0.7 (0.6-1.5) 13 (06-1.7) 1.1(0.7-14) 0.8 (0.7-1.5) 1.0 (04-3.0)
CrCP (ml/min/1.73m?) 934+514 133.1+44.9 11254532 62.7 £384 1054 +63.9 759+46.1
Albumin (g/dl), median (range) 3(1.2-4.0) 2.7 (19-35) 3.1 (24-4) 35(26-39) 36 (34-37) 25(1.2-33)
Candida score, median (range) 3 (2-4)° 3(2-4) 35 (3-4) DT® DT¢ 3 (2-4)

SOFA® score, median (range) 6 (0-12) 6 (2-8) 7 (5-10) 5(2-10) 6 (5-7) 4.5 (0-12)
SAPS? II, median (range) 34 (9-57) 40 (8-57) 345 (25-45) 47 (9-53) 41 (18-44) 26 (11-42)

Data are expressed as mean * standard deviation, except where stated

#BMI, Body mass index; CrCl, creatinine clearance; SAPS, Simplified Acute Physiology Score; SOFA, Sequential Organ Failure Assessment

b For 21 patients

© Directed treatment (DT): three candidemia, three osteoarticular infections, and one urinary tract infection

< DT: one peritonitis, one urinary tract infection, and one osteoarticular infection

Use of this exponent on age improved the model better
than either covariate added as a linear function alone and
reflected the likely nonlinear effect of the increasing body
weight and age on micafungin clearance. Addition of body
weight or age alone did not statistically improve the model
when compared with the structural model (-2LL value,
595.2 vs 596.4 for weight inclusion, p =0.0586; 587.5 vs
596.4 for age inclusion, p =0.597). When both the covari-
ates body weight and age were included, the log likelihood
value decreased significantly (-2LL, 415.6; p =0.0238) and
the goodness-of-fit of the model also showed an improve-
ment. The final covariate model was as follows:

Micafungin CL = TVCL, (Wt/70)°”° (Age/60)°7

Where TVCL is the typical value of micafungin clear-
ance, Wt is the total body weight (kg) and Age is the
patient’s age (years).

The mean + standard deviation (SD) population phar-
macokinetic parameter estimates for the final covariate
model are shown in Table 2. The diagnostic plots
confirmed the appropriateness of the model as shown in
Fig. 2. The final covariate model was then used for
Monte-Carlo dosing simulations.

Dosing simulations

PTAs for AUCy_»4/MIC of 285, 3000, or 5000 for
different micafungin doses (100 mg, 150 mg, 200 mg)
and body weights (from 45 kg to 185 kg) for patients
with a medium age of 70 years old (no significant
changes were observed in simulations with different
patient ages) are described in Table 3. The Monte-

151 Carlo simulations showed that increases in the
) micafungin dose resulted in increased PTAs. For
g’ nonparapsilosis Candida (AUC/MIC >5000) this
£ > 10-
g’ 2 Table 2 Estimated micafungin parameters
o
% 'ﬁ Parameters Mean + SD Coefficient of ~ Variance  Median
oS5 variation (%)
= § 5 Clearance (I/h) 0.80 + 049 61.78 024 0.73
g Central volume () 1634 £587 3595 34.49 16.34
(3]
o kep (W) 038+037 9776 0.14 0.26
L 1 L}
0 50 100 150 kpc (h™) 032 +031 96.51 0.09 0.14
Time (h) Parameter estimates for micafungin from the final two-compartment covariate
population pharmacokinetic model
Fig. 1 Micafungin concentrations. Mean observed micafungin kep, rate constant for drug distribution from the central to peripheral
concentration-time profiles (error bars represent standard deviation) compartment; kpc, rate constant for drug distribution from the peripheral to

central compartment
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Fig. 2 Diagnostic plots for the final population pharmacokinetic covariate model. a Observed micafungin concentrations versus population predicted
concentrations. b Observed micafungin concentrations versus individual predicted concentrations. ¢ Visual predictive check (circles represent observed
data). Concentrations are expressed as pg/ml

target attainment was only obtained with >90% FTAs for the simulated PTAs against MIC distributions
probability with doses of 150 mg and 200 mg against  for C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis
isolates with MICs up to 0.008 pg/ml, regardless of are shown in Table 4. FTAs > 90% were obtained against C.
the patient’s weight. albicans with the 200 mg/24 h dose for all body weights,
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Table 3 Probability of target attainment (PTA) for micafungin
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AUCy_,4/MIC of 285 for
body weight (kg) equal to:

AUCy_»4/MIC of 3000 for
body weight (kg) equal to:

AUCq_»4/MIC of 5000 for
body weight (kg) equal to:

Dose (mg/24 h) ~ MIC (ug/ml) 45 80 115 150 185 45 80 115 150 185 45 80 115 150 185
100 0.008 100 100 100 100 100 990 989 988 985 978 837 784 723 640 551
0.016 100 100 100 100 100 720 588 522 409 311 92 37 14 0.5 0.2
0.032 100 100 100 100 100 230 07 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.064 999 997 997 997 996 00 00 0.0 00 00 0.0 0.0 00 00 0.0
0.125 938 856 790 758 712 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.25 234 98 4.8 1.9 0.8 00 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0 00
0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0 00 00 0.0
150 0.008 100 100 100 100 100 100 100 100 999 998 988 984 981 972 913
0.016 100 100 100 100 100 9.7 955 896 808 786 573 492 354 253 176
0.032 100 100 100 100 100 385 222 123 69 30 09 0.1 0.1 00 0.0
0.064 100 100 100 100 100 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.125 99.1 989 989 986 980 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.25 728 598 528 427 325 00 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 0.0
0.5 25 0.8 0.1 0.1 0.0 00 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
200 0.008 100 100 100 100 100 100 100 100 100 100 997 997 996 994 991
0.016 100 100 100 100 100 990 989 988 985 978 837 /84 723 640 551
0.032 100 100 100 100 100 720 588 522 409 311 92 3.7 14 0.5 0.2
0.064 100 100 100 100 100 23 0.7 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.125 999 998 997 997 997 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.25 938 856 790 758 712 00 00 0.0 00 00 0.0 0.0 00 00 00
0.5 234 98 48 19 08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 00 0.0 00 00 0.0 0.0 00 0.0 0.0 00 0.0 0.0 00

Micafungin PTA for different target values of area under the serum concentration curve over a 24-h period divided by the minimum inhibitory concentration

(AUC,_24/MIC), body weights, and once-daily doses

and with the 150 mg/24 h dose for body weights of 45 kg,
80 kg, and 115 kg, and against C. glabrata for body weights
of 45 kg, 80 kg, and 115 kg with the 200 mg/24 h dose. No
FTAs >90% were obtained with the 100 mg/24 h dose
regardless of the species or the patient’s weight.

Discussion
The present Monte-Carlo simulation using data from

obese, critically ill, and morbidly obese critically ill patients

Table 4 Fractional target attainment (FTA) for micafungin

treated with micafungin estimated the micafungin probabil-
ity of achieving adequate AUC(_pq/MIC values against
Candida spp. for a large population. Our results showed
the lack of adequate micafungin exposure (in terms of
FTAs) with the 100 mg/24 h dose regardless of the
Candida species or the patient’s weight. Against C. albi-
cans, micafungin exposure was adequate with the 150 mg/
24 h dose for patients weighing up to 115 kg and with the
200 mg/24 h dose for those surpassing such a weight.

100 mg/24 h 150 mg/24 h 200 mg/24 h
Body weight (kg) 45 80 115 150 185 45 80 115 150 185 45 80 115 150 185
C. albicans 746 62.6 56.6 464 374 97.0 95.9 90.6 826 80.6 99.1 99.0 989 986 98.0
C. glabrata 62.0 523 475 39.3 322 86.4 826 76.5 69.3 67.0 94.2 91.7 904 88.1 85.8
C. tropicalis 239 19.3 17.1 159 1.0 496 40.8 34.1 288 26.1 679 60.8 573 514 46.1
C. parapsilosis 16 12 1.0 09 09 36 27 24 22 1.9 6.6 46 37 33 30

Micafungin FTA calculated using MIC distributions [20] for the different Candida species
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As in previous studies, plasma concentrations of mica-
fungin were best described using a two-compartment
model and, as mentioned, weight was a significant covariate
[21]. Unlike the introduction of the severity score as a
covariate, introducing the patient’s age improved the model.
The influence of severity scores on micafungin exposure in
severely ill patients is controversial among studies in the
literature; while one study considered SOFA as a relevant
covariate [22], another study did not find a correlation of
APACHE II or SOFA with exposure, suggesting the possi-
bility of being ruled out as a cause of low drug exposure
[23]. The reason for this could be the high interindividual
variability found in studies investigating micafungin expos-
ure in critically ill patients [23-25] in contrast to data from
healthy volunteers or patients under continuous venove-
nous hemofiltration [11, 24], which represent more uniform
populations.

On the contrary, weight has been described as markedly
influencing micafungin clearance [21] both in patients
weighing > 66.3 kg [26] and in healthy volunteers in a study
including subjects with BMI < 25, 25-40, and > 40 kg/m>
[27, 28]. In the present simulation, the inclusion of weight
as a covariate improved the model. According to the results
of our model, for MIC values > 0.008 pg/ml, the 100 mg/24
h dose failed to achieve the optimal ratio threshold of
AUC_o4n/MIC of 3000. This cut-off was associated with
therapeutic outcome in animal models for disseminated
candidiasis by C. albicans [29], and it was extrapolated to
humans [9] using data from clinical trials of invasive
candidiasis/candidemia [30]. The increase in micafungin
exposure provided by the doses of 150 or 200 mg/24 h
markedly improved the coverage encompassing MICs of 0.
016 pg/ml for body weights up to 80 kg (with the 150 mg/
24 h dose) or for all body weights (200 mg/24 h dose).
When considering recent MIC distributions for C. albicans,
the most frequent isolated species, our results indicate that,
to obtain adequate coverage (FTA >90%), the micafungin
dose should be increased to 150 mg/24 h for nonobese
patients (< 115 kg) and to 200 mg/24-h for those with body
weight > 115 kg. This finding is consistent with previous
reports showing the need for an increase in doses of anti-
fungals in obese patients [5, 15, 31, 32] due to inadequate
exposure with standards doses, as described with micafun-
gin [26, 33]. In this sense, there is a report suggesting inad-
equate exposure with micafungin 100 mg/24 h in an obese
critically ill patient weighing 230 kg [34]. Exposure may be
crucial in morbidly obese critically ill patients when
compared with the ICU population or obesity alone [32]. A
timely and sufficiently high exposure to the appropriate
antifungal agent is essential for the eradication of the
pathogen. This acquires importance since, worldwide, mean
weight, both in men and women, has been increasing over
the last decades. In the USA, during 2013 and 2014, the
overall age-adjusted prevalence of obesity was 37.7% [35].
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Increasing the dose to 200 mg/24 h would overcome the
problem caused by being overweight for C. albicans; how-
ever, such an increase would not solve the problem for
other Candida species, requiring higher exposures. Since
a previous study indicated that the maximum tolerated
dose of micafungin in patients undergoing hematopoietic
stem cell transplantation was at least up to 8 mg/kg/24 h
[36], strategies including individualized dosing have been
advocated as a great opportunity to further improve the
efficacy of micafungin [27], an antifungal with reported
70-80% efficacy in the treatment of candidemia with the
current dosing of 100 mg/24 h [27, 30, 37, 38].

The results of this study are of high importance due to
the very limited information available on the pharmaco-
kinetics and efficacy of echinocandins in obese critically
ill patients, especially in those with morbid obesity. Most
studies have been performed with caspofungin. In agree-
ment with our results, pharmacokinetic studies with
caspofungin showed lower exposure in overweight and
obese patients, whether critically ill [39] or not [40], and
also showed the benefits of increasing the dose in
morbidly obese patients [41]. Similarly, the limited data
in the literature regarding the influence of obesity on the
pharmacokinetics of anidulafungin confirm the lower
anidulafungin exposure in patients with morbid obesity
compared with nonobese patients [32] and the need for
increasing the dose in a critically ill morbid obese
patient [42].

The present study is the first population assessment of
micafungin in critically ill nonobese, noncritically ill obese,
and critically ill morbidly obese patients. Several limita-
tions and challenges must be kept in mind in this respect.
Despite the relatively large sample size in this study, the
distribution of patients resulted in a low number of indi-
viduals in some of the groups. In addition, the present
study is a pharmacodynamic modeling not designed to
examine the effect of micafungin exposure on patient
outcome; clinical trials should address this issue from a
clinical perspective.

Conclusion

The results of this study indicate that micafungin expos-
ure was adequate with the 150 mg/24 h dose for patients
weighing up to 115 kg and with the 200 mg/24 h dose for
those surpassing such weight to cover C. albicans. The
200 mg/24 h dose covered C. glabrata for patients weigh-
ing up to 115 kg. Since other species of Candida were not
successfully covered, further PK/PD studies should
address this point to optimize dosing for nonalbicans
Candida infections.
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