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Angiotensin in Critical Care
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Abstract

This article is one of ten reviews selected from the
Annual Update in Intensive Care and Emergency
Medicine 2018. Other selected articles can be found
online at https://www.biomedcentral.com/collections/
annualupdate2018. Further information about the
Annual Update in Intensive Care and Emergency
Medicine is available from http://www.springer.com/
series/8901.
therapy to raise blood pressure in patients with vasodila-
Background
Hypotension is a key feature of shock and strongly cor-
related with the development of multisystem organ fail-
ure. Multiple studies have highlighted that even short
durations of hypotension are harmful [1, 2]. In a retro-
spective analysis of 33,000 non-cardiac surgical patients,
Walsh et al. showed that short periods of intraoperative
hypotension were associated with a significant increase
in the risk of acute kidney injury (AKI), myocardial
injury or cardiac complications and mortality [1]. The
risk of renal and cardiac injury increased with duration
of hypotension and was significant for periods as short
as 1–5 min. Similarly, using data from over 57,000
patients undergoing non-cardiac surgery, Salmasi et al.
showed that patients with a mean arterial pressure
(MAP) less than 65 mmHg during the intraoperative
period had a significantly higher risk of myocardial
injury and AKI, confirming that hypotension does not
need to be severe to affect organ function [2]. On the
basis of these and other studies, European and
international guidelines for the treatment of shock rec-
ommend that a minimum MAP should be maintained at
all times and that the target should be at least 65 mmHg
[3, 4]. Heretofore, the restoration and maintenance of
MAP has been accomplished through the judicious use
of fluids as well as vasopressors, namely catecholamines
and vasopressin analogs. However, patients with sepsis
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in particular often show marked hyporeactivity to trad-
itionally administered therapies. To date, no vasopressor
has consistently been proven to be superior to the others
in terms of clinical outcomes [5–7]. In 2015, a meta-
analysis concluded that in terms of survival, with the
exception of noted superiority of norepinephrine over
dobutamine, there was insufficient evidence to recom-
mend any vasopressor agent or combination over
another [8].
Angiotensin II (Ang II) has emerged as an effective

tory shock [9]. The first reports of Ang II administration
in patients with shock date back 50 years, but interest
was re-ignited following several small studies and a
recent larger randomized controlled trial (RCT) con-
firming that Ang II was effective at maintaining MAP at
target and reducing norepinephrine requirements with-
out an increase in adverse effects [9–11]. The following
review provides an overview of the physiological effects
of angiotensin and summarizes existing data in the
literature.
Role of Renin-Angiotensin System
After the discovery of renin in 1898, angiotensinogen
and angiotensin-converting enzyme (ACE) were later
identified as additional key components of the classical
circulating renin-angiotensin system (RAS) [12, 13].
Angiotensinogen, the precursor of angiotensin, is an α-
glycoprotein produced primarily by the liver and
released into the systemic circulation where it is con-
verted to angiotensin I (Ang I) under activity by renin
(Fig. 1). Ang I is cleaved into Ang II, predominantly by
endothelial-bound ACE in the lungs but also in plasma
and the vascular bed of kidneys, heart and brain, and to
some extent by chymases stored in secretory granules in
mast cells [13, 14].
Renin is an enzyme produced by pericytes in the vicin-

ity of the afferent arterioles and cells of the juxtaglo-
merular apparatus. It is stored in intracellular vesicles
and rapidly secreted in response to three stimuli: a
decrease in blood pressure as detected by baropressors,
a decrease in the sodium concentration delivered to the
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Fig. 1 The renin-angiotensin system. ACE: angiotensin-converting enzyme; ACTH: adrenocorticotropin hormone; AT: angiotensin receptor
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distal tubules, and activation of the sympathetic nervous
system (through β1 adrenergic receptors). Renin itself
has no peripheral receptors and no direct hemodynamic
effects [14].
Ang II, an octapeptide, has strong vasopressor proper-

ties but its action is terminated by rapid degradation to
angiotensin III by angiotensinases located in red blood
cells and the vascular beds of most tissues. Ang II is also
hydrolized into Ang (1–7) through the actions of ACE 2.
It has a half-life in circulation of around 30 s, whereas,
in tissue, this may be as long as 15–30 min [15].
In addition to the ‘classic’ systemic RAS, which regu-

lates blood pressure, fluid and electrolyte homeostasis
and preserves volume status and vascular tone, most
organs contain a tissue RAS and an intracellular RAS.
The tissue RAS is predominantly involved in local car-
diovascular regulation and inflammatory processes,
including vascular permeability, apoptosis, cellular
growth, migration and cell differentiation, and the intra-
cellular RAS participates in intracellular signaling
pathways [16].
Physiologic Effects of Angiotensin II
Ang II exerts its effects by binding to specific angio-
tensin (AT) receptors based on the cell membrane of
various cell types: AT-1, AT-2, AT-4 and Mas recep-
tors. In humans, the major physiological effects are
mediated by AT-1 receptors located in the kidneys,
vascular smooth muscle, lung, heart, brain, adrenals,
pituitary gland and liver, and relate to maintenance
of hemodynamic stability and fluid and electrolyte
regulation ([14, 16]; Fig. 1 and Table 1).
In the healthy adult, the AT-2 receptor is expressed
in certain cell types and tissues, such as vascular
endothelial cells, distinct areas of the brain, adrenal
glands, myometrium and ovaries and selected cutane-
ous, renal and cardiac structures [17, 18]. Although
their expression level is often much lower than that
of AT-1 receptors, AT-2 receptors have an important
role in injury and repair mechanisms and, under con-
ditions such as mechanical injury or ischemia, expres-
sion may be increased. There is also good evidence
that AT-2 receptors are involved in the regulation of
Ang II mediated adrenal catecholamine secretion, for
example during sepsis [18]. The main biological
effects of the AT-2 receptor are often opposite to the
AT-1 receptors with focus on anti-proliferation, vaso-
dilation and anti-inflammation. Stimulation of AT-2
receptors confers protection against an overstimula-
tion of AT-1 receptors: for example, vasoconstriction
mediated by the AT-1 receptors can be opposed by
the vasodilatory effects of Ang II linked to the AT-2
receptor ([19]; Fig. 1). AT-2 receptors also play a role
in pressure natriuresis, opposing the anti-natriuretic
effects of AT-1 receptor activation, and in cardiovas-
cular remodeling following myocardial infarction and
hypertension, heart failure and stroke. Finally, in the
fetus and neonate, AT-2 receptors are involved in
fetal tissue development, neuronal regeneration and
cellular differentiation.
The AT-4 receptor is activated by the Ang II

metabolite Ang IV, and appears to contribute to the
regulation of the extracellular matrix in the central
nervous system, as well as modulation of oxytocin
release.



Table 1 Main physiological effects of angiotensin (Ang) II

Organ
system

Physiological
effects

Vascular Vasoconstriction of venous and arterial vessels
Increased vascular permeability by inducing VEGF

Renal Stimulation of Na reabsorption and H+ excretion in the proximal tubule via the Na/H+ exchanger
Stimulation of the release of aldosterone, which stimulates the distal tubule and collecting ducts of
the kidneys to re-absorb sodium and water
Variable effects on glomerular filtration and renal blood flow depending on the physiological
and pharmacological setting:
i) Constriction of the afferent and efferent glomerular arterioles; although this will tend to restrict
renal blood flow, the effect on the efferent arteriole is markedly greater, and as a result, this tends
to increase or maintain GFR
ii) Constriction of the glomerular mesangium, thereby reducing the area for glomerular filtration
iii) Enhanced sensitivity to tubuloglomerular feedback and thereby prevention of excessive rise in GFR
iv) Stimulation of local release of prostaglandins, which oppose the effect of Ang II and antagonize
renal vasoconstriction

Endocrine Stimulation of the secretion of vasopressin from the posterior pituitary gland
Secretion of ACTH in the anterior pituitary gland
Enhancement of release of norepinephrine by direct action on
postganglionic sympathetic fibers

Nervous Enhancement of norepinephrine secretion

Cardiac Mediation of cardiac remodeling through activated tissue RAS
in cardiac myocytes

Coagulation Prothrombotic potential through adhesion and aggregation of
platelets and stimulation of PAI-1 and PAI-2

Immune Promotion of cell growth and inflammation
Increased expression of endothelium-derived adhesion molecules
Synthesis of pro-inflammatory cytokines and chemokines
Generation of reactive oxygen species

ACTH adrenocorticotropin hormone, GFR glomerular filtration rate, RAS renin-angiotensin system, PAI plasminogen activator inhibitor, VEGF vascular endothelial
growth factor
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Sepsis-Induced Dysregulation of the Renin-Angiotensin
System
The natural role of the RAS is to preserve volume status
and arterial blood pressure, thereby maintaining the sys-
temic circulation and also the microcirculation. In sep-
sis, both over- and under-stimulation of the RAS have
been reported in patients [20–25]. The capacity of ACE
and the functionality of angiotensin receptors are key
factors that determine whether hemodynamic stability
can be achieved and maintained.
ACE is an ectoenzyme that is distributed primarily on

the pulmonary capillary endothelium but can also be
found in endothelial and renal epithelial cells. ACE mol-
ecules are uniformly distributed along the luminal pul-
monary endothelial surface including the membrane
caveolae [26]. As a result, ACE is directly accessible to
blood-borne substrates and able to convert Ang I to Ang
II rapidly, but also very susceptible to disease processes
that affect the pulmonary vasculature [27].

Effects of Sepsis on Ang II Levels
During sepsis, renin, Ang I and Ang II are usually
activated. However, variable and even low plasma
levels of Ang II have been reported [20, 21]. The rea-
sons are multifactorial. Pre-morbid treatment with an
ACE-inhibitor will prevent conversion of Ang I to
Ang II. There is also evidence that endotoxin associ-
ated with Gram-negative sepsis has potential to
deactivate ACE [22]. Additionally, in diseases that
affect the pulmonary capillary endothelium, such as
acute respiratory distress syndrome (ARDS) and pneu-
monia, ACE activity is altered at an early stage,
resulting in reduced capacity to convert Ang I to Ang
II [23, 28–30].
Low levels of Ang II and ACE have clinical implica-

tions. Zhang et al. measured serial Ang II and ACE con-
centrations in 58 patients with severe sepsis and showed
that the cohort with low levels exhibited more complica-
tions and had a greater risk of dying [20].

Sepsis-Induced Downregulation of Ang II Receptors
Ang II is antagonized by the endogenous vasodilator,
nitric oxide (NO), and each has a role in influencing
the production and functioning of the other. Several
studies have shown that sepsis is associated with
downregulation of AT-1 receptors, likely mediated by
pro-inflammatory cytokines and NO [31, 32]. In
addition, reduced activity of the AT-1 receptor associ-
ated protein 1 (Arap 1) has been reported [33]. The
physiological role of Arap 1 is to support the
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trafficking of the AT-1 receptor to the cell membrane.
As such, reduced activity of Arap 1 is associated with
decreased sensitivity of the AT-1 receptor.
Downregulation of AT-2 receptors may also occur dur-

ing septic shock [18]. The consequences of this process
are reduced catecholamine release by the adrenal
medulla and attenuation of the responsiveness of blood
pressure and aldosterone formation.

Clinical Studies with Angiotensin
Ang II was discovered in the 1930s and has been used in
clinical studies since the early 1960s. To date, over
31,000 subjects have been exposed to Ang II either as
monotherapy or in combination with catecholamines
and non-catecholamine vasopressors in various clinical
settings [34].

Prevention of Hypotension During Obstetric Anesthesia
Hypotension is a frequently occurring adverse effect
during spinal anesthesia. In the obstetric population
where utero-placentary blood flow depends directly
on maternal blood pressure and where moderate ma-
ternal hypotension is associated with fetal hypoxemia
and neurological morbidity, every attempt is made to
prevent hypotension [35]. Phenylephrine and ephe-
drine are often used in clinical practice. Ephedrine
was the vasoconstrictor agent of choice in obstetric
anesthesia for many years because of its marked
increase in utero-placentary blood flow [36]. However,
it has fallen out of favor because of its association
with lower umbilical artery pH values, likely due to
increased fetal metabolic activity [37].
Phenylephrine is a synthetic sympathicomimetic agent

that is regarded to be safe in the treatment of regional
anesthesia-induced maternal hypotension [35].
Ang II has been shown to cause less vasoconstriction

of the utero-placental vascular bed compared with uter-
ine or other systemic vessels [38, 39]. In 1994, Ramin
et al. randomized 30 healthy pregnant women undergo-
ing elective Cesarean section either to a control group
or prophylactic Ang II infusion versus prophylactic
ephedrine infusion in order to maintain a diastolic blood
pressure 0–10 mmHg above the baseline [40]. In women
randomized to Ang II infusion, the maternal Ang II
levels were increased nearly fourfold but Ang II levels in
the umbilical artery and vein were unchanged. Of note,
no one in the Ang II cohort had a recorded umbilical
artery blood pH < 7.20 in contrast to 40% of the ephe-
drine group. Vincent et al. reported similar results in 54
women randomized to Ang II versus ephedrine during
spinal anesthesia for elective Cesarean delivery [41]. The
umbilical arterial and venous pH and base excess were
higher in the angiotensin group compared to women
who had received ephedrine, and maternal heart rate
was higher in the ephedrine group. The authors con-
cluded that Ang II maintained systolic blood pressure
during anesthesia without causing fetal acidosis or
increasing maternal heart rate.
Treatment of Hypotension Following ACE Inhibitor
Overdose
ACE-inhibitor overdose may result in severe refractory
hypotension. Several case reports have highlighted suc-
cessful treatment with Ang II [42–44]. Although in all
cases, Ang II was administered in combination with
other therapies, including gut decontamination, intra-
venous fluids, vasopressors and naloxone, there was a
profound effect on blood pressure immediately after
starting Ang II infusion. Physiologically, it is logical to
regard Ang II as a rational treatment for ACE-
inhibitor induced hypotension.
Treatment of Vasodilatory Shock
The most immediate and critical need of patients with
vasodilatory shock is the achievement of hemodynamic
stability to prevent multiorgan dysfunction whilst allow-
ing time to treat the underlying etiology. Multiple vaso-
pressors and catecholamines are often needed [45].
Studies using Ang II as a vasopressor for management of
shock were originally conducted in the 1960s. Ang II
was compared to catecholamines in non-randomized
designs and was shown to have comparable effects to
norepinephrine [46, 47].
In the first RCT, Chawla et al. reported a

catecholamine-sparing effect in patients with high out-
put shock treated with Ang II administration [10]. The
subsequent Angiotensin for the Treatment of High
Output Shock (ATHOS)-3 trial was a phase 3, placebo-
controlled, double-blind, multicenter RCT including
321 patients with refractory vasodilatory shock who
were randomized to Ang II infusion or placebo [9].
Analysis of the primary efficacy endpoint (defined as
the percentage of patients achieving the pre-specified
target blood pressure response) was statistically signifi-
cant (p < 0.0001). Twenty-three percent of the 158
placebo-treated patients had a desired blood pressure
response compared to 70% of the 163 patients treated
with Ang II. Treatment with Ang II also resulted in a
significant decrease in the standard of care vasopressor
use, as measured by a change in the cardiovascular
Sequential Organ Failure Assessment (SOFA) score at
48 h (− 1.75 versus − 1.28, p = 0.01). No difference in
mortality was noted but there were fewer adverse
events with Ang II. In a recent systematic review
including data from > 31,000 patients, Busse et al.
also confirmed that Ang II was safe to be used in
humans [34].
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Conclusion
The RAS plays a key role in maintaining hemodynamic
stability, vascular tone and electrolyte homeostasis. Stud-
ies suggest that its physiological regulation is disturbed in
sepsis and critical illness, which results in altered ACE
functionality, reduced generation of Ang II and downregu-
lation of Ang II receptors. Recent RCTs stipulate that Ang
II is an effective and safe treatment for hypotension in
patients with refractory vasodilatory shock, allowing for
sparing of catecholamines. It may also have a role in car-
diogenic, distributive and unclassified shock [48].
Innate to the human body are three molecules (cate-

cholamines, vasopressin and angiotensin) that maintain
and regulate BP. The addition of Ang II as a potential tool
in the armamentarium against shock offers clinicians the
opportunity to provide a ‘balanced’ approach to vasopres-
sor therapy. The combination of different vasoactive drugs
that mimic the natural response to severe vasodilatation
and hypotension makes physiological sense [49]. With this
approach, the likelihood of hemodynamic recovery is
enhanced and toxicity from large doses of monotherapy
can be minimized.
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