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Abstract

Background: Mildly elevated lactate levels (i.e., 1–2 mmol/L) are increasingly recognized as a prognostic finding in
critically ill patients. One of several possible underlying mechanisms, microcirculatory dysfunction, can be assessed
at the bedside using sublingual direct in vivo microscopy. We aimed to evaluate the association between relative
hyperlactatemia, microcirculatory flow, and outcome.

Methods: This study was a predefined subanalysis of a multicenter international point prevalence study on
microcirculatory flow abnormalities, the Microcirculatory Shock Occurrence in Acutely ill Patients (microSOAP).
Microcirculatory flow abnormalities were assessed with sidestream dark-field imaging. Abnormal microcirculatory
flow was defined as a microvascular flow index (MFI) < 2.6. MFI is a semiquantitative score ranging from 0 (no flow)
to 3 (continuous flow). Associations between microcirculatory flow abnormalities, single-spot lactate measurements,
and outcome were analyzed.

Results: In 338 of 501 patients, lactate levels were available. For this substudy, all 257 patients with lactate levels ≤
2 mmol/L (median [IQR] 1.04 [0.80–1.40] mmol/L) were included. Crude ICU mortality increased with each lactate
quartile. In a multivariable analysis, a lactate level > 1.5 mmol/L was independently associated with a MFI < 2.6 (OR
2.5, 95% CI 1.1–5.7, P = 0.027).
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Conclusions: In a heterogeneous ICU population, a single-spot mildly elevated lactate level (even within the reference
range) was independently associated with increased mortality and microvascular flow abnormalities. In vivo microscopy
of the microcirculation may be helpful in discriminating between flow- and non-flow-related causes of mildly elevated
lactate levels.

Trial registration: ClinicalTrials.gov, NCT01179243. Registered on August 3, 2010.
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Background
An elevated lactate level, classically defined as an arterial
lactate level > 2 mmol/L, is a well-known predictor of
adverse outcome in terms of organ dysfunction and
mortality in different subgroups of critically ill patients
[1–3]. Surviving Sepsis Campaign guidelines consider a
threshold of 1 mmol/L as an indicator of tissue hypoper-
fusion, but they suggest resuscitation to normalize
arterial lactate levels in patients with lactate levels >
4 mmol/L in order to improve outcome, based on the
principles of early goal-directed therapy [4–6]. Similarly,
in nonseptic patients, the value of lactate levels in goal-
directed resuscitation, as well as the additive value of
serial lactate measurements, is recognized [7–10].
Recent studies indicate that small increases in lactate
levels are already associated with an unfavorable clinical
course. This association has been demonstrated for
“relative hyperlactatemia” with thresholds as low as
1.1 mmol/L [11–14]. Although lactate is easily measured
in daily practice, unraveling the underlying causative
mechanism is often much more difficult. Organ
hypoperfusion is regarded as an important cause of
hyperlactatemia, although several other mechanisms also
play a significant role, ranging from accelerated aerobic
glycolysis to decreased lactate metabolism and mito-
chondrial and microcirculatory dysfunction [15]. Sublin-
gual direct in vivo microscopy is a suitable method of
detecting microcirculatory derangements at the bedside
[16]. Several studies have demonstrated an association
between lactate levels and microcirculatory alterations in
subgroups of critically ill patients as well as in experi-
mental settings [17–25]. We previously demonstrated
that both microcirculatory derangements and arterial
lactate levels were independent predictors of mortality
in selected high-risk patients [26].
The aforementioned studies were primarily focused on

the early phase of intensive care unit (ICU) admission.
The significance of minimally elevated lactate levels as
well as concomitant microcirculatory dysfunction at a
later time point is unclear. Therefore, we aimed to inves-
tigate the significance of a single-spot arterial lactate
measurement and simultaneous in vivo microscopy in a
heterogeneous ICU population recruited from 36 ICUs
worldwide.

Methods
Patients and setting
This study was a post hoc analysis of a prospective
observational point prevalence study of the prevalence
and significance of microcirculatory alterations in a
heterogeneous ICU population (Microcirculatory Shock
Occurrence in Acutely ill Patients [microSOAP; Clinical-
Trials.gov identifier NCT01179243; registered on August
3, 2010 [26]). Thirty-six ICUs worldwide participated in
this study. Being a point prevalence study, data collec-
tion on patient characteristics and laboratory values, as
well as simultaneous sublingual sidestream dark-field
(SDF) imaging, was performed on a single day for all pa-
tients in a given ICU or ICU subunit. Lactate levels were
measured within a maximum of 4 h before or after SDF
imaging. For this substudy, patients with an arterial
lactate level ≤ 2 mmol/L were included.

Ethics approval
Every participating center obtained ethics approval
according to local legislation. A copy of the ethics
approval was sent to the study coordinator before the
start of the study (see Additional file 1). Written in-
formed consent was obtained from all included subjects,
unless the local ethics committee specifically allowed a
waiver in this respect.

SDF imaging
SDF imaging is a noninvasive technique consisting of a
camera incorporated in a handheld device that emits
stroboscopic green light with a wavelength within the
absorption spectrum of hemoglobin (Hb) [12]. The light
emitted by the SDF camera (MicroScan; MicroVision
Medical, Amsterdam, The Netherlands) is absorbed by
Hb, visualizing erythrocytes as black cells on the screen.
Offline software-assisted analysis of SDF images (AVA
3.0; MicroVision Medical) yields information on
convective oxygen transport and diffusion distance. The
semiquantitative microvascular flow index (MFI),
ranging from 0 (no flow) to 3 (continuous flow), and the
percentage of perfused vessels (PPV) provides informa-
tion on convection, whereas total vessel density (TVD)
and perfused vessel density (PVD) provide information
on diffusion [27]. A single measurement consisting of
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three sublingual SDF image sequences of 10–20 seconds
was obtained for every patient. SDF imaging as well as
subsequent image analysis were performed in line with
international consensus [27, 28].

Statistical analysis
Analysis was focused on associations between lactate
levels, mortality, organ dysfunction, and microcircula-
tory alterations. An abnormal microcirculatory blood
flow was predefined as a sublingual MFI < 2.6 for vessels
< 20 μm, being the lowest reported lower bound of the
95% CI of healthy volunteers. We defined this value a
priori for the analysis of the original microSOAP data. A
post hoc analysis confirmed this cutoff value as the
Youden index in an ROC curve [26]. This cutoff value
has been validated as clinically relevant [26, 29]. To
determine cutoff values for lactate levels for both abnor-
mal MFI and mortality, the AUC was calculated. These
cutoff values were subsequently tested in logistic regres-
sion analysis.
Backward stepwise logistic regression was employed to

detect determinants of a capillary MFI < 2.6. Predictors
with P < 0.25 in univariable logistic regression were used
for multivariable modeling (see Additional file 2 for
additional information on the statistical analysis). Tested
predictors included Sequential Organ Failure Assess-
ment (SOFA) score on the day of SDF imaging, Acute
Physiology and Chronic Health Evaluation II (APACHE
II) score on ICU admission, length of stay in the ICU
prior to SDF imaging (≤24 h and > 24 h), admission
diagnosis, the presence of sepsis at the time of SDF
imaging, Hb ≤ 5.37 mmol/L, arterial lactate level >
1.5 mmol/L, heart rate, mean arterial pressure, fluid
balance, and vasopressor use. In case of nonlinearity
of the logit, variables were dichotomized. The result-
ing models were tested for multicollinearity. Hosmer
and Lemeshow goodness of fit was used to test the
fit of the model. Furthermore, the associations be-
tween lactate levels, microcirculatory dysfunction,
mortality, and organ dysfunction (SOFA, cumulative
vasopressor index [CVI] [30]) were described by
dividing the lactate measurements into quartiles. To
test for differences between normally distributed
variables, Student’s t test or the Mann-Whitney U
test was performed. To compare dichotomous vari-
ables, Fisher’s exact test was applied. Distributions
across more than two groups were tested using the
nonparametric Kruskal-Wallis test. The data were
analyzed using IBM SPSS Statistics version 23.0
(IBM, Armonk, NY, USA) and Prism 5.04 (Graph-
Pad Software, Inc., La Jolla, CA, USA) software and
are presented as the median [IQR] or mean ± SD,
unless indicated otherwise. P < 0.05 was considered
statistically significant.

Results
General characteristics
Out of 501 patients, arterial lactate levels were available
for 338 (67%) of patients. In 257 out of these 338
patients (76%), arterial lactate levels were ≤ 2 mmol/L.
These patients, with median APACHE of 16 [10–23] and
median SOFA of 5 [3–8], were included for further ana-
lysis (Table 1). Surgery (35.4%) and sepsis (17.5%) were
the main reasons for ICU admission. Median arterial
lactate levels were 1.04 [0.80–1.40] mmol/L. ICU and
hospital mortality were 20.6% and 27.2%, respectively.

Lactate levels and mortality
Increases in ICU mortality were observed for every lac-
tate quartile (≤0.80 mmol/L, 12.9%; 0.81–1.04 mmol/L,
15.3%; 1.05–1.40 mmol/L, 15.4%; > 1.40 mmol/L, 39.7%;
P < 0.001). Similar trends were observed for hospital
mortality (24.3% in the lowest quartile, 44.4% in the
highest quartile; P = 0.005) (see Fig. 1). The AUC was
0.65 (95% CI 0.56–0.73, P = 0.001) with a cutoff value of
1.42 mmol/L for ICU mortality (sensitivity 40%, specifi-
city 81%). The same cutoff value was seen for hospital
mortality with a sensitivity of 47% and a specificity of
81% (AUC 0.59, 95% CI 0.51–0.67, P = 0.025). Mortality
was at least almost twice as high for patients with an ar-
terial lactate level > 1.5 mmol/L as compared with
patients with a lower lactate level (ICU mortality 41.2%
vs. 15.5%, P < 0.001; hospital mortality 45.1% vs. 22.9%,
P = 0.001).

Lactate levels and microcirculatory flow abnormalities
Patients with a capillary MFI < 2.6 (14%) had slightly
but nonsignificantly higher lactate levels than patients
with a higher MFI (1.11 [0.90–1.60] vs. 1.00 [0.80–
1.40] mmol/L, P = 0.117). A nonsignificant trend
toward a higher prevalence of an abnormal microcir-
culation in the highest lactate quartile was observed
(P = 0.169) (Fig. 1). Hb was significantly lower in pa-
tients with an MFI < 2.6 (Hb 5.4 [5.2–6.8] vs. Hb 6.3
[5.5–7.1], P = 0.011). No significant differences with
respect to illness severity scores, hemodynamics,
vasopressor use or dose, reason for ICU admission, or
time in ICU prior to SDF imaging were observed.
Comparing patients with lactate levels ≤ 1.5 mmol/L
and > 1.5 mmol/L, no significant differences were ob-
served for small vessel MFI; large vessel MFI; and
small vessel TVD, PVD, PPV, (perfused) De Backer
score, and heterogeneity index.

Multivariable logistic regression analysis for MFI < 2.6
In multivariable logistic regression analysis, the only
remaining significant predictors for an abnormal MFI
were an Hb ≤ 5.37 mmol/L (OR 4.6, 95% CI 2.1–10.2; P <
0.001), a stay in the ICU < 24 h prior to SDF (OR 2.9, 95%
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CI 1.3–6.6, P = 0.008), and an arterial lactate level >
1.5 mmol/L (OR 2.5, 95% CI 1.1–5.7, P = 0.027). The AUC
for this three-variable model was 0.74 (95% CI 0.65–0.83,
P = 0.001). The Hosmer and Lemeshow chi-square
statistic was 2.015 (P =0.847) (see also Additional file 2).

Lactate levels and organ dysfunction
A higher lactate level was not accompanied by a signifi-
cantly higher SOFA score or CVI (P = 0.078 and P = 0.063,
respectively) (Figs. 2 and 3).

Different phenotypes
Although an abnormal MFI and elevated lactate levels
appear to be associated, several different phenotypes
exist. For individual patients, a higher lactate level
was not necessarily associated with adverse outcome
or an abnormal microcirculation or vice versa, point-
ing toward a multifactorial etiology and significance
of both hyperlactatemia and microvascular derange-
ments (Fig. 4).

Table 1 Patient characteristics

Characteristics Data

Age, years 64 [52–74]

Male sex, n (%) 156 (61)

APACHE II scorea 16 [10–23]

SOFA scoreb 5 [3–8]

ICU mortality, n (%) 53 (20.6)

In-hospital mortality, n (%) 70 (27.2)

Time in ICU before SDF imaging, days 4.0 [0.8–9.0]

<24 h in ICU before SDF imaging, n (%) 79 (30.7)

Reason for ICU admission, n (%)

Surgery 91 (35.4)

Sepsis 45 (17.5)

Cardiac disease 18 (7.0)

Neurological disorders 27 (10.5)

Trauma 30 (11.7)

Respiratory insufficiency 21 (8.2)

Other 25 (9.7)

Arterial lactate, mmol/L 1.04 [0.80–1.40]

Hemoglobin, mmol/L 6.2 [5.4–7.0]

Vasopressor drugs

Patients treated, n (%) 89 (34.6)

Cumulative vasopressor indexc 3 [2–4]

Mechanical ventilation, n (%) 161 (63)

Abnormal microcirculationd, n (%) 36 (14)

MFI small vessels, AU 2.9 [2.7–3.0]

MFI large vessels, AU 3.0 [2.9–3.0]

TVD, mm/mm2 (small vessels) 18.9 [15.7–21.2]

PVD, mm/mm2 (small vessels) 18.1 [15.0–20.6]

PPV, % (small vessels) 98 [95–99]

De Backer score (small vessels) 11.3 ± 2.5

De Backer score (perfused small vessels) 10.9 ± 2.4

Heterogeneity index (small vessels) 0.07 [0.00–0.25]

Abbreviations: APACHE II Acute Physiology and Chronic Health Evaluation II, ICU
Intensive care unit, MFI Microvascular flow index, PPV Percentage of perfused
vessels, PVD Perfused vessel density, SDF Sidestream dark-field imaging, SOFA
Sequential Organ Failure Assessment, TVD Total vessel density
Values are mean ± SD or median [IQR] unless specified otherwise. Cutoff value
for small vessels < 20 μm
aAPACHE II scores range from 0 to 71, with higher values indicating more
severe disease
bSOFA scores range from 0 to 4 for each organ system, with higher scores
indicating more severe organ dysfunction
cTrzeciak et al. [30]
dAbnormal microcirculation defined as small vessel MFI < 2.6

Fig. 1 Arterial lactate levels (quartiles) and distribution of intensive
care unit (ICU)/hospital mortality and abnormal microvascular flow
index (MFI < 2.6). P < 0.001 for ICU mortality, P = 0.005 for hospital
mortality, P = 0.169 for abnormal MFI for distributions over quartiles

Fig. 2 Sequential Organ Failure Assessment (SOFA) scores per arterial
lactate quartile. P = 0.078 for distributions over quartiles
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Discussion
In the present study, a single-spot arterial lactate level >
1.5 mmol/L was associated with increased mortality as
well as with microcirculatory abnormalities and organ
dysfunction. This “relative hyperlactatemia” is an emer-
ging concept [11–14, 31]. Lactate levels on admission as
low as 1.1 mmol/L already appeared to be associated
with adverse outcome [12]. Our observations add to the
idea that the prognostic relevance of mildly elevated
lactate levels is not restricted to the early phase of ICU
admission. The twofold increase in mortality in patients
with a lactate level > 1.5 mmol/L is in agreement with
results of previous studies focused on the first day of
ICU admission [13, 14]. Researchers in a few studies

have reported lactate levels and their association with
outcome during the later phase of ICU stay, showing
contradictory results. Some have observed an association
between hyperlactatemia after initial stabilization with
higher mortality rates, whereas others found that not
lactate itself but impaired lactate clearance was associ-
ated with adverse outcome [32, 33]. In this respect, it is
notable that we were able to demonstrate this associ-
ation in a highly heterogeneous study population, in
terms of both the timing of the lactate measurement as
well as the underlying diagnosis and disease severity.
Not only mortality but also organ dysfunction in terms
of SOFA score appeared to be more severe for increasing
lactate levels, albeit that this was statistically nonsignifi-
cant. A previous study was able to show associations
between incremental lactate levels > 2 mmol/L and
SOFA scores [2]. However, in that study, the investiga-
tors evaluated the time course of lactate measurements,
whereas in the present study, we evaluated the implica-
tions of a single lactate measurement.
Several mechanisms may be involved in the increase of

lactate levels. One of these, microcirculatory flow abnor-
malities, was indeed associated with mildly elevated
lactate levels in the present study. PVD, and therefore
effective diffusion distance, did not differ between pa-
tients with and without mildly elevated lactate levels.
Therefore, impaired convective oxygen transport, but
not diffusion distance, might have contributed to anaer-
obic glycolysis. Several researchers have also observed an
association between impairment of microvascular flow
and elevations in arterial lactate, whereas others have
been able to demonstrate associations between lactate
levels and parameters of vessel density in a variety of
disease states [17, 19–25].
Alternatively, several non-flow-related factors may

lead to increased nonanaerobic lactate formation
under conditions of stress by promoting conversion
of glucose to lactate via pyruvate instead of pyruvate
entering the citric acid cycle [15, 34]. Indeed, lactate
formation in endotoxemia results predominantly from
increased aerobic lactate formation [35]. On top of
that, exogenous adrenergic stress resulting from β-
adrenergic drugs can also increase aerobic lactate for-
mation [36].
Besides ongoing lactate formation, impaired lactate

clearance has to be kept in mind as a cause of mildly el-
evated lactate levels. Levraut and coworkers observed
that in stable septic patients in whom arterial lactate
levels were < 2 mmol/L after the initial resuscitation
phase, impaired clearance of exogenous sodium lactate
but not baseline lactate values could discriminate
between survivors and nonsurvivors [32, 37]. It is con-
ceivable that a similar mechanism was involved in our
patients.

Fig. 3 Cumulative vasopressor index (CVI) per arterial lactate quartile.
P = 0.063 for distributions over quartiles

Fig. 4 Venn diagram depicting overlap between an abnormal
microcirculation and lactate groups. MFI Microvascular flow index (AU)
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Altogether, the direct observation of the microcircu-
lation in conjunction with lactate measurements con-
firms the idea that impaired organ perfusion is only one
of many explanations for elevated lactate levels with
potential consequences for therapeutic strategies in the
ICU [29, 38].
Our study has several limitations. At first glance, the

absolute numbers of lactate and MFI seem to indicate
that the study population was not severely ill. However,
owing to the design of the study, patients with a longer
stay in the ICU before study inclusion were overrepre-
sented. Therefore, the median APACHE II score of 16
seems to be a better indicator of considerable severity
of illness of the population at ICU admission. The lack
of macrohemodynamic monitoring limited in-depth
statistical analysis of factors associated with relative
hyperlactatemia. Furthermore, no detailed information
on factors influencing lactate clearance or drugs influ-
encing lactate metabolism (e.g., metformin) was avail-
able. In addition, the presence of microvascular flow
abnormalities in other organs not detected by sublin-
gual in vivo microscopy cannot be ruled out [39]. Serial
measurements of both microcirculation and lactate
could have shed more light on the time course of organ
dysfunction in patients with relative hyperlactatemia
[30, 40, 41]. Although independently associated in the
multivariate analysis, it is conceivable that a factor not
accounted for in our model influenced both lactate and
MFI. Last, it should be stated that the observed associ-
ation between relatively low lactate levels and outcome
does not automatically imply clinical relevance. Not
only is the predictive value of this multivariate model
relatively low with an AUC of 0.74, but it also remains
to be established whether interventions aimed at
achieving a further reduction of lactate will be benefi-
cial to patients.

Conclusions
Our data indicate that even single-spot lactate levels
within the usual reference range are associated with an
unfavorable clinical course. However, the question
remains how the clinician must incorporate these find-
ings into an individualized approach to treating other-
wise seemingly stable ICU patients. In vivo microscopy
of the (sublingual) microcirculation may be helpful for
detection of organ perfusion-related causes of mildly
elevated lactate levels with potential consequences for a
therapeutic strategy.
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