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Abstract

All of medicine aspires to be precise, where a greater understanding of individual data will lead to personalized
treatment and improved outcomes. Prompted by specific examples in oncology, the field of critical care may be
tempted to envision that complex, acute syndromes could bend to a similar reductionist philosophy—where single
mutations could identify and target our critically ill patients for treatment. However, precision medicine faces many
challenges in critical care. These include confusion about terminology, uncertainty about how to divide patients
into discrete groups, the challenges of multi-morbidity, scale, and the need for timely interventions. This review
addresses these challenges and provides a translational roadmap spanning preclinical work to identify putative
treatment targets, novel designs for clinical trials, and the integration of the electronic health record to implement
precision critical care for all.
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Background
Recent advances in our understanding of the complex
interplay of health and disease have spurred a movement
entitled “precision medicine” [1]. Although medicine has
arguably always been intended to be precise, this term is
generally used to refer to the aspirational goal of demar-
cating and treating highly specific biologic alterations,
such as specific aberrations in gene structure or regula-
tion, transcription, or post-transcription molecular path-
ways. Thus, patients who present with similar signs or
symptoms, or who have, for example, a histologically
similar tumor, could be parsed into subsets who have
different yet highly specific molecular defects requiring
individual treatments.
The promise of precision medicine, therefore, is that a

greater understanding of individual data will lead to per-
sonalized treatment and improved outcomes. Optimism

for this approach arises from examples like the targeting
of the single gene mutation in the human epidermal
growth factor receptor 2 (HER2) gene in breast cancer
cells with a monoclonal antibody, Trastuzumab [2]. The
subsequent completion of the Human Genome Project
[3], molecular subtyping of melanoma on BRAF, RAS,
and NF1 mutations [4], and multiple other break-
throughs offer additional hope for a personalized future.
However, while such examples are spectacular, the chal-
lenge today is moving precision medicine to our most
common conditions. In this review, we discuss the evo-
lution of precision medicine with a focus on its applica-
tion to the field of critical care.
We begin by discussing salient terms and concepts. We

next address major barriers to precision medicine that, al-
though not unique to critical care, are relevant to our fu-
ture agenda, including how to appropriately select groups
of patients for specific treatments; incorporate the com-
plexities of multi-morbidity; conduct studies of adequate
scope and scale; and generate data that are adequately
timely. Finally, we discuss a road map to achieve this vi-
sion (Fig. 1), from preclinical and translational work to
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novel clinical trials and ultimately integrating into current
practice with implementation science.

Terminology
The broad lexicon of “precision” medicine includes
many overlapping and somewhat confusing terms
(Table 1). Initially, the terms “individualized medicine”
and “personalized medicine” were used. However, as re-
searchers sought specific biologic pathways, they recog-
nized that such pathways might apply to a group of
patients, and not necessarily to a single or unique indi-
vidual. Hence, at least in the near future, the goal is not
necessarily to generate a unique treatment for every in-
dividual or person, but, rather, tailored treatments for
groups with tightly grouped biologic features. These
groups, in turn, need a name.

Strata, phenotypes, endotypes, subphenotypes, and
subtypes
Some use the term “stratified” medicine instead of preci-
sion medicine, and advance the idea that groups are
“strata” [5]. Others borrow from genomic medicine and
use the term “phenotype” to describe a group or cluster
of patients, albeit more broadly than in its original fram-
ing. The original use of phenotype would include the en-
tire clinical expression of a condition, including its
trajectory and outcome. For example, the phenotype for
some severe genetic mutations is intrauterine death. But
phenotype in the lexicon of precision medicine can be
used quite differently. For example, a clinical trialist typ-
ically uses the term phenotype to describe a set of pre-
senting features that could be used as criteria for
enrollment into an experimental study. In this example,

Fig. 1 Roadmap for a portfolio of precision medicine in critical care, including integration of preclinical studies, translational work, clinical trials,
and implementation science

Table 1 Key terms in precision medicine

Key term Description

General Individualized—Treatments are unique to each individual
Personalized—Treatments prioritize patient needs and preferences
Precision—Treatments optimized for genetics, lifestyle, and environment
Stratified—Setting of patient groups into narrow “strata” by tightly grouped biological features

Grouping Stratum—Tight groupings of patients defined by similar sets of biological features
Phenotype—Clinical features or traits that characterize a group of patients within a disease or syndrome,
including genetics, environmental factors, and other clinically observed characteristics
Group—A portion of a patient population within a larger group showing decreased inter-subject variability
and/or different prognosis and behavior of disease from the larger disease population

Sub-grouping Endotype—Biological subtypes defined by distinct pathophysiologic mechanisms within a phenotype
Subphenotype—Similar to an endotype, but without necessarily showing mechanism or causality
Subtype—A broader term for the division of a patient population by any observable characteristics

Phenotype categories Prognostic—Indicators used to inform about risks of various outcomes
Predictive—Indicators providing information about the likelihood of response to a given treatment
Drug response—Differential responses to drug based on phenotype defined by an indicator
Device response—Differential responses to device based on phenotype defined by an indicator

Heterogeneity of treatment effects (HTE)
and enrichment

HTE—Differences in treatment responses in a group due to variability in drug response phenotype within
that group
Enrichment—A prospective strategy for addressing HTE by reducing heterogeneity of the sample
population or increasing representation of patients with similar risk profiles
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the subsequent trajectory and outcome are not part of
the definition of phenotype. Neither use is wrong, but it
is key that researchers are explicit in delineating whether
phenotype is restricted to presenting features, and if so
at what time point, or not.
If a group of patients look similar (share a presenting

phenotype) but have subclinical differences (e.g., two dif-
ferent gene expression patterns or metabolic profiles),
then they might be further divided into “endotypes”.
Thus, a particular phenotype may be expressed by two
endotypes. However, endotype in its strictest sense im-
plies an understanding of the exact mechanism of dis-
ease, or at least the mechanistic relationship between
the molecular signature defining the endotype and the
disease in question [6]. In reality, researchers may often
be able to associate particular patterns of gene expres-
sion or biomarker profiles with disease characteristics,
but fall short of proof of mechanism and causality. Thus,
the term “endotype” may be used rather loosely, prompt-
ing others to prefer the term “subphenotype” (or
“subtype”).
A problem with “subphenotype” is that it too is used

in multiple ways [7]. One usage implies that “sub” means
“under the surface”, and thus refers to a grouping of pa-
tients by characteristics not typically visible clinically.
This definition is a hedge on endotype, recognizing that
the subclinical features may help divide patients, but do
not necessarily explain or cause disease events. The sec-
ond use of “subphenotype” uses “sub” to mean division,
like dividing a set into subsets, and is applied to divide
up clinically similar groups by further division of their
clinical features. Thus, we could divide the phenotype
“acute respiratory distress syndrome (ARDS)” into sub-
phenotypes in two different ways. First, we may say that
we find subphenotypes based on differences in bio-
marker patterns (where “sub” means “under the clinical
surface”) [8]. Alternatively, we may find different sub-
phenotypes based on differences in presenting clinical
features (e.g., extrapulmonary versus pulmonary ARDS
[9]. In practice, researchers are sometimes unclear on
which nomenclature they are applying and blend the
two approaches. Finally, others simply use the term
“subtype”, which avoids any specific clinical or mechan-
istic inference [10].

Prognostic, predictive, or drug (device)-responsive
characteristics
The manner in which we describe groupings is also im-
portant and requires an understanding of three common
terms: prognostic, predictive, and drug-responsive (or
device-responsive). These terms relate to the clinical im-
plications of any particular group, phenotype, set of pa-
tients or set of markers for such groups. “Prognostic”
means “predictive of, or associated with, a subsequent

clinical event or outcome”. What is not always clear is
whether the term is applied to the outcome regardless of
whether it is caused by the disease of interest. For ex-
ample, a biomarker could be described as “prognostic” if
it identifies a set of patients with acute myocardial in-
farction (AMI) at a greater risk of death, regardless of
whether the death is due to the AMI (so-called “cardiac-
related death”) or not. “Predictive” resembles prognostic
but is in fact synonymous with “drug-responsiveness”
(or device-responsiveness) and is a term used by groups
such as the Food and Drug Administration (FDA) to
specifically imply an approach to divide patients based
on their likelihood of responding to a drug or device
[11]. Thus, one marker may be prognostic, in that it pre-
dicts the likelihood of having the outcome of interest
(e.g., death). Another marker may be predictive (or drug-
or device-responsive), in that it predicts whether a pa-
tient’s risk of the outcome, such as death, will change
when given a particular drug or device.
Any particular marker may be prognostic only, predict-

ive only, prognostic and predictive, or neither. For ex-
ample, in ARDS, severe hypoxia may be both prognostic
(associated with greater odds of death) and predictive (as-
sociated with greater likelihood of benefit from proning).
Older age may also be prognostic, but not predictive of
benefit from proning. When treating a deep venous
thrombosis, a cytochrome P450 mutation may have no
impact on the natural history of subsequent thrombotic
events (not prognostic) yet be exquisitely predictive of
whether a given dose of warfarin is capable of changing
the risk of subsequent thrombosis (predictive) [12, 13].
The labeling of markers or subgroups of patients as prog-
nostic or predictive is further complicated because their
properties may be putative, unknown or unanticipated,
and researchers may apply the terms loosely.
Groupings or markers that have “predictive/drug-re-

sponsiveness” characteristics, either known or putative,
can be thought of in three complementary ways during
research. First, retrospective studies can uncover treat-
ment by subgroup interactions from existing data, which
may correspond to different drug-response phenotypes.
These are only associations. Alternatively, drug response
characteristics can guide enrollment criteria into clinical
trials (so-called “enrichment” strategies), with the goal of
ensuring that only patients most likely to respond to a
therapy are enrolled in the trial [14]. Finally, they can be
used after-the-fact to help parse out within a trial the
way in which a drug appeared to work better in some
patients and not in others—so-called “heterogeneity-of-
treatment-effect” (HTE) [15]. Ideally, an HTE analysis of
a broadly enrolling trial could provide clues to potential
biomarkers or phenotypes of patients that are predictive
of drug response. The final approach is the closest to
generating causal inference with respect to treatment by
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subgroup interactions, although the statistical tests that
result in trial conclusions typically speak to the likeli-
hood of groups having different effects than the magni-
tude of the observed differences.

Reconciling precision medicine with current
practice
Many rightly argue that medicine has always attempted
to be precise. Clinicians and researchers always seek to
make a specific diagnosis, converting where possible
vague signs and symptoms into specific diseases and,
when that is not possible, at least into something close
to a disease—a “syndrome”. Such efforts seek to group
patients based on anticipated actions, such as whether
to give a particular treatment, or whether to forecast a
likely prognosis. For example, a “diagnostic” biomarker,
such as a troponin for AMI, is assumed to be inherently
valuable in the effort to establish the diagnosis of acute
myocardial infarction. Yet, the value of having a diagno-
sis is simply the sum of the value gained through deter-
mining and initiating a treatment plan, stopping the
search for other diagnoses (and treatment plans), and of-
fering counsel to the patient and family on prognosis.
Thus, under the traditional medicine rubric, a diagnos-

tic marker is assumed to be valuable because we assume
it is valuable to make a diagnosis. It is worth remember-
ing, however, that the value of making a diagnosis is the
sum of both the value gained in prognostic and predict-
ive/drug-responsive accuracy, each a core element of
precision medicine. Put another way, precision medicine
is simply ensuring that “diagnostic” accuracy is not of
given value in its own right, but rather tied to explicit
gains in accuracy for tailored treatments and provision
of prognostic information.
Another important characteristic of current best prac-

tice is the use of protocols. Some may view the increasing
use of protocols as contrary to precision medicine. A
protocol is intended to ensure that the practitioner does
the same thing each time he or she is faced with a particu-
lar situation. Yet, protocols and precision medicine are
likely complementary. For example, consider the following
protocol instruction: when systolic blood pressure <
90 mmHg, if CVP is < 8 cm H2O, then give fluid, other-
wise increase vasopressor. This instruction is in fact being
“precise”, tailoring the choice of fluid or vasopressor for
hypotension based on additional “individual” consider-
ations. At the same time, while also attempting to ensure
precise management, it is standardizing delivery via the
use of explicit instructions. In the case of critical care, our
level of evidence does not commonly support the use of
precision strategies in clinical practice guidelines or proto-
cols—yet. For example, the most recent Surviving Sepsis
Campaign guidelines have few if any precision strategies
for diagnosis or treatment included [16]. But this does not

mean that the two are mutually exclusive approaches to
care. Indeed, many argue that the implementation of com-
plex precision medicine strategies will require a protoco-
lized approach [17].

Four challenges to the implementation of
precision medicine in critical care
1. Finding discrete groups and subgroups of patients
We state above that traditional medicine has always
sought to divide patients into groups, but this is also a
key element for precision medicine. What is often over-
looked in both is that assigning a patient to a particular
group is non-trivial. Clinicians are long familiar with
diagnostic challenges, differential diagnoses and vague
syndromic presentations. Regrettably, that challenge is
not easily solved by precision medicine. Although early
“wins” in precision medicine rest on very unique and
particular genetic aberrations that appear to account for
the entire spectrum of clinical consequences, we would
be naïve to think that such explicit and deterministic an-
swers underlie all expression of disease. Instead, for
some time to come, all efforts in precision medicine will
still have to embrace several wide, long-standing, and
potentially uncomfortable, domains of uncertainty.
Three types of uncertainty commonly arise when

attempting to divide patients into discrete groups: miss-
ingness, continuity, and multiplicity. Missingness is a
common problem when we fail to measure what is
needed, either because we do not know what to meas-
ure, or we are unable to do so. Second, even if we have
measured an important characteristic, it may be
expressed on a continuum, yet it has to trigger a discrete
action: give or not give therapy x. Thus, we need to de-
termine the breakpoint on the distribution. Third, the
problem of interest may have multiple domains or di-
mensions. Having more dimensions suggests we may
better understand complex problems, but the data across
the different dimensions may be hard to reconcile and
shrink to guide discrete decisions.
Thus, consider, for example, that we wish to block an

immune checkpoint pathway, such as programmed death
1 (PD1). If we wish to select a patient to administer anti-
PD1, we may trip up over problem 1—missingness—not
knowing or having a rapidly deployable assay or bio-
marker of PD1 expression. Alternatively, we may have an
assay, but PD1 expression may be very common and vari-
able in sepsis, and we may struggle to know “how much
expression” makes a patient a good versus a bad candidate
for suppression of that expression—problem 2. Finally, we
may appreciate that the potential benefits of an anti-PD1
strategy may be more complex and depend on the meas-
urement of several characteristics of the host’s immune
status, as well as characteristics of the invading pathogen.
When measuring these characteristics, we may yield
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potentially complicated and conflicting information: some
measures of immune status suggest suppression would be
good and some suggest it would be bad—problem 3.
These issues are further complicated by different statistical
methods to group patients that may not always return the
same discrete groups.

2. Incorporating multi-morbidity
Researchers and clinicians are increasingly recognizing
that patients encountering the health care system do so
not with an isolated problem on a background of good
health, but with potentially one new problem on a back-
ground of multiple pre-existing comorbidities. The com-
bination of these comorbidities adds considerable
complexity and has been termed “multi-morbidity” [18].
In critical care, patients also present with multi-morbidity,

such as hypertension, diabetes mellitus, and chronic ob-
structive pulmonary disease, but now complicated by one or
many acute organ dysfunctions. More than 60% of the US
population over the age of 65 years has two or more comor-
bid conditions [18, 19]. And among those admitted to the
ICU, patients multi-morbidity account for one in three.
Multi-morbid patients generate high costs, incur more ad-
verse events, and for a given critical illness, experience a
worse outcome compared to patients without comorbidity
[20]. And, pre-existing chronic disease may also influence
the recovery from critical illness. Therefore, the outcomes of
these patients not only vary based on which pathways are
activated during the critical illness, but also on the inter-
action between these pathways and chronic diseases.
Despite the burden of multi-morbidity, our knowledge

about multi-morbid patients is not congruent with how
often we care for them. For example, while patients with
chronic disease are regularly included in randomized

trials, many multi-morbid patients at the more severe
end of the spectrum will be typically excluded using cri-
teria like “underlying disease with poor prognosis.” In
the EDEN trial [21], among 6968 screened but excluded
patients, approximately 3300 (47%) had some form of
chronic disease for which they were not enrolled.
Multi-morbidity may also challenge the development

of precision critical care (Fig. 2). First, multi-morbidity
may be present and measurable, but unrelated to the
discrete clusters that may guide precision treatment.
Second, multi-morbidity could itself be part of the set of
variables evaluated when identifying discrete groups. In
chronic obstructive pulmonary disease (COPD) pheno-
typing using principal components analysis, [22] the
presence of obesity, cardiovascular comorbidities and
diabetes were included in the hierarchical clustering al-
gorithm and ultimately found to be key features in a
subgroup with a higher risk of mortality but less severe
airflow limitation.
Finally, multi-morbidity could be investigated as a

causal factor in phenotypic variation, perhaps through
changes in the epigenome. The epigenome refers to
chemical modifications of DNA and DNA-associated
proteins that regulate gene expression [23]. Common
epigenetic changes include DNA methylation or histone
modification, and occur as natural process influenced by
the environment or disease. The result is that certain
genes are turned “on or off” in various cells in some-
times random fashion. Evidence for the epigenetic con-
tribution to disease can be found in twin concordance
studies, where heritable features in various cancers
were present in a variable proportion of pairs [24].
Thus, most of the variation in sporadic cancer could
be attributed to environmental factors and somatic

a Scenario 1: No multimorbidity
present b Scenario 2: Multimorbidity is a

feature of clusters c Scenario 3: Multimorbidity is in
causal pathway with clusters 

Multi-morbidity 

Each cluster has same set of
comorbidites

Comorbid conditions help form 
the discrete groups 

Comorbid conditions lead to
discrete groups 

Fig. 2 Examples of different ways in which multi-morbidity can contribute to clusters in precision medicine. In a, all dark blue clusters have similar
co-morbidity patterns, while multiple blue colors represent clusters in which co-morbidity is a contributing feature (b). In c, multi-morbidity is in
the causal pathway to various clusters, but itself is not a defining feature
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events. Such phenomena could be generally hypothe-
sized in the immunosuppressive features of critical ill-
ness, where the epigenome may be important in
regulation of immunologic pathways, as reported dur-
ing monocyte differentiation in response to lipopoly-
saccharide [25].

3. Managing the scale of clinical and biologic data
Research in precision medicine is faced with an
enormous burden of information (Fig. 3). To de-
velop new scientific knowledge from large-scale
studies that explore phenotypes or endotypes, a
wealth of data must be gathered, analyzed, and integrated
across many levels. Some estimate the volume of genetic
sequencing data has grown tenfold each year since 2002
[26], derived from an increasingly variable set of experi-
mental techniques, dimensionality of data, and noise from
high-throughput analyses. No longer will these studies use
case report forms with 10 to 20 variables in 500 patients
measured at a single time point. Instead, any variety of data
from genomic, transcriptomic, or sequencing data could be
summed from a single cell, further increased by a variety of
factors like the number of organs sampled (O), subjects c
sampled (Eq. 1):

Scale of data ¼ Σ
4

i ¼ 1
Di

� �
� O � N � T

where; where; where; where;

D1 ¼ data from genome O ∈ 1; ::οf g N ∈ 1; ::nf g T ∈ 1; ::tf g
D2 ¼ data from transcriptome

D3 ¼ data from proteome if o is the number of organs if n is the number of patients if t is the number of points

D4 ¼ data from metabolome sampled enrolled sampled

For example, a hypothetical study which seeks to gather
data across a platform of system biology data types could
generate more than one million SNPs from single cell gen-
ome sequencing, 40,000–50,000 microarray transcripts in
transcriptomic analyses, 700 results from proteomic ana-
lyses, and 4000–7000 named and unnamed metabolites.
Rather than 1000 patients, precision medicine studies
have proposed enrollment of over one million patients in
whom multiple organs can be sampled at more than one
time point [27]. The resulting scale of data, in which to
search for important subgroups, would exceed a trillion
(2 × 1012) data points. Such an increase would directly im-
pact computational time to estimate even simple queries
across relational datasets.
There are a variety of potential solutions to the prob-

lems of scale in precision critical care. First, computa-
tional systems biologists will need to tackle this wealth
of data and use state-of-the-art software to coordinate
and index omics datasets (e.g., format, store, calibrate).
From genome assembly to read mapping to bioinformat-
ics analysis of RNA-sequencing data, immense data stor-
age and sophistication is required for interpretation [26].
Second, we must study how the “interactome”, or pro-
tein–protein interactions, and their networks work to-
gether [28]. These efforts will require advanced graphical
and pathway analysis, and combine genotype, gene ex-
pression, and other data to identify dysregulated path-
ways, infer mechanism, and potentially explain disease
heterogeneity. Such efforts rely on further

a b c dSingle cell sequencing in an 
individual patient

Sampling in multiple organs in 
an individual patient

Sequencing across millions
of patients

Multiple time points per 
patient per day

t1 t2

t4 t3

Fig. 3 Challenges of scale in precision medicine. a How single cell sequencing in a sample from an individual generates thousands of data
points. b How multiple organs within a patient can be sampled, while c studies may now enroll millions of patients. d Complexity and volume of
data for precision medicine dramatically increases when individuals are sampled over multiple time points. G genomic data, T transcriptomic data,
P proteomic data, M metabolomics or microbiome data
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characterization and annotation of unknown molecules
that comprise the interactome.
A potentially useful conceptual approach to managing

the scale and complexity of omics data is to focus on the
search for emergent properties. Emergent properties are
thought of as those that cannot be entirely explained by
their individual components. Historically, Alexander re-
ferred to emergence as high-level causal patterns not
directly expressed by fundamental entities or patterns
[29], thought to be both irreducible and unpredictable.
For example, consciousness or human cognition is a sys-
tems level property quite unexpected from individual
neurons themselves. And in other fields, emergent prop-
erties can explain complex thermodynamics or behavior
of birds in a flock. In critical care, complex data result-
ing from precision medicine research also contain mul-
tiple integrated levels, changes over time, and variable
environments in the intensive care unit (ICU), and de-
rive from patient subsets often without a gold standard.
Findings at the level of a single nucleotide polymorph-
ism or metabolite may be incredibly difficult to parse
from trillions of data points, and reveal only a minute
part of the underlying disease heterogeneity. Rather, the
emergent properties at a macro level could, in a sense,
be the broad, common phenotypes for which we search.
It may be debated what “macro” is in this context, per-
haps a single cohort of patients with thousands of corre-
lated measurements over time in electronic data, or a
small cohort of integrated genomic, transcriptomic, and
proteomic profiles. Both of these would require compu-
tational strategies to uncover patterns in the data leading
to otherwise clinically obtuse phenotypes.
An alternative approach is the search for the rare

phenotype, in which a single mutation results in a dis-
tinct clinical and biologic characteristic among a subset
of patients. A classic example is the case of the single
gene mutation in the human epidermal growth factor re-
ceptor 2 (HER2) gene in breast cancer cells. By investi-
gating carefully in families with a hereditary
susceptibility for breast cancer, scientists ultimately lo-
cated a drug response phenotype for the monoclonal
antibody Trastuzumab and an efficient method to iden-
tify cases most suitable for treatment. In critical care, a
corollary could be the search for susceptibility to menin-
gococcemia either from tumor necrosis factor (TNF)
mutation −308 or migration-inhibitory factor (MIF). Al-
though the relationships between these mutations and
susceptibility to sepsis and death are not fully unpacked,
such mutations would require the key step of combing
across millions of potential sepsis cases to locate those
for further consideration.
In the end, critical care may solve the immense prob-

lem of scale through both system level analyses that
search for emergent properties in complex, electronic

data and reductionist approaches that isolate single
mechanisms with rare phenotypes.

4. Obtaining “real-time” data
Many of the notable gains in precision medicine have
occurred in oncology, where a patient’s clinical informa-
tion and biologic samples can be studied for days or
months to determine tumor phenotype. Yet in the field
of critical care, we face life threatening emergencies like
sepsis, shock, or impending respiratory compromise, all
of which require prompt treatment to improve outcomes
[30]. However, the need for timeliness of care imposes a
major barrier to advancing precision treatment, particu-
larly if the technology or assay required to target therapy
requires hours or days to complete. For example, in
pediatric septic shock, future treatment could be based
on patterns of genomic expression. These approaches,
although promising and increasingly timely, may still re-
quire hours to complete. Such delays could have conse-
quences for the development of organ failure and even
mortality if they lead to delays in the emergency depart-
ment care of pediatric sepsis.
And yet, of all the barriers, timely turn around for

phenotyping information may be the most easily sol-
ved—particularly by partners in industry. For example,
sequencing-based approaches to analyze the microbiome
(e.g., 454 pyrosequencing, Illumina MiSeq) required
batching of large numbers of specimens and days to
weeks of sequencing and informatic analysis. By con-
trast, using recent advances in nanopore seqencing tech-
nology (e.g., Oxford Nanopore), specimens can be
individually sequenced and analyzed with interpretable
microbiome data available within a single day.

Roadmap for a translational agenda in precision
critical care
To make gains towards precision medicine for all of crit-
ical care, a multidisciplinary, collaborative approach is
needed that spans three research domains: preclinical
work, novel clinical trials, and implementation science
(Fig. 1) [17]. Below, we describe a translational roadmap
for each domain, using illustrative examples from critical
care.

Pre-clinical science: identifying putative targets for
precision therapy
The identification of mechanism-targeted, effective treat-
ments is the first, challenging step in a precision strat-
egy. Amidst the biologic complexity of critical illness,
there are large knowledge gaps about the mechanistic
determinants of disease that govern a patient’s trajectory.
The involvement of multiple interconnected response
pathways in critical illness and the effect of treatment
creates a difficult path when trying to mimic single-gene
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targeted treatments found in other diseases. Thus, com-
binations of many steps are required to build adequate
evidence for precision medicine therapies. These include
large cohort studies for phenotype discovery work and
the identification of candidate targets through integrated
systems modeling. Follow-up would include translating
clinical and biologic phenotypes into putative biologic
mechanisms, modeling these endotypes in animal
models closely linked to humans, and in vitro pre-
clinical studies of candidate therapies.
For example, preclinical work to identify putative drug

targets in sepsis has drawn from the rheumatologic dis-
ease paradigm [31]. Clinical studies suggested that sub-
groups of patients with adequate control of infection
may develop unique inflammatory phenotypes in up to
one-third of cases: thrombocytopenia-associated mul-
tiple organ failure (TAMOF), sequential multiple organ
dysfunction (SMOF), immunoparalysis, or macrophage
activation syndrome (MAS) [31]. Characterized by bio-
markers such as ferritin or thrombocytopenia, these in-
flammatory phenotypes have distinct pathobiology and
specific risk factors and biomarker responses to therapy
in vivo. A more definitive translational step was a sec-
ondary analysis of a phase III trial of recombinant IL-1
receptor antagonist (anakinra) [32]. In septic patients
with criteria similar to macrophage activation syndrome
(i.e., disseminated intravascular coagulation and/or hepa-
tobiliary dysfunction)—a syndrome favorably responding
to IL-ra blockade in rheumatologic disease, there was a
30% absolute reduction in mortality from treatment vs.
placebo (65 to 34%) [33]. This was not seen in patients
without MAS features.
Such examples highlight the potential for endotypes to

guide precision care in critical illness. But a larger body
of multidisciplinary preclinical work is required to
understand the basic mechanisms at play, how these
mechanisms interact as the disease progresses, and dis-
covery of clinically relevant endotypes for treatment.

Clinical trials: testing putative targets in clinical
populations
To determine if drugs identified in preclinical work are
suitable for patients, they must undergo rigorous evalu-
ation in human clinical trials. Yet, critical illness is often
described as a graveyard for pharmaceutical trials, in
part because multiple “one-population, one-therapy, one
disease” trials are neutral or fail to show benefit. In sep-
sis alone, multiple studies of therapeutics targeting spe-
cific molecular mechanisms have failed to find benefit
[34, 35]. A number of characteristics of traditional clin-
ical trials make them problematic for future evaluation
of precision medicine strategies: i) homogenous popula-
tions without complex comorbid conditions; ii) typically
a single therapy vs. control group; iii) stopping rules

linked to efficacy of a single experimental treatment; and
iv) fixed randomization strategy that is typically one case
per one control [36, 37].
An alternative approach is to consider the use of novel

so-called “adaptive” trial features that are intended to
help researchers learn about well-performing drugs and
better-targeted subgroups more efficiently. Recently, in-
tegrated “platforms” have been developed that seek to
take advantage of several design features simultaneous-
ly—all of which facilitate the testing of multiple preci-
sion medicine approaches [36]. Platform trials can
investigate multiple treatments across multiple groups in
the same trial, using sophisticated rules for patient,
treatment, and site allocation. One feature of a platform
trial is the use of a common control arm for multiple
comparisons to different experimental therapies. An-
other is to incorporate response-adaptive randomization
rules that preferentially allocate therapies to different
phenotypes based on their performance during the trial,
thus minimizing the exposure of potentially inferior
drugs overall or within trial subpopulations. Another
feature is that the trials can span across more than one
traditional phase. For example, instead of conducting
separate phase 2 and 3 trials, pre-set rules could allow a
seamless transition from phase 2 to phase 3. Finally,
platform trials, by running continually and perpetually,
offer the efficiencies of avoiding downtime in-between
trials. The I-SPY2 program in breast cancer is emblem-
atic of these platform designs—and their applicability to
precision medicine. I-SPY2 tests multiple treatments in
multiple biomarker-defined subgroups, with pre-set
rules that promoted efficient learning and preferential
treatment assignment [38]. This platform has evaluated
more than 12 experimental treatments across eight pa-
tient subtypes since beginning enrollment in 2010. For
example, the tyrosine kinase inhibitor neratanib was ad-
vanced to a phase 3 trial after enrolling less than 200 pa-
tients in an adaptive design [39].
In addition to candidate therapeutics, platform trials can

also test existing therapies, while leveraging the efficien-
cies of the electronic health record (EHR). This design is
termed REMAP (randomized, embedded, multifactorial,
adaptive, platform) [40]. REMAPs can use the EHR to
screen for eligible patients, and randomize patients to a
variety of candidate therapies. By learning about which pa-
tients do or do not have better outcomes with a treatment
A vs. B vs. C, the EHR could be used to enrich the eligible
cohort for phenotypes more likely to have benefit—so-
called response adaptive randomization. The ICU is
already a data-rich environment with considerable elec-
tronic data capture, even in environments that do not yet
have a full EHR. Consequently, a REMAP has already
been designed to test optimal strategies for the care of se-
vere pneumonia—REMAP CAP—and has funding
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through the European Union Platform for European Pre-
paredness Against Re-emerging Epidemics (PREPARE)
network and through the Australian and New Zealand
governments. In this trial network, multiple treatments
are planned for patients hospitalized with severe acute re-
spiratory distress in the ICU. These interventions include
various antibiotics, ventilator strategies, and immunomo-
dulation across a variety of patient groups and more than
100 ICUs in Europe.
Taken together, the changing pace of discovery work

in precision critical care will mandate that trials of can-
didate therapies are nimble, accessible, and designed to
test multiple therapies across heterogeneous patients.

Implementation science: moving precision care into ICU
practice
Novel strategies to improve critical care outcomes through
precision medicine will require close collaboration with ex-
perts in implementation science [17]. Some might consider
a research program about a precision medicine initiative
not even complete until its clinical utility has been rigor-
ously implemented and tested. Second, precision medicine
research and clinical care are primed to co-exist, and do so
already in many large health care systems such as Kaiser
Permanente. These systems coordinate case finding, refer-
ral, data measurement, performance metrics, and enroll-
ment in trials—all key steps to generating evidence for
precision medicine. And when determined as the new,
gold-standard evidence, precision medicine strategies will
require methodologists expert in integration in routine
practice.
One key to implementation of precision care is feasibil-

ity in real-world settings. There are multiple pragmatic
steps, including: i) identification of cases who have clinical
features of the phenotype/endotype/group of interest; ii)
measurement of characteristics that are closely associated
with phenotype/endotype/group of interest; and iii)
prompting of clinicians to administer mechanism-targeted
therapy. All of these steps can be conducted in a “light
touch” approach that minimizes contact with team mem-
bers outside of the bedside care team [41]. For example,
the EHR can be leveraged to scan for characteristics de-
rived from vital signs or laboratory results, while discarded
blood, urine, and other biologic samples stored in the la-
boratory can be used to measure prognostic or predictive
biomarkers that are not standard of care. These almost
real-time interventions would form the basic components
for recognition and treatment.
Once established, a precision approach will require a

variety of strategies to be durable. These include effect-
ive education of the clinical team, consideration of ap-
propriate incentives, and novel quality improvement
frameworks to audit and provide feedback. Beyond get-
ting the treatment delivered to the patients most likely

to benefit, health systems that invest in electronic health
record solutions for measuring the prevalence of the
phenotype, and outcome among treated and untreated
patients will be better positioned as learning networks.
Such data can contribute to large distributed networks
across systems and provide stakeholders with more ro-
bust information across centers.

Conclusions
Precision medicine in critical care is a key part of our
present and future. However, many challenges limit its ap-
plication for all patients in the ICU. Complex acute illness
among patients with multi-morbidity, integrated systems
biology data with daunting scope and scale, and critical ill-
ness syndromes that lack gold-standard criteria are just
some of the many barriers to newer precision strategies. To
move past the failures of molecularly targeted therapeutics,
novel trial designs will need to embrace and explore hetero-
geneity of treatment during phase 2/3 evaluation. Future
real-world testing and implementation of precision medi-
cine will also require close partnership with electronic
health record systems to reduce cost, improve timeliness of
patient screening and treatment, and contribute to broader
learning healthcare networks.
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