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Sepsis impairs microvascular autoregulation
and delays capillary response within
hypoxic capillaries
Ryon M. Bateman1,2,3*, Michael D. Sharpe4, Justin E. Jagger1 and Christopher G. Ellis1

Abstract

Introduction: The microcirculation supplies oxygen (O2) and nutrients to all cells with the red blood cell (RBC)
acting as both a deliverer and sensor of O2. In sepsis, a proinflammatory disease with microvascular complications,
small blood vessel alterations are associated with multi-organ dysfunction and poor septic patient outcome. We
hypothesized that microvascular autoregulation—existing at three levels: over the entire capillary network, within a
capillary and within the erythrocyte—was impaired during onset of sepsis. This study had three objectives: 1)
measure capillary response time within hypoxic capillaries, 2) test the null hypothesis that RBC O2-dependent
adenosine triphosphate (ATP) efflux was not altered by sepsis and 3) develop a framework of a pathophysiological
model.

Methods: This was an animal study, comparing sepsis with control, set in a university laboratory. Acute hypotensive
sepsis was studied using cecal ligation and perforation (CLP) with a 6-hour end-point. Rat hindlimb skeletal muscle
microcirculation was imaged, and capillary RBC supply rate (SR = RBC/s), RBC hemoglobin O2 saturation (SO2) and
O2 supply rate (qO2 = pLO2/s) were quantified. Arterial NOx (nitrite + nitrate) and RBC O2-dependent ATP efflux were
measured using a nitric oxide (NO) analyzer and gas exchanger, respectively.

Results: Sepsis increased capillary stopped-flow (p = 0.001) and increased plasma lactate (p < 0.001). Increased plasma
NOx (p < 0.001) was related to increased capillary RBC supply rate (p = 0.027). Analysis of 30-second SR–SO2–qO2

profiles revealed a shift towards decreased (p < 0.05) O2 supply rates in some capillaries. Moreover, we detected a
three- to fourfold increase (p < 0.05) in capillary response time within hypoxic capillaries (capillary flow states where
RBC SO2 < 20 %). Additionally, sepsis decreased the erythrocyte’s ability to respond to hypoxic environments, as
normalized RBC O2-dependent ATP efflux decreased by 62.5 % (p < 0.001).

Conclusions: Sepsis impaired microvascular autoregulation at both the individual capillary and erythrocyte level,
seemingly uncoupling the RBC acting as an “O2 sensor” from microvascular autoregulation. Impaired microvascular
autoregulation was manifested by increased capillary stopped-flow, increased capillary response time within hypoxic
capillaries, decreased capillary O2 supply rate and decreased RBC O2-dependent ATP efflux. This loss of local
microvascular control was partially off-set by increased capillary RBC supply rate, which correlated with increased
plasma NOx.
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Introduction
The microcirculation is a highly integrated and func-
tional system [1] that delivers oxygen (O2) and nutrients
and removes waste products and heat from cells, thereby
maintaining cell function and making the microcircula-
tion essential for muscle and organ function. The micro-
circulation has distinctive architecture, with the skeletal
muscle microvasculature investigated in this study con-
sisting of feeding arterioles, capillary networks and col-
lecting venules. A hallmark of sepsis is an early onset
microvascular dysfunction, within 6–24 hours in animal
models, characterized by increased capillary stopped-
flow and a maldistribution of microvascular blood flow
[2–4]. De Backer et al [5] were the first to report that
outcome in septic patients was related to small vessel
perfusion density in the sublingual microcirculation and
more recent studies have underscored the importance of
microvascular dysfunction in multiple organ failure and
patient mortality [6–8].
However, while previous experimental studies have

implied an impairment of microvascular autoregulation
[2–4, 9], this is not completely understood. Moreover,
the effect of sepsis on the capillary response within hyp-
oxic capillaries (micro-tissue regions with low capillary
red blood cell (RBC) hemoglobin O2 saturation (SO2)
and low tissue oxygenation) is unknown. The signifi-
cance is that impairment of the microvascular autoregu-
latory system would uncouple local O2 delivery from
local O2 demand leaving some tissue regions vulnerable
to hypoxia, and possible dysfunction. Evidence suggests
the microcirculation can modulate regional capillary
flows via erythrocyte O2-dependent ATP signaling from
hypoxic RBCs [10, 11]. Our working hypothesis is that
ATP released from hypoxic RBCs [12, 13], via a deoxy-
hemoglobin/glycolytic enzyme molecular switch at the
inner RBC membrane [13–15], can bind to purinergic
type 2 (P2Y) receptors on endothelial cells and trigger a
conducted vascular response [9] via endothelial cells to
upstream resistance vessels, which respond via nitric
oxide (NO)-mediated modulation of vascular tone
resulting in increased downstream RBC supply rate
[10, 16, 17]. Whether this RBC function is altered
during sepsis is unknown.
Accordingly, in this study of the early onset effects of

sepsis on microvascular function, we considered two
related but unknown aspects of the microvascular auto-
regulatory system. First we measured the microvascular
in vivo capillary response time within hypoxic capillaries
(capillary RBC SO2 < 20 %) at the arteriolar and venular
end of the skeletal muscle capillary network and second
we tested the null hypothesis that sepsis would not alter
RBC O2-dependent ATP efflux. We then incorporated
these findings into a multifactorial model of microvascu-
lar pathophysiology based on current evidence.

Methods
Animal model of sepsis
Experimental protocols were approved by the University
of Western Ontario Council on Animal Care. Sepsis was
studied using a saline fluid resuscitated, hypotensive ani-
mal model as previously described [2]. The study design
was a comparison between two groups undertaken in a
University setting. In brief, 11 male Sprague-Dawley rats
were divided randomly into sham/control and cecal
ligation and perforation (CLP) groups. Sepsis was in-
duced in anesthetized animals by perforating the cecum
and expressing the fecal contents into the peritoneal
cavity. Animals were cannulated for fluid resuscitation
(0.9 % saline, 18 mg.kg−1.hour−1), monitoring mean
arterial pressure and blood collection. A tracheotomy
was performed for mechanical ventilation with fraction
of inspired O2 = 0.3. Core temperature was maintained
at 36.5–37.2 °C. The right hind limb extensor digitorum
longus skeletal muscle was isolated and repositioned into
the optical path. Animals were stabilized and micro-
vascular images acquired from 4–6 hours after the septic
injury. See Additional file 1 for data supplement and
detailed description.

Blood samples and NOx, lactate and RBC O2-dependent
ATP analysis
Arterial blood was collected to establish normal blood
gases at the outset and again at 6 hours for NOx
(NO2

− + NO3
−), lactate and ATP efflux analysis. NOx

was measured using a NO analyzer as previously
described [18, 19]. RBC O2-dependent ATP efflux was
measured using a custom gas exchanger. In brief, arterial
whole blood was equilibrated under normoxic (N) then
subjected to hypoxic conditions (H), for 5 minutes
respectively, as previously described [13]. ATP efflux was
normalized as the H/N ratio. See Additional file 1 for data
supplement and detailed description.

Functional microvascular imaging
A dual wavelength imaging system acquired optical
density (OD 420, 430 nm) information from the skeletal
muscle microcirculation, as previously described [3, 20].
In brief, capillary RBC supply rate (SR = RBC/s) was calcu-
lated from RBC velocity and lineal density measurements
[3], and RBC SO2 was calculated from the OD430/420
ratio [21]. Capillary oxygen supply rate (qO2) was then
calculated from RBC SR and SO2, where qO2 (pLO2/s) =
SR × SO2 × k, where k = 0.0362 pL O2/RBC at 100 % SO2

[3]. Heterogeneity in RBC SR and qO2 was calculated as
the coefficient of variation (SD/mean) from 30-second
profiles. Random fields of view were imaged and recorded.
During off-line analysis, a three-line reference grid was
used to quantify functional capillary density (caps/mm), as
either continuous, intermittent (RBC flow came to arrest
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at least once) or stopped-flow (arrested RBC flow) based on
30-second analysis of flow behavior [22]. Capillary response
time was assessed as the time required to restore RBC SO2

to >20 %. See Additional file 1 for data supplement and
detailed description of capillary hemodynamics and RBC
SO2 measurements, see Additional file 2 for a video clip of
capillary RBC hemodynamics and see Additional file 3 for a
video clip of capillary RBC SO2 measurements.

Statistics
All values are reported as mean ± SE unless otherwise
stated. P values less than 0.5 were considered statistically
significant. Comparisons between CLP and sham group
variables were made using the student’s t-test or Mann–
Whitney Rank Sum test. Linear regression was used to
test the relationship between capillary RBC SR and
plasma NOx. Chi-squared analysis was used to test the
null hypothesis that no difference in capillary O2 supply
distribution (low, average, high) existed between sham
and CLP. SigmaStat 3.0 software (Point Richmond, CA,
USA) was used for statistical analysis.

Results
Acute physiological responses to septic injury are shown
in Table 1. CLP animals had normal respiratory gases,
decreased mean arterial pressure and decreased pH
(p < 0.001). Though hemoglobin was higher in the
CLP group, hemoglobin remained in the normal
range (11.5–16.1 g/dL) in both groups. Both plasma
metabolites, lactate and NOx (oxidized metabolites of
nitric oxide, NO2

− + NO3
−) increased in CLP animals by

the 6-hour end-point (p < 0.001; Table 1). Regression
analysis found increasing arterial plasma NOx levels
were related to increasing capillary RBC SR (p =
0.027; Fig. 1).

Capillary RBC SR and qO2

Variation in capillary RBC SR (RBC/s), qO2 (pLO2/s) and
their respective 30-second coefficients of variation, at ar-
teriolar and venular ends of capillary networks, are shown
as box plots for each animal in Additional file 4: Figure S3.
Confidence intervals (95 %) for control capillary RBC SR
and qO2, used to categorize RBC SR (as slow, average, fast)
and qO2 (as low, average, high) in all experiments are
shown in Additional file 5: Table S1. The relationships
between capillary qO2 and RBC SR in single sham and
CLP experiments are shown in Additional file 6: Figure S4.
Table 2 summarizes the RBC SR and qO2 data at the
arteriolar and venular ends of capillaries. While no signifi-
cant differences in mean capillary RBC SR were detected
at either the arteriolar or venular ends of capillary net-
works, there was a trend (p = 0.092) towards increased
variation in venular end capillary RBC SR in CLP animals.
However, capillary oxygen supply rates were found to
decrease at both arteriolar and venular ends of capillary
networks (p = 0.002) and have more variability (measured
as the coefficient of variation) in their 30-second signal. Of
note is that some extremely fast capillary RBC supply rates
and high oxygen supply rates were detected in some
animals (Additional file 4: Figure S3).
The significance is that some regions of the CLP skel-

etal muscle microcirculation had fast RBC supply rates
9–18 times faster with higher oxygen supply rates supply-
ing from 17 to 26 times more O2 than slower capillaries,
while other capillaries with stopped-flow were no longer
delivering O2 to local tissue. Consistent with an average
drop in qO2 across the capillary bed, there was a trend to-
wards a two-fold increase in capillary O2 extraction in CLP

Table 1 Physiological parameters at 6-hour end-point

Variable Sham (n = 6) CLP (n = 5) p value

Weight (g) 162 ± 3.3 164.5 ± 1.5 NS

Cardiovascular and blood gases

Mean arterial pressure (mmHg) 103.6 ± 2.9 68.8 ± 3.9 <0.001

Arterial PO2 (mmHg) 97.6 ± 5.4 108 ± 2.2 NS

Arterial SO2 (%) 94.1 ± 2.5 92.7 ± 1.5 NS

Arterial pCO2 (mmHg) 37.5 ± 2.9 34.9 ± 2.9 NS

pH 7.43 ± 0.01 7.32 ± 0.03 <0.001

Hemoglobin (g/dL) 11.8 ± 0.3 14.9 ± 0.2 <0.001

Plasma metabolites

Lactate (μM) 1.1 ± 0.1 2.1 ± 0.1 <0.001

Arterial NOx (μM) 18.1 ± 1.5 42.6 ± 4.1 <0.001

Values are mean ± SE. Normal rat hemoglobin (11.5–16.1 g/dL). CLP Cecal
ligation and perforation, NOx NO2

− + NO3
−, NS Nonsignificant, PCO2 Partial

pressure of carbon dioxide, PO2 Partial pressure of oxygen, SO2

Oxygen saturation
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Fig. 1 Relationship between capillary red blood cell (RBC) supply
rate (SR) and plasma NO2

− + NO3
− (NOx). RBC supply rate (RBC/s) at

the arteriolar end of capillaries in hind limb skeletal muscle was
measured using a functional microvascular imaging system, as
described in the Methods. Plasma NOx was measured in arterial
blood samples, as described in the Methods. Linear regression detected
a significant relationship between capillary RBC supply rate and plasma
NOx level in septic animals (black boxes).White circles = sham
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animals (p = 0.102) compared to sham (Table 2). In
addition to changes in capillary RBC hemodynamics and
oxygen supply rates, functional capillary density was dra-
matically altered as continuous flow decreased and capil-
lary stopped-flow increased 2.4-fold (p = 0.001; Table 2).
See Additional file 1: Figure S2 for a labeled image of the
septic microcirculation and Additional file 2 for the
corresponding video clip.

Capillary 30-second SR–SO2–qO2 profiles
Variations in the patterns of capillary RBC SR, hemoglobin
SO2 and qO2 are shown in a series of 30-second SR–SO2–
qO2 profiles (Fig. 2a–d). Each capillary SR–SO2–qO2

profile was categorized as having (slow, average, fast) SR
and (low, average, high) qO2. For example, Fig. 2a depicts a

capillary with continuous fast SR (18.3 RBC/s) and high
qO2 (49.5 pLO2/s), while Fig 2b and c show average pro-
files, yet have distinct differences in SR and qO2; where the
flow behavior in Fig. 2c is continuous, while it is intermit-
tent in Fig. 2b. Figure 2d depicts a capillary with slow SR
(1.6 RBC/s) and low qO2 (1.8 pLO2/s). Distributions of
capillary oxygen supply rates in sham and CLP groups are
shown in Fig. 2e, f. Chi-squared analysis (χ2 = 83.7, 5 df, p <
0.05) indicated that differences in qO2 existed between
groups, reflecting an increase in low oxygen supply rate in
capillary networks in CLP animals. Thus the septic micro-
circulation became more heterogeneous in terms of local
O2 delivery with increased numbers of capillaries having
low qO2 or no O2 delivery at all (in the case of stopped-
flow capillaries) and much higher oxygen supply rates in
other capillaries.

Capillary response time within hypoxic capillaries
Analysis of 30-second SR–SO2–qO2 profiles revealed
that some capillaries experienced a delayed response to
periods of low capillary RBC SO2 (<20 %, referred to as
capillary hypoxia). The capillary response time was de-
fined as the time required for a capillary to return to a
state where RBC SO2 > 20 %. For example, Fig. 3a, b
shows relatively short response times within capillaries
with falling capillary RBC SO2 (2.0 and 2.3 seconds,
respectively), whereas Fig. 3c, e show much longer
response times (10.5 and 7.5 seconds, respectively),
while Fig. 3d shows a capillary failing to respond with
RBC SO2 < 20 % over the 30-second observation period.
Overall, 2.5- and 3.6-fold increases in capillary response
times to RBC SO2 < 20 % were detected at the arteriolar
and venular ends of septic capillaries (p < 0.05; Fig. 3f ).
The response times are summarized in Table 2.

Sepsis reduces RBC O2-dependent ATP efflux
Since this study found evidence of delayed capillary re-
sponse times within hypoxic capillaries, we tested the
null hypothesis that sepsis would have no effect on the
RBC response to hypoxic conditions by measuring RBC
O2-dependent ATP efflux. We found RBC O2-dependent
ATP efflux was impaired in septic RBCs, compromising
the erythrocyte’s ability to respond to hypoxic condi-
tions. Under normal physiology, there was a large in-
crease in ATP released from RBCs exposed to hypoxia
compared to the normoxic or baseline condition. During
sepsis, however, RBCs released much less ATP when ex-
posed to hypoxia (Fig. 4a, b), measured as plasma ATP
and % change in ATP efflux, respectively. Expressed as
the hypoxia/normoxia ratio, which normalizes the meas-
urement to baseline, we found erythrocyte O2-dependent
ATP efflux decreased in CLP animals (62.6 % versus
sham; 1.48 ± 0.1 versus sham 0.55 ± 0.06, p < 0.001),
summarized in Table 2 as RBC function.

Table 2 Capillary perfusion, O2 transport, functional capillary
density, capillary and RBC function

Variable Sham (n = 6) CLP (n = 5) p value

Capillary perfusion/O2 transport

RBC SR variation

art SR (RBC/s) 10.8 ± 0.9 9.0 ± 1.6 NS

art SR (RBC/s) CV (%) 43.1 ± 4.3 48.8 ± 2.4 NS

ven SR (RBC/s) 9.7 ± 1.5 7.6 ± 1.1 NS

ven SR (RBC/s) CV (%) 42.8 ± 5.7 58.6 ± 7.6 =0.092

qO2 variation

art qO2 (pLO2/s) 20.7 ± 1.2 14.4 ± 2.1 =0.013

art qO2 (pLO2/s) CV (%) 55.4 ± 5.8 76.4 ± 6.5 =0.024

ven qO2 (pLO2/s) 16.9 ± 1.9 8.3 ± 1.1 =0.002

ven qO2 (pLO2/s) CV (%) 59.7 ± 6.0 79.3 ± 8.1 =0.054

Capillary O2 ER (%) 19.1 ± 8.0 39.1 ± 7.7 =0.102

Functional capillary densitya

CDcontinuous (caps/mm) 20.8 ± 1.7 15.2 ± 0.8 =0.014

CDintermittent (caps/mm) 3.6 ± 1.1 5.8 ± 1.1 NS

CDstop (caps/mm) 3.6 ± 0.4 8.7 ± 1.1 =0.001

Capillary functionb

art response time (SO2 < 20 %) 2.1 ± 0.3 7.5 ± 0.9 <0.001

ven response time (SO2 < 20 %) 2.6 ± 0.7 6.4 ± 1.6 =0.026

RBC function

RBC ATP efflux (H/N)c 1.48 ± 0.10 0.55 ± 0.04 <0.001

Values are mean ± SE
aEvaluated on the basis of 30-second flow behavior (intermittent flow = capillary
comes to arrest for at least 1 second; stopped-flow (stop) = RBCs are arrested
for 30 seconds)
bCapillary response time = time required for capillary RBC SO2 to return to
values >20 %
cATP efflux where H/N is RBC ATP efflux ratio under normoxic (N = RBC
exposure to 5 minutes 21 % O2) and hypoxic (H = RBC exposure to 5 minutes
0 % O2) conditions
art Arteriolar end of capillary network, CD Capillary density, CLP Cecal ligation
and perforation, CV Coefficient of variation (= SD/mean; based on 30-second
RBC SR and RBC qO2 profiles), ER Extraction ratio, qO2 Capillary oxygen supply
rate, RBC red blood cell, SO2 Oxygen saturation, SR Supply rate, ven Venular
end of capillary network
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Fig. 2 Capillary red blood cell (RBC) supply rate, O2 saturation and capillary O2 supply rate profiles. Four representative 30-second profiles of capillary
RBC supply rate (SR, blue circles), RBC hemoglobin O2 saturation (SO2, red squares) and O2 supply rate (qO2, green triangles) are shown in panels a–d.
Based on 95 % confidence intervals (see Additional file 5: Table S1 in sham animals), SR was assessed as either slow, average or fast, while qO2 was
assessed as being either low, average, or high. Capillaries were also categorized according to their functional capillary density, as either continuous
(RBC SR >0 for 30 seconds, panels a,c), intermittent (if RBC supply rate came to arrest for at least one second, panel b, where oval marks interval of
stopped-flow) or stopped (if RBCs remained at arrest, panel d, provided RBCs remained at arrest for 30 seconds). e,f qO2 distributions for sham and
cecal ligation and perforation (CLP) animals, respectively. Legend for 30-second profile statistics (mean (coefficient of variation)). A significant difference
between qO2 distributions was determined by Chi-squared analysis, p < 0.05
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Model of biophysical and metabolic factors controlling
microvascular autoregulation under normal and septic
conditions
An objective of this study was to incorporate new findings
on impaired microvascular autoregulation into a patho-
physiological model to gain insight into the mechanisms
and possible feedback loops underlying the microvascular
derangements observed in skeletal muscle during sepsis.
The model (Fig. 5a) simplifies this complex pathophysi-
ology by presenting a simple framework and shows the
main interactions under consideration, while limiting the
model to three important negative modulators of RBC
O2-dependent ATP efflux: 1) decreased RBC deformabil-
ity, 2) increased lactate and 3) increased NO (which is up-
regulated by inducible nitric oxide synthase (iNOS) in
skeletal muscle [2] in this model). At the center of the
model is the erythrocyte acting as an O2 sensor [17, 23]
responding to local partial pressure of oxygen (PO2) gradi-
ents and shear stress-induced changes in RBC deformabil-
ity. Also included in the model are a number of related
NO and sepsis-mediated microvascular autoregulation, O2

transport and O2 consumption effects including impaired
RBC O2-dependent ATP release [24], inhibition of endo-
thelial conducted vascular response [9, 25], loss of RBC
deformability [22], inhibited mitochondrial function
[26, 27] and decreased skeletal muscle O2 consump-
tion [2], and increased vasodilation and altered vascu-
lar reactivity [28–30]. Additionally, sepsis increases
plasma lactate via tissue hypoxia or phosphorylation
of pyruvate dehydrogenase [31], which can feedback
on the RBC O2-dependent ATP efflux. Figure 5b rep-
resents the model as a flow chart. Figure 6 summa-
rizes the metabolic, RBC and microvascular functional

changes observed at the 6-hour end-point of this
study. Figure 7 is a summary figure that extends the
model concept to three levels of microvascular auto-
regulation including: 1) the overall capillary network
(Fig. 7a) where the conducted vascular response is in-
tegrated over the capillary network, 2) the capillary
(Fig. 7b) where hypoxic RBCs release ATP into the
vasculature triggering the conducted vascular response
via endothelial cell P2Y receptors, and 3) the RBC
(Fig. 7c) where deoxyhemoglobin displaces glycolytic
enzymes at the inner RBC membrane triggering O2-
dependent ATP efflux.

Discussion
Summary
The main finding of this study was that sepsis impaired
microvascular autoregulation during the initial stages of
the septic injury. This was evident in two ways: 1) at the
capillary level, we found a three- to fourfold delay in
capillary response time within hypoxic capillaries
(RBC SO2 < 20 %) and 2) at the RBC level, we de-
tected a significant impairment in the ability of septic
RBCs to release ATP in response to hypoxic conditions.
Both of these findings are consistent with a loss of micro-
vascular autoregulation. In the context of sepsis, this may
be important because impairment of microvascular
autoregulation may lie at the center of microvascular
dysfunction and be an important factor in multiple
organ failure by fundamentally altering local tissue O2

transport properties, as well as delivery of nutrients,
antioxidants and elimination of waste products.
The data reported here suggest there is an uncoupling

of local O2 delivery from local O2 demand leaving some
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tissue regions vulnerable to hypoxia and unable to rap-
idly respond to O2 demand; this is consistent with Lam
et al. [4], who found septic skeletal muscle had a weaker
microvascular response to electrical stimulation and in-
creased O2 demand than control. This impairment of
microvascular autoregulation and capillary O2 delivery
may, however, be partially offset by increased NO pro-
duction [2] and local vasodilation, as skeletal muscle
capillary RBC supply rate was found to correlate with in-
creasing plasma NOx levels in this study. Previously, we
detected an upregulation of iNOS within skeletal muscle,
increased NO within the RBC, and increased NOx
within plasma and septic skeletal muscle, 3–6 hours
after septic injury [2, 22]. As NO levels increase within
septic tissue, we suspect one target is smooth muscle
cells surrounding the arterial resistance vessels. The
resulting vasodilation would increase blood flow in these
vessels causing downstream increases in capillary RBC
supply rate in capillaries that remained patent. Taken to-
gether with the finding that iNOS can inhibit cNOS
(where constitutive NOS is associated with microvascu-
lar autoregulation) [32], we hypothesize that a trade off
occurs between local autoregulatory control of O2

delivery at the microvascular level and a more general
increase in flow as vascular resistance falls in sepsis. In

skeletal muscle there is also evidence of increased capil-
lary fast flow as sepsis progresses out to 24 hours [3],
suggesting fast flow may be a later response to an earlier
loss of functional capillary density and microvascular
autoregulation, although we found evidence of some fast
flow during the onset of sepsis. While no tissue oxygen-
ation data were collected in our model, tissue oxygenation
measurements made in the septic heart [33] and simula-
tions of tissue PO2 in septic skeletal muscle [34] have
suggested the septic tissue is hypoxic, but not anoxic.

Capillary O2 transport—30-second RBC SR–SO2–qO2

profiles
The imaging technique used in this study acquired high-
resolution information on capillary RBC hemodynamics
(RBC velocity and lineal density) and RBC hemoglobin
O2 saturation (SO2). From this dynamic information we
calculated RBC supply rate (SR) and O2 supply rate
(qO2) in a capillary segment. The technology allowed a
direct evaluation of capillary O2 transport parameters at
locations in the microcirculation where the majority of
O2 is off-loaded to tissue and RBC hemoglobin O2 satu-
rations are at their lowest values. Deviations in the linear
relationship between RBC SR and qO2 in sepsis animals
(Additional file 6) suggested increased heterogeneity in
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the underlying factors affecting the SR–qO2 relationship,
including heterogeneous tissue O2 consumption, mal-
distribution of capillary flow and impaired microvascular
autoregulation.
The observed altered functional capillary density, in-

creased capillary stopped-flow and capillaries with low
O2 supply rates in the presence of very fast capillaries
with high O2 supply rates were indications of increased
microvascular heterogeneity, a maldistribution of capil-
lary blood flow and a loss of microvascular autoregula-
tion. Our findings of increased variability in the O2

supply rates and delayed capillary responses within hyp-
oxic capillaries suggested the mechanism by which the
RBC responds to hypoxic tissue and signals the vascula-
ture to increase flow had been compromised during the
onset of sepsis. Theoretically, arrested RBCs in stopped-
flow capillaries would have the greatest potential to re-
lease ATP in response to hypoxic conditions increasing
flow into the affected area. Evidence of increased capil-
lary stopped-flow in sepsis is another indication that
autoregulatory mechansims were severely impaired.

Microvascular autoregulation
While we found evidence of a delayed capillary response
within hypoxic capillaries, our finding of decreased RBC
O2-dependent ATP efflux was initially somewhat sur-
prising given the low RBC SO2 observed in some capil-
laries, as increased O2 off-loading should have induced a
conformational change in hemoglobin that triggers in-
creased ATP efflux and endothelial signaling. However,
we found the opposite as ATP efflux decreased in hyp-
oxic septic RBCs. Consistent with this inhibition of RBC
ATP efflux and decreased plasma ATP levels in septic
rats is the finding that plasma ATP levels are decreased
in critically ill patients [35].
The association of impaired RBC O2-dependent ATP

efflux with increased plasma NOx and lactate suggested
that multiple mechanisms are involved in modulating
microvascular autoregulation. In addition to metabolic
factors, since erythrocyte deformation induces ATP re-
lease [36–39], the possible inhibitory effect of decreased
RBC deformability during sepsis [22, 40, 41] on impaired
RBC ATP efflux [42] must also be considered. Since we
have previously shown that RBC deformability rapidly
decreased during the onset of septic injury (by 3–6
hours in this animal model [22]) and decreased RBC
deformability inhibits RBC O2-dependent ATP release
[42], it is possible that changes in the biophysical prop-
erties of the RBC membrane may be a mechanism
whereby RBC O2-dependent ATP efflux was impaired
during sepsis. Whether age renders RBCs more suscep-
tible to decreased deformability [41], or a particular subset
of RBCs associated with decreased deformability [22] leads
to impaired RBC O2-dependent ATP efflux is unknown.

In addition to biophysical changes in RBC deformability,
biochemical inhibition of RBC glycolysis may be another
factor in impaired RBC O2-dependent ATP efflux. This is
consistent with in vitro experiments reporting that both
NO [24] and lactate [43] inhibit RBC O2-dependent ATP
efflux and the general principle that inhibiting RBC
glycolysis impairs RBC O2-dependent ATP efflux [13]. As
well, peroxynitrite, a derivative of NO and product of the
reaction with superoxide anion, has been reported to both
stimulate RBC glycolysis at low concentrations via band3
phosphorylation and irreversibly inhibit RBC glycolysis at
higher concentrations [44].
In addition to impaired RBC O2-dependent ATP sig-

naling, we recognize that impaired electrical coupling of
endothelial cell signaling [9] and impaired integrated ca-
pillary signaling due to increased capillary stopped-flow
[45] at the overall network level of autoregulation may
also have been factors in the observed impaired micro-
vascular autoregulation. While it was beyond the scope
of this study, we also note that deoxyhemoglobin has
been reported to convert nitrite anion to nitric oxide
[46], raising the possibility that RBCs within hypoxic
capillaries were able to exert a dual level of control over
microvascular autoregulation by 1) inhibiting ATP
release [24] (the hypoxic ATP signal from the RBC) and/
or 2) inhibiting endothelial cell communication via NO
release [9] (the relay mechanism by which hypoxic
regions communicate with resistance vessels to increase
downstream flow).
However, since capillaries are not surrounded by

smooth muscle any NO or NO derivatives released from
hypoxic RBCs would have no direct vasodilatory effect
at the venular ends of skeletal muscle capillary networks,
where the lowest RBC O2 saturations are detected, and
thus neither of the reported hemoglobin-mediated vas-
cular modulators, nitrite [46] nor the more controversial
S-nitrosohemoglobin [47–49], were capable of having
direct vasodilatory effects in the capillary networks
where the lowest RBC hemoglobin O2 saturations have
been detected. The resistance vessels upstream of the
capillary network are surrounded by smooth muscle and
are NO targets; however, arterial O2 saturations are un-
changed in this sepsis model making release of NO from
RBCs (or ATP release) along the arterial tree less likely.
However, it is conceivable that feeding arterioles neigh-
boring hypoxic tissue regions could be NO targets. Thus
the source and targets of NO within the microvascular
system during sepsis become of paramount importance
in terms of microvascular autoregulation.
While NO is known to inhibit microvascular autoregu-

lation at multiple points in the system (Fig. 5), and may
be acting in a negative feedback loop controlling RBC
function, we found that increases in arterial NOx corre-
lated with increased capillary RBC supply rate in septic
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skeletal muscle, suggesting a shift from local control of ca-
pillary perfusion via endothelial NOS/NO to a more uncon-
trolled, but faster delivery of blood flow, as skeletal muscle
iNOS/NO rapidly increased in this model [2]. Consistent
with this observation, iNOS/NO overproduction is consid-
ered a factor for increased coronary circulation during
sepsis [50]. Increased NO is also responsible for systemic
vasodilation and arteriolar hyporesponsiveness [29, 30].
Thus the pleotropic effects of NO on the cardiovascular
system in general and the microcirculation in particular
place NO in a central role in modulating microvascular
autoregulation. Of further significance to overall organ
function during sepsis is that NO inhibits mitochondrial
respiration [26, 27] dampening O2 consumption during the
onset of sepsis in our experimental model [2] and seem-
ingly inhibiting O2 consumption when microvascular O2

delivery is compromised. Decreasing oxygen consumption
in hypoxic regions is possibly an additional protective
mechanism [51] that prevents tissue anoxia and certain
cell death by decreasing O2 consumption and thereby
increasing O2 diffusion distances in septic tissue with de-
creased capillary density. As well, similar responses in terms
of NO upregulation and microvascular derangements are
evident in the septic diaphragm and heart. If impairment of
microvascular autoregulation does indeed exist in other
septic organs, it may help explain altered gene expression
in the septic heart [33], as it responds to local hypoxia.
Additional file 7 discusses broader implications of impaired
microvascular autoregulation.

Study limitations and considerations
This study was specifically designed to consider skeletal
muscle microvascular function at the capillary level and
test the null hypothesis that sepsis has no effect on RBC
O2-dependent ATP efflux. Changes in capillary O2 supply
rate are due in part to upstream changes in arteriolar tone
distant from sites where RBC O2 saturation is lowest (the
venular ends of capillary networks) indicating that con-
ducted microvascular responses [16, 25, 45] are integral to
microvascular autoregulation. The other important dis-
tinctions to be made are: 1) the septic injury in this study
does not involve systemic hypoxia, as arterial O2 satura-
tions were normal; rather, altered functional capillary
density and micro-regions within capillary networks with
stopped-flow or decreased capillary O2 supply cause local
hypoxia and thus a different mechanism is likely involved
than that of hypoxic vasodilation [23, 46, 52]; 2) the skel-
etal muscle NO environment in this model is known to be
due to an upregulation of iNOS [2]; 3) microvascular
derangements exist in the face of hypotensive [2], “rela-
tively preserved” [7] and even normotensive blood pres-
sure [3, 4] with fluid resuscitation, normal arterial O2

concentration and cardiac output [3, 4]. Thus microvascu-
lar dysfunction is apparently independent of mean arterial

pressure and may be masked by seemingly normal cardio-
vascular parameters.
Increased arterial and tissue NOx previously reported in

this sepsis model [2] are suspected to result from NO oxi-
dation reactions and the scavenging effects of oxy- and
deoxyhemoglobin on NO [53, 54]; however, previous EPR
(Electron paramagnetic resonance) spectroscopy studies in
our model have shown an accumulation of hemoglobin-
NO [22] in the septic RBC suggesting that NO could be
accumulating within the RBC or regenerated by the RBC
itself [46], although the extent and effect of such a reaction
in the context of tissue iNOS/NO upregulation and over-
production [2] is unclear. While NO generated within the
RBC, possibly by an RBC NOS [55], could inhibit RBC
glycolysis [44] effectively reducing the RBC O2-dependent
ATP efflux [24] in a negative feedback manner, the mech-
anism in sepsis is not understood. Any possible effects of
NO2

− potentiating ATP efflux [56] are unknown.

Future work
This study raises an important question—specifically,
can the septic microcirculation be rescued by preventing
the delayed capillary response within hypoxic capillaries
with low RBC SO2 or rescuing RBC O2-dependent ATP
signaling? Or is it more important to consider the entire
microvascular autoregulatory system as a functional unit
[1], including RBC O2-dependent ATP signaling, endo-
thelial cell communication, vascular reactivity and NO
overproduction that together need to be regulated and re-
stored in order to rescue the septic microcirculation and
improve capillary response times.

Conclusion
While septic erythrocytes remained capable of off-loading
increased amounts of O2 within septic capillaries, both the
capillary response within hypoxic capillaries and the septic
RBC O2-dependent ATP response to hypoxia were im-
paired. This impairment of the RBC to fully respond to its
O2 environment was likely a factor in the delayed capillary
response with low RBC O2 saturations, although other fac-
tors were likely involved including attenuated endothelial
cell-conducted vascular response and altered vasoreactivity.
Accordingly, treatments aimed at restoring the autoregula-
tion of the septic microcirculation may be of benefit to the
septic patient, provided the complete microvascular auto-
regulatory system can be rescued simultaneously. However,
further research will be required to form a more complete
understanding of how microvascular autoregulation is
operating in both health and disease states.

Key messages

� Sepsis attenuates the capillary response within
hypoxic capillaries.
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� Septic erythrocytes are impaired from releasing ATP
in response to hypoxic conditions.

� Sepsis-induced impairment of microvascular
autoregulation is partially off-set by increased capillary
RBC supply rate, which correlates with increased
plasma NOx.

� Sepsis induces profound disturbances in
microvascular function and control.

� Microvascular autoregulation is impaired at three
levels: 1) the RBC level, 2) the capillary level and 3)
the overall capillary network level.
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