Toner et al. Critical Care (2015) 19:374
DOI 10.1186/s13054-015-1091-6

C, crimicAL cAre

REVIEW

Open Access

Aspirin as a potential treatment in sepsis or @ e
acute respiratory distress syndrome

Philip Toner" ®, Danny Francis McAuley'? and Murali Shyamsundar'~

Abstract

Sepsis is a common condition that is associated with
significant morbidity, mortality and health-care cost.
Pulmonary and non-pulmonary sepsis are common
causes of the acute respiratory distress syndrome
(ARDS). The mortality from ARDS remains high despite
protective lung ventilation, and currently there are no
specific pharmacotherapies to treat sepsis or ARDS.
Sepsis and ARDS are characterised by activation of the
inflammatory cascade. Although there is much focus
on the study of the dysregulated inflammation and
its suppression, the associated activation of the
haemostatic system has been largely ignored until
recently. There has been extensive interest in the role
that platelet activation can have in the inflammatory
response through induction, aggregation and
activation of leucocytes and other platelets. Aspirin
can modulate multiple pathogenic mechanisms
implicated in the development of multiple organ
dysfunction in sepsis and ARDS. This review will
discuss the role of the platelet, the mechanisms of
action of aspirin in sepsis and ARDS, and aspirin as a
potential therapy in treating sepsis and ARDS.

Introduction

The frequency with which people are admitted to hospital
with sepsis or septic shock is rising, as is the proportion of
cases who ultimately require admission to an intensive
care unit (ICU) [1]. Sepsis accounts for 750,000 admis-
sions per year in the USA, and the mortality is reported at
approximately 30 % [2] and the estimated annual cost is
$16.7 billion [2]. The acute respiratory distress syndrome
(ARDS) is commonly associated with sepsis [3]. The an-
nual incidence in the USA of ARDS is estimated at
190,600 [4], and mortality is currently at 25-35 % [5]. In
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addition to the impact on the patient, ARDS is estimated
to cost approximately 3.6 million hospital days per year in
the USA [4]. In those discharged from ICU following sep-
sis or ARDS, there is a significant functional impairment
and decreased quality of life for several years [6]. Both
conditions are associated with significant personal and fi-
nancial burden to both families and society resulting from
personal care costs and loss of employment.

Despite developments into the pathophysiology of sepsis
and ARDS and advancements in prevention, treatment
and education, there remains significant morbidity and
mortality [7]. In sepsis, there is no specific pharmacother-
apy [8]. Activated protein C, which was initially licensed
for patients with severe sepsis, has been shown to have no
demonstrable effect on mortality in sepsis and septic
shock [9]. In ARDS, ventilation with a lung protective
strategy has been shown to decrease mortality and in-
crease ventilator-free days [10]. Early administration of
cisatricurium improves adjusted 90-day mortality and in-
creases ventilator-free days [11]. The mechanism for this
benefit is still debated and may be due to improved
ventilator synchrony leading to a reduction in ventila-
tor associated injuries rather than as a specific ARDS
therapy. In patients with ARDS, both conservative
fluid management and corticosteroids have been shown to
increase ventilator-free days [12, 13], although conservative
fluid management is possibly associated with long-term
cognitive dysfunction [14], and treatment with corticoste-
roids after 14 days is associated with an increase in mortal-
ity [13]. Multiple potential drug therapies, including most
recently simvastatin [5], have been investigated, but as yet
there is no known effective pharmacological treatment for
ARDS [15, 16].

Derived from the myeloid line, megakaryocytes are the
precursors to platelets. Once mature and fully differenti-
ated, megakaryocytes form proto-platelet processes, which
fragment off, forming the platelet. Platelets are anucleated
cell fragments containing alpha granules, dense granules,
and lysomes [17, 18]. These granules, when activated, re-
lease chemokines, prostaglandins and small molecules
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which promote a pro-inflammatory state and leucocyte
migration [19]. There has been significant progress in our
understanding of platelets in sepsis and in the complica-
tions of sepsis and ARDS [20]. The linking of thrombosis,
inflammation, platelets and the possible therapeutic bene-
fit of anti-platelet medications in sepsis and ARDS is an
area in need of future research. In this review, we will look
at the potential role of aspirin in the treatment of sepsis,
septic shock and ARDS.

Haemostatic and inflammatory cascade interplay
There is a close evolutionary association between the
inflammatory cascade and the haemostatic system, and a
single trigger mechanism of activation for both systems
goes back 450 million years [21]. The common initiators
for both pathways, such as endotoxin, highlight the
complex interplay and overlap of these pathways. Histor-
ically, haemostasis formed a crucial part in the innate
immune system where walling off of the pathogen was
accomplished by the formation of fibrin, platelet and
leucocyte clot which forms the basis of the “haemo-
static containment” hypothesis [21]. Although this co-
stimulation may have evolutionary advantages, severe
sepsis is characterised by microvascular thrombosis
which can contribute to multi-organ dysfunction (MOD)
[22]. Interventions to reduce the haemostatic defect have
been shown to improve organ function and reduce mor-
tality in experimental models [23]. Similar changes in the
pulmonary microcirculation are demonstrated in autopsy
of lungs with ARDS [24]. An increase in pulmonary vascu-
lar dead space, which may reflect pulmonary microcircula-
tion thrombosis, is associated with worse outcomes in
patients with ARDS [25]. Platelet leucocyte interaction
also enhances the production of inflammatory cytokines
such as interleukin (IL)-1p, IL-8, monocyte chemotactic
protein 1 and tumour necrosis factor alpha (TNFa), which
propagates inflammation further.

Platelets in sepsis and acute respiratory distress
syndrome

Platelet activation by endotoxin and platelet-activating
factors such as thrombin plays an important role in sep-
sis [26]. The sepsis and ARDS complications due to
platelets are secondary to enhancement or dysregulation
(or both) of their thrombotic and inflammatory actions
[20, 27]. Once activated, the platelets alter shape, upregu-
late the expression of receptors like P-selectin, degranulate
and aggregate [28]. This process promotes platelet adhe-
sion with the endothelium, other platelets and leucocytes,
leading to the formation and release of inflammatory and
thrombotic agents, further leucocyte recruitment, oedema
formation and production of neutrophil extracellular traps
(NETs).
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Neutrophil extracellular traps

Intravascular NETSs are protrusions of granulated chroma-
tin with the purpose of capturing pathogens and result
from the combination of activated neutrophils and plate-
lets. Platelet interactions with the neutrophils are essential
for their production as demonstrated by platelet depletion
or disruption of the platelet neutrophil aggregation in
mice [29]. Although the principle aim of NETs is en-
trapment of pathogens, over-production is associated with
direct tissue and organ damage [30]. Furthermore, specific-
ally in ARDS, the high concentration of pro-inflammatory
factors in the alveoli can lead to excessive NET production,
and the protrusions themselves can be a cause for direct
mechanical injury to the lung tissue [30]. Recently, it has
been reported that the NETs themselves can activate
further platelets, promote fibrin deposition and act as
supports for thrombosis formation, thus further perpetu-
ating the inflammatory thrombotic process [31], ultimately
resulting in MOD.

Leucocyte recruitment and oedema formation
Platelets play a significant role in leucocyte recruitment,
vascular permeability and resultant oedema formation.
In a murine model of ARDS due to sepsis, platelet-
depleted mice had reduced infiltration of neutrophils,
reduced pulmonary oedema formation and better out-
comes [32], which was felt to be secondary to the di-
minished leucocyte recruitment. Interestingly, platelet
depletion resulted in significant reduction of pulmon-
ary oedema in a transfusion-related model of acute
lung injury while not influencing neutrophil migration
[33]. Platelet depletion not only inhibited platelet acti-
vation and aggregation but also resulted in improved
oxygenation, reduced pulmonary hypertension and less
interstitial pulmonary oedema [34]. Furthermore, antago-
nising the effects of specific platelet-derived chemokines,
namely CCL5 and CXCL4, reduces neutrophil migration,
pulmonary oedema formation and tissue damage in the
lungs [35].

These pre-clinical models highlight the importance of
platelet activation in sepsis and ARDS and suggest that
platelet depletion or inhibition of the platelet or platelet-
specific chemokines can reduce platelet neutrophil aggre-
gates and platelet sequestration and ultimately improve
outcomes.

The evidence from pre-clinical research in sepsis is
conflicting. In a murine model of Staphylococcus aureus
septicaemia there was significantly increased bacterial
burden, organ dysfunction and cytokine levels in platelet-
depleted mice [36]. In addition, a Klebsiella pneumoniae-
driven sepsis model, with significant platelet depletion,
was associated with worse mortality and haemorrhage at
the primary site of infection but with no influence on neu-
trophil recruitment to the lungs [37].
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Clinical significance of platelet activation in sepsis
and acute respiratory distress syndrome

Activated platelets are found in significant quantities in
the organs of patients with sepsis and septic shock [38].
A study in critically ill patients with sepsis concluded
that this enhanced and uncontrolled adhesion of the
platelets to leucocytes and the endothelium leads to
their accumulation in the micro-circulatory system and
eventual thrombosis formation contributing to MOD
[39] in sepsis [22].

Platelets have been shown to accumulate in the lungs
of patients with ARDS. In fact, platelet activation, migra-
tion and accumulation in the alveoli are major features
of ARDS. Typically, bronchoalveolar lavage fluid from
patients with ARDS has excessive concentrations of
platelet-specific alpha granule proteins, suggesting high
platelet activity [40], and following initial injury, leucocyte
platelet aggregates form and increase dramatically in the
alveolar tissue [41]. This enhanced and unregulated plate-
let activity leads to increasing leucocyte concentrations in
the alveolar tissue and ultimately lung tissue damage. This
was confirmed in lung biopsies from patients with diffuse
alveolar damage which were found to have an exaggerated
number of leucocytes within the small airways because of
excessive platelet activation [42].
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Rationale for aspirin in sepsis and acute
respiratory distress syndrome

Initially used by the ancient Greeks in the form of wil-
low leaf tea and later refined in Germany in the 19th
century, by Felix Hoffman, aspirin has become one of
the most commonly used drugs today [43]. Aspirin is a
non-selective inhibitor of the enzyme cyclooxygenase
(COX), has a half-life of approximately 20 minutes and
is subject to significant first-pass metabolism, and most
of its action occurs in the portal circulation of the liver
[43]. Aspirin has previously been used in high doses for
the treatment of rheumatic fever, but currently low-dose
aspirin continues to be used in both primary and sec-
ondary prevention in cardiovascular medicine.

There are several mechanisms in which aspirin can
manipulate the processes involved in both sepsis and
ARDS (Fig. 1): 1) inhibition of COX [43]; 2) inhibition of
nuclear factor kappa B (NFxB) [44]; 3) production of ni-
tric oxide (NO) [45]; and 4) lipoxin production [46].

Inhibition of cyclooxygenase

The most obvious mechanism is irreversible inhibition
of both COX I and COX II enzymes [43]. The inhibition
results from the direct acetylation and obstruction of the
active portion of the enzyme, thus preventing interaction
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with the substrate. This inhibition prevents the conver-
sion of membrane phospholipid-derived arachidonic acid
to thromboxane (TXA,) and prostaglandins, including
the pro-inflammatory prostaglandin E, (PGE,) [47]. As
the platelet is anucleated, it has limited ability to repli-
cate new proteins or enzymes, thus resulting in irrevers-
ible inhibition of the enzyme for the life span of the
platelet, namely 7-10 days. Aspirin is significantly more
potent at inhibiting COX I, especially at the lower 75 mg
dose, than COX II. COX I is responsible for normal
haemostatic processes, including platelet activation and
aggregation through TXA, production, which is a feature
of both sepsis and ARDS [41]. COX II undergoes in-
creased expression following stimulation from IL-1, TNFa
and lipopolysaccharide (LPS) and results in increased pro-
duction of prostaglandins, including PGE, [48]. PGE, is
required for the production of pro-inflammatory cytokines
and mediates the formation of oedema [49].

Inhibition of nuclear factor kappa B production

As well as direct inhibition of COX, aspirin has been shown
to downregulate the production of pro-inflammatory cyto-
kines. NFkB is an important transcription factor required
for production of pro-inflammatory interleukins and cyto-
kines. Aspirin prevented NFkB production and ultimately
leucocyte adhesion in a stimulated human epithelial cell
model [44] and it does this by preventing the release of
NEkB from its cytosolic inhibitor IkBa [50]. However, this
specific effect was demonstrated only after treatment
with high-dose aspirin of 10 or 20 mM, which is higher
than the serum therapeutic concentration. Inflammation
leads to an acidic environment and an acidic extracel-
lular interstitial environment. This can enhance sali-
cylate accumulation [51] because of local ion trapping
and lead to higher local concentrations than serum
concentrations.

Production of nitric oxide

Low-dose aspirin reduced inflammation within the vas-
cular endothelium and led to the development of smaller
atherosclerotic lesions with less macrophages in low-
density lipoprotein receptor-deficient mice [52]. In a
study using dissected porcine coronary arteries, aspirin
was shown to directly acetylate the endothelial nitric
oxide synthase protein, thus releasing NO from the cor-
onary artery endothelium. NO acts as an anti-adhesive,
inhibiting the migration and infiltration of leucocytes
through the endothelium as well as regulating vascular
tone and micro-thrombi formation in the septic state
[53]. Importantly, this was independent of COX inhibition
as demonstrated by a lack of effect with indomethacin,
another non-steroidal anti-inflammatory drug (NSAID),
or with an aspirin metabolite [45].
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Lipoxin production

Recent evidence has also demonstrated anti-inflammatory
properties with aspirin not seen in other NSAIDs. Aspirin
can induce the production of a type of lipoxin called
aspirin-triggered 15-epi-lipoxin A4 (ATL) [46] and can do
so at the lower 75 mg dose [54]. Once the active site of
the COX enzyme is blocked by the acetylation action of
aspirin, the arachidonic acid is converted to ATL via 15-R-
hydroxyeicosatetraenoic acid [55]. The anti-inflammatory
effects of ATL have been extensively demonstrated in the
pre-clinical septic models and LPS models of ARDS. ATL
inhibits the production of IL-8 through inhibition of
NFkB, thus reducing inflammation and leucocyte migra-
tion [56], and can independently trigger the release of NO
[49]. ATL suppresses the anti-apoptotic effects of myelo-
peroxidase via inhibition of the B2 integrin signalling
pathway, thus restoring the natural cell cycle of the poly-
morphonuclear neutrophils (PMNs), leading to effective
resolution of inflammation [46, 57]. In addition, lipoxins
can stimulate phagocytosis of apoptotic neutrophils by
macrophages, possibly through enhancement of macro-
phage neutrophil adhesions permitting efficient resolution
of inflammation [58]. Persistent inflammation and delayed
apoptosis of PMNs are features of ARDS and are associ-
ated with worse outcomes [59].

Furthermore, in two experimental murine models of
ARDS, one with intra-tracheal LPS and the second a
transfusion-related acute lung injury, ATL significantly
reduced the concentration of neutrophil platelet aggre-
gates via antagonism of the lipoxin A4 receptor, resulting
in decreased neutrophil migration, pulmonary oedema
and vascular permeability [41]. Finally, ATL significantly
improved 48-hour survival and decreased BAL concentra-
tions of TNFa and macrophage inflammatory protein-2
following LPS-induced lung injury in mice [60].

Pre-clinical evidence for aspirin in sepsis and
acute respiratory distress syndrome in animal
models

Aspirin has been shown to be effective in murine models
of sepsis and ARDS. Mice injected with Salmonella enteri-
tidis endotoxin were pre-treated with aspirin 30 minutes
prior to infection at varying dosages. A significant 24-hour
survival rate benefit was demonstrated with 3.75, 15 and
30 mg/kg of aspirin [61].

Zarbock et al. confirmed that platelet neutrophil aggre-
gates are a significant feature in ARDS and demonstrated
that inhibition of this aggregation with 1 mg/g aspirin re-
duced neutrophil recruitment and improved gas exchange
and survival in a mouse model of ARDS induced by intra-
tracheal hydrochloric acid [62]. In support of this, a two-
hit model of ARDS induced in mice that were exposed to
LPS for 24 hours, then injected with major histocompati-
bility complex 1 mAB and were either depleted of platelets
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or pre-treated with aspirin 100 pg/g intraperitoneally
found that both interventions reduced lung injury and
mortality [63]. It should be noted, however, that the dose
used would equate to a relatively large therapeutic dose in
humans. Interestingly, Grommes et al. [35] and Looney
et al. [63] both found that blockage of the P selectin recep-
tor or glycoprotein IIb/Illa receptors on the platelet did
not confer the same benefits, possibly suggesting that the
outcomes are not simply related to platelet neutrophil
aggregation but that aspirin itself may confer additional
benefits.

Pre-clinical human evidence for aspirin in sepsis
and acute respiratory distress syndrome

Leucocyte infiltration and oedema formation in a
cantharidin-generated dermal blister was assessed in
healthy male subjects. Initially, the blisters were induced
on a forearm, without aspirin, and assessed over the
course of 72 hours for inflammatory response, cell count
and period of resolution. In a crossover study, the same
volunteers had blisters induced on the other forearm fol-
lowing a 10-day course of 75 mg aspirin. The study con-
cluded that low-dose aspirin, through the production of
ATL and NO, significantly reduced the accumulation of
macrophages and neutrophils at the site of the blister
but had no effect on oedema formation [49].

There are no published studies of aspirin in human pre-
clinical models of ARDS. There is ongoing work in our
group to study the effects of aspirin in a human ex vivo
lung perfusion model of ARDS and in an inhaled LPS
model in healthy human volunteers (NCT01659307).

Observational evidence for aspirin in sepsis and
acute respiratory distress syndrome

Supporting the pre-clinical studies, several observational
studies have assessed a possible association with pre-
hospital anti-platelet (the majority of which is aspirin)
therapy and sepsis or ARDS. These are almost exclu-
sively single-centre retrospective observational cohort
studies and range from over 600,000 patients [64] to 22
patients [65] (Table 1). Patients admitted with community-
acquired pneumonia on anti-platelet therapy have a lower
admission rate to the ICU and shorter hospital stay [66]. In
a general population of ICU admissions, those on anti-
platelet therapy have a decreased mortality [66, 67] and
have a decreased risk of developing ARDS [68-70] and
multi-organ failure [71]. Furthermore, in those ICU pa-
tients with septic shock or ARDS being treated with anti-
platelet therapy, there was a reduction in mortality [64, 66,
72-74]. Finally, in a prospective cohort study of patients
admitted to a medical or surgical ICU investigating pre-
hospital statin and aspirin therapy and the development of
sepsis or ARDS and mortality in ICU patients, aspirin
alone did not significantly affect the development of sepsis
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or ARDS, but there was a trend toward reduced mortality.
In addition, the group prescribed the combination of as-
pirin and a statin had the lowest rate of sepsis or ARDS;
however, this was not statistically significant [75].

Not all the observational studies found a correlation
between anti-platelet therapy and outcomes in sepsis
and ARDS. A multi-centre analysis of association between
pre-hospital aspirin use and development of ARDS across
the USA and Turkey found no significant association [76].
This study involved 20 American hospitals and two hospi-
tals in Turkey; this imbalance makes it difficult to adjust
for confounding factors and differences in treatment pro-
tocols. Also, a study looking at the incidence of ARDS in
patients with post-aortic valve replacement concluded that
there was no significant difference between those admitted
on aspirin and those not; however, the population was
small (22 patients) [65].

It is important to highlight the limitations of observa-
tional studies. Owing to the observational nature of the
study design, there is no control over the administration,
dose and compliance to treatment. There could be fur-
ther confounding factors such as access to health care,
in that patients prescribed the medication may have bet-
ter management of their chronic conditions or the fact
that medications including aspirin may be discontinued
in the sickest of the critically ill cohort.

Randomised controlled trials for sepsis and acute
respiratory distress syndrome

There is a paucity of randomised clinical trials investigating
aspirin in sepsis or ARDS. There is one large randomised
control trial examining the role of NSAIDs, specifically
intravenous ibuprofen for 48 hours, in critically ill patients
with sepsis. This study included 455 patients and con-
cluded that ibuprofen reduced levels of pyrexia and tachy-
cardia but did not prevent the development of septic shock
or ARDS or improve mortality [77]. Because aspirin, unlike
other NSAIDs, can exert COX-independent effects, add-
itional studies evaluating the benefits of aspirin are needed.

Challenges of aspirin usage in the critically ill

Sepsis and ARDS are commonly associated with throm-
bocytopenia. It is seen in 20—-40 % of critically ill patients
[78], but the incidence varies depending on the cutoff
used to define thrombocytopenia. In a study of patients
with thrombocytopenia in the ICU, the risk of any type of
bleeding increased from 4.1 % in patients without throm-
bocytopenia to approximately 53 % in patients with a
platelet count of less than 100 x 10°/1 [79]. Bleeding was
described as major (life-threatening, compromising
haemodynamic status or requiring urgent interven-
tion), moderate (requiring non-urgent transfusions) or
minor (all other events). There were 29 major, 21
moderate and 11 minor episodes of bleeding in this
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Table 1 A summary of recent cohort studies into anti-platelet therapy and sepsis/acute respiratory distress syndrome

Reference Design Date Country Sample size  Investigating Results
[69] Retrospective 2006 USA 161(68 on Association of pre-hospital APT Decreased incidence of ARDS
observational ASA11 other) and risk of ARDS in the in APT group but no change
cohort critically ill in mortality or number of
ICU days
[66] Three retrospective 2011 Germany 1) 224 1) Association of pre-hospital 1) Decreased ICU admission
observational APT and outcome of and hospital stay with APT
cohorts patients with community-
acquired pneumonia
2) 615 2) Association of pre-hospital 2) Decreased mortality with
APT and outcome of ICU APT group
admissions within 24 hours
of hospitalisation
3) 834 3) Association of pre-hospital 3) Decreased ICU mortality
APT mortality in critically with the APT group
ill patients with sepsis or
septic shock
[72] Retrospective cohort 2000-2009 Australia 5523 Association of ASA in SIRS or Significant improvement in
study septic shock and mortality mortality in ASA group
[68] Historical cohort study 2007-2009 USA 651 Association of pre-hospital No association between
ASA and mortality, risk of ARDS, pre-hospital ASA use and
development of septic shock mortality but reduction in
and length of stay in critically ill ARDS and decrease in
ventilator-free days
[76] Secondary analysis of 2011 20 sites in USA 3855 Association of pre-hospital APT ~ No significant reduction in
prospective multi-centre 2 sites in Turkey and risk of ARDS ARDS in the ASA group
international cohort study
[75] Prospective cohort study  2006-2008 USA 575 Association of pre-hospital APT No difference in ARDS or
and risk of ARDS and septic septic shock development
shock in the critically ill with pre-hospital statins or ASA
[67] Retrospective cohort 2010 Germany 615 Association of pre-hospital APT Reduction in mortality in
mortality in critically ill APT group
[74] Prospective observational  2010-2012 UK 202 Association of pre-hospital APT Reduction in mortality in
cohort analysis and mortality in ARDS ASA group
[83] Retrospective cohort 2013 Germany 886 Association of pre-hospital APT Significant reduction in
study and mortality in critically ill mortality with ASA; there
was no additional benefit
from adding clopidogrel
[70] Secondary analysis of 2006-2012  USA 1149 Association of pre-hospital APT Reduction in mortality with
prospective study and risk of ARDS in critically ill ASA group
[71] Secondary analysis of 2001-2008 USA 839 Association of pre-hospital APT ~ Reduction in risk of lung
cohort study and risk of MOF, lung dysfunction  dysfunction, MOF and
and mortality in trauma patients  possible mortality in trauma
patients who received a
blood transfusion in APT
group
[65] Retrospective 2008-2013 USA 22 Association of pre-hospital APT No association between ASA
single-centre study and risk of ARDS in patients and incidence of ARDS in
with post-aortic valve replacement patients with post-aortic
surgery valve replacement surgery
[64] Observational cohort 2000-2010 Taiwan 683,421 Association of pre-hospital APT Reduction in mortality in

study

and mortality in sepsis

APT group

ASA aspirin, APT anti-platelet therapy, ARDS acute respiratory distress syndrome, ICU intensive care unit, SIRS systemic inflammatory response syndrome, MOF

multi-organ failure

cohort. Thrombocytopenia was deemed as causative/
contributory to 23 events out of these 61 events.
There was no analysis comparing the severity of the
bleeding with the platelet count. More recently, a
retrospective analysis of thrombocytopenia in mixed

ICU admissions concluded that there is no significant
association between 28-day mortality and thrombocy-
topenia, defined as a platelet count of less than 150 x 10°,
but the patients with thrombocytopenia had an increased
incidence of major bleeding at 14.4 % compared with
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3.7 % [80]. Major bleeding, however, was defined as intra-
cranial or retroperitoneal or as any overt bleeding or a fall
in haemoglobin greater than 2 g/dl. Although thrombo-
cytopenia was defined, the incidence of major bleeding (or
the individual components of this composite measure) is
not reported according to the degree of severity of
thrombocytopenia. Furthermore, in patients admitted to
the ICU with community-acquired pneumonia, only a
platelet count of less than 50 x 10°/1 was associated with a
significant increase in mortality.

The safety of aspirin in patients with thrombocy-
topenia has not been studied in critically ill patients in a
prospective randomised controlled trial. However, in a
retrospective cohort study of patients in a mixed ICU,
there was a mortality benefit from anti-platelet drugs
irrespective of their bleeding risk. Bleeding was defined
as any incident described as ‘bleeding’ in the clinical
notes [67]. In a non-ICU population, there was no in-
creased risk of bleeding in cancer patients who received
aspirin in the setting of acute coronary syndrome, even
in patients with a platelet count of less than 100,000/l
[81]; in this study, the median platelet count in the
thrombocytopenic group was 32 x 10°/1 and the range
was 4 to 100 x 10°/1. These studies suggest the benefit of
aspirin even in patients with thrombocytopenia, but cau-
tion is needed given the limits of the observational de-
sign of these studies.

Future direction

Several clinical trials are currently exploring aspirin both
as a preventative agent and as a treatment in sepsis and
ARDS. In Australia, the ANTISEPSIS trial (Aspirin to In-
hibit Sepsis, ACTRN12613000349741) will assess whether
100 mg of aspirin daily for 5-7 years reduces severity of
sepsis by preventing admissions to the hospital or ICU
and improving mortality. In Brazil, Aspirin for the Treat-
ment of Sepsis (NCT01784159) is a phase 2 trial investigat-
ing the effect of 200 mg of aspirin on organ dysfunction,
Sequential Organ Failure Assessment score and duration
of ventilation in patients with sepsis. The US Critical IlI-
ness and Injury Trials Group (USCIITG) is conducting a
multi-centre, double-blind, randomised control trial testing
the hypothesis that early treatment with aspirin will pre-
vent ARDS (Lung Injury Prevention Study With Aspirin
(LIPS-A)) [82]. Patients were randomly assigned to receive
either placebo or an initial dose of 325 mg of aspirin
followed by 7 days of 81 mg, with the primary out-
come being the development of ARDS. The study has
completed recruitment. Finally, in the UK, a rando-
mised, double-blind, allocation-concealed, placebo-
controlled phase 2 single-centre trial of aspirin as a
treatment for ARDS (aSpirin as a Treatment for ARDS,
STAR Trial, NCT02326350) has recently started. Patients,
within 72 hours of a diagnosis of ARDS, will be randomly
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assigned to either aspirin 75 mg or placebo once daily for
a maximum of 14 days. The primary outcome measure is
oxygenation index at day 7.

Conclusions

Despite the advancements in knowledge of the patho-
physiology in sepsis and ARDS, there remains a signifi-
cant human and economic impact on society as a whole,
and there is no effective pharmacological treatment for
ARDS. There has been and continues to be extensive
work on the role platelets play in sepsis and ARDS. It has
been demonstrated through laboratory in vitro studies,
animal studies, and observational analysis that aspirin may
be of benefit in the treatment of sepsis and ARDS. The
results of ongoing randomised controlled trials will help
elucidate the role of aspirin in treating sepsis and ARDS.
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