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diagnosis and triage of pediatric sepsis
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Abstract

Introduction: The first steps in goal-directed therapy for sepsis are early diagnosis followed by appropriate triage.
These steps are usually left to the physician’s judgment, as there is no accepted biomarker available. We aimed to
determine biomarker phenotypes that differentiate children with sepsis who require intensive care from those who
do not.

Methods: We conducted a prospective, observational nested cohort study at two pediatric intensive care units
(PICUs) and one pediatric emergency department (ED). Children ages 2–17 years presenting to the PICU or ED with
sepsis or presenting for procedural sedation to the ED were enrolled. We used the judgment of regional pediatric
ED and PICU attending physicians as the standard to determine triage location (PICU or ED). We performed
metabolic and inflammatory protein mediator profiling with serum and plasma samples, respectively, collected
upon presentation, followed by multivariate statistical analysis.

Results: Ninety-four PICU sepsis, 81 ED sepsis, and 63 ED control patients were included. Metabolomic profiling
revealed clear separation of groups, differentiating PICU sepsis from ED sepsis with accuracy of 0.89, area under the
receiver operating characteristic curve (AUROC) of 0.96 (standard deviation [SD] 0.01), and predictive ability (Q2) of
0.60. Protein mediator profiling also showed clear separation of the groups, differentiating PICU sepsis from ED
sepsis with accuracy of 0.78 and AUROC of 0.88 (SD 0.03). Combining metabolomic and protein mediator profiling
improved the model (Q2 =0.62), differentiating PICU sepsis from ED sepsis with accuracy of 0.87 and AUROC of 0.95
(SD 0.01). Separation of PICU sepsis or ED sepsis from ED controls was even more accurate. Prespecified age
subgroups (2–5 years old and 6–17 years old) improved model accuracy minimally. Seventeen metabolites or
protein mediators accounted for separation of PICU sepsis and ED sepsis with 95 % confidence.

Conclusions: In children ages 2–17 years, combining metabolomic and inflammatory protein mediator profiling
early after presentation may differentiate children with sepsis requiring care in a PICU from children with or without
sepsis safely cared for outside a PICU. This may aid in making triage decisions, particularly in an ED without
pediatric expertise. This finding requires validation in an independent cohort.
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Introduction
Sepsis is a leading cause of mortality in children world-
wide [1]. In children age ≥1 year in the United States,
sepsis is the second most common cause of death [2, 3].
The incidence of sepsis in children is increasing. Re-
searchers in one study found an 81 % increase in
hospitalizations for severe sepsis between 1995 and
2005 [4–6]. In addition, sepsis may lead to significant
physical, neuropsychological, and neurocognitive mor-
bidity in survivors [7–10]. For example, in a recent
multicenter study, investigators found that 34 % of
survivors of severe sepsis had a decline in their func-
tional status at 28 days, and 18 % were determined to
have a “poor” functional outcome (moderate, severe,
or vegetative disability) [10].
Early, appropriate antibiotic therapy, fluid resuscita-

tion, and vasoactive support are associated with im-
proved outcomes after sepsis in a highly time-dependent
manner [11–13]. The first steps in this therapy are the
early diagnosis of sepsis followed by the appropriate
stratification of patients (e.g., admission to a hospital
ward for observation or to a more intensive monitoring
environment in a critical care unit). These first steps are
left to the physician’s judgment, as there is currently no
accepted, accurate biomarker available to help in making
this decision [13–15]. Physicians’ judgment in pediatric
emergency departments (EDs) with experienced physi-
cians and in tertiary pediatric intensive care units
(PICUs) is likely quite different from that in smaller cen-
ters without extensive experience with sepsis in children
[16]. The vast majority (>80 %) of children requiring
emergency care present to an ED that does not have this
specialized pediatric expertise [16, 17]. This problem has
led to “great interest in developing diagnostic and strati-
fication biomarkers for sepsis” [18]. A systems biology
approach to biomarker phenotyping of the systemic re-
sponse to sepsis has the potential to provide diagnostic
and patient stratification profiles that inform clinical
decision-making [19]. Unlike more proximal genomic
and transcriptomic analysis, untargeted metabolomics and
targeted proteomics reflect the downstream systems-level
metabolic processes and pathways at play, defining specific
phenotypes and shedding light on underlying patho-
physiology [20, 21].
In previous work, our group has found that metabolo-

mic modeling in adults accurately differentiated 39 pa-
tients with septic shock patients from 20 intensive care
unit (ICU) control patients and that in children, it differ-
entiated 58 PICU patients with septic shock from 39
PICU control patients [22, 23]. In adults, combining
metabolomic and protein mediator data more accurately
differentiated patients with septic shock from ICU con-
trols [24]. In these studies, our group demonstrated
promising metabolic biomarker profiles for diagnosing
septic shock in ICU patients. In the present study, we
asked different questions:
1. Is there a biomarker-defined phenotype that can dif-

ferentiate children with sepsis who require intensive care
from those who do not?
2. Does combining metabolic profiling with an analysis

of protein mediators improve modeling?
3. Are there a limited number of biomarkers that may

be used for targeted phenotyping in future studies?
As there is currently no objective gold standard for

making this decision in the clinic, we used the judgment
of experienced regional pediatric ED and PICU attend-
ing physicians as the standard for triage location of care.
This standard is the same as that used for telemedicine
and pediatric transport systems, where the expertise at
the specialized center is relied upon [16].

Methods
Ethical approval
This study was approved by the Health Research Ethics
Board of the University of Alberta (Pro00008797) and
the Conjoint Health Research Ethics Board of the
University of Calgary (Ethics ID 23426).

Patient cohorts
PICU sepsis cohort
The Alberta Sepsis Network (ASN) prospectively en-
rolled all eligible children up to age 17 years admitted to
the only two PICUs in the Province of Alberta, Canada,
with a diagnosis of sepsis between April 2010 and October
2013. Sepsis was defined as the systemic inflammatory re-
sponse syndrome (SIRS) caused by a suspected or proven
bacterial or fungal infection [25], with antibiotics ordered
and an arterial and/or central venous line in place. Pa-
tients not expected to survive ≥24 h, refusing intubation
or vasoactive infusions (i.e., palliative care), or already
having had severe sepsis for ≥48 h (defined as sepsis
with cardiovascular dysfunction, acute respiratory dis-
tress syndrome, or two other organ dysfunctions) [25]
were excluded. Demographic, infection and severity-
of-illness variables (including pediatric logistic organ
dysfunction [PELOD] and Pediatric Risk of Mortality
[PRISM III] scores) were recorded prospectively [26, 27].
Blood was drawn as soon as possible on the day the pa-
tient met the eligibility criteria, using deferred consent. If
consent was subsequently refused, the blood was not used
and the patient was not enrolled. Patients were divided
into the predefined 2–5-year-old and 6–17-year-old age
groups on the basis of suspected pathophysiology, as done
by others [23, 25], with microbiologically confirmed sepsis
(positive culture from a normally sterile site, including
blood, cerebrospinal fluid, peritoneal fluid, or tissue) or
pneumonia without microbiological confirmation (SIRS
with chest infiltrate suggestive of pneumonia). We did not
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consider sputum or endotracheal aspirates as sterile site
cultures or require them as confirmatory of pneumonia,
and it is not current practice to perform bronchoalveolar
lavage in patients with suspected pneumonia. The site of
infection was defined as that diagnosed by the attending
medical team.

ED sepsis cohort
The ASN prospectively enrolled all children age ≤17
years admitted to one pediatric ED in Alberta with a
diagnosis of sepsis. Sepsis was defined as SIRS caused by
a suspected or proven bacterial or fungal infection [25],
with antibiotics and blood culture ordered. Patients who
were admitted to the PICU from the ED were included
in the PICU sepsis cohort and not in the ED sepsis co-
hort. Basic demographic information was recorded, and
blood was drawn as soon as possible on the day the pa-
tient met the eligibility criteria after informed consent
was obtained. The site of infection was defined as that
diagnosed by the attending medical team.

ED control cohort
In the same pediatric ED, all previously healthy children
age ≤17 years admitted for a procedure and without an
infection (i.e., no history of fever within 2 weeks and no
clinical evidence of infection) were prospectively enrolled.
These children had traumatic lacerations, fractures and/or
dislocations, or foreign body removal requiring intraven-
ous sedation and/or analgesia. Blood was drawn after con-
sent was obtained, and basic demographic information
was recorded.

Sample collection and preparation
Samples were obtained via an existing arterial or central
venous catheter (PICU sepsis cohort) or an intravenous
tube insertion or blood culture draw (ED cohorts). Sample
processing was performed as described in Additional file 1.

Proton nuclear magnetic resonance spectroscopy and
metabolite concentration profiling
Proton nuclear magnetic resonance (1H-NMR) spectra
were acquired on a Bruker AVANCE-II 600 MHz spec-
trometer (Bruker BioSpin, Milton, ON, Canada). All
spectra were randomly ordered for untargeted profiling
to avoid progressive bias. Untargeted profiling involves
identification of different compounds by their character-
istic spectral signature using information that is stored
in an external metabolite reference database [28–30].
Detailed methods are described in Additional file 1.

Protein mediator profiling
Quantification of targeted protein mediators (cytokines,
chemokines, and acute-phase proteins involved in inflam-
mation) was done using validated Luminex bead-based
multiplexing assays according to manufacturer’s instruc-
tions (Luminex, Austin, TX, USA). Detailed methods are
described in Additional file 1.

Statistical modeling
Multivariate statistical analysis was performed using the
SIMCA-P+ software (v12.0.1; Umetrics, Umeå, Sweden)
[19, 31–35]. All metabolites or protein mediators
with >50 % missing values were excluded from analysis.
Data preprocessing (median fold change normalization,
logarithmic transformation, centering, and unit variance
scaling) was first conducted separately for the metabolic
and protein mediator datasets and then for the combined
dataset [33]. An unsupervised principal component ana-
lysis (PCA) was performed to obtain an overview of the
multivariate dataset and to identify and exclude outliers
that could seriously disturb the supervised models [31].
Outliers are defined as those samples that are situated
outside the 95 % confidence interval of the Hotelling’s T2

distribution (elliptical or spherical area in the score scat-
terplot) [31]. Then, supervised partial least squares dis-
criminant analysis (PLS-DA) and orthogonal PLS-DA
(OPLS-DA) models were developed to determine the best
class discrimination (PICU sepsis, ED sepsis, and ED con-
trol) based on the preprocessed original data [31–35]. The
OPLS-DA method was applied to models including only
two classes. The OPLS-DA models for the combined data-
sets were based on potentially relevant metabolites and
protein mediator data selected using the variable import-
ance to projection (VIP), and only those variables with
VIP >1 were chosen [31]. In supervised analysis, R2Y (the
percentage of variation explained by the model) and Q2

(the predictive ability of the model) metrics were calcu-
lated using a sevenfold cross-validation method [31, 36].
Additionally, the OPLS-DA models were validated by cal-
culating coefficient of variation-analysis of variance p
values and the receiver operating characteristic curve
(ROC) (Metz ROC Software; University of Chicago,
Chicago, IL USA) [37, 38]. The sensitivity, specificity,
and accuracy were determined on the basis of sample
class prediction during sevenfold cross-validation (Y-
predcv) using SIMCA-P+ software. To describe specific
biopatterns for 2–17-year-old children using combined
NMR and protein mediator data, the OPLS-DA regression
coefficients were calculated and metabolites and/or
protein mediators with significant changes in concen-
tration (p <0.05) were considered as the most import-
ant variables [31].

Results
Description of the cohorts
The demographics, sites of infection, and severity-of-
illness measures for each age and category cohort are
given in Table 1. Children meeting ASN eligibility were



Table 1 Description of the three cohorts of patients

Descriptive variable PICU sepsis cohort ED sepsis cohort ED control cohort

2–5 yr 6–17 yr 2–5 yr 6–17 yr 2–5 yr 6–17 yr

(n =36) (n =58) (n =43) (n =38) (n =25) (n =38)

Age (mo) 39 (13.8) 138 (45) 37 (12.9) 131 (47) 45 (13) 133 (46)

Males 18 (50 %) 34 (59 %) 20 (47 %) 18 (47 %) 16 (64 %) 28 (74 %)

Weight (kg) 14.4 (4.5) 40.2 (20.5) 15.6 (3.4) 41.3 (22.5) 17.2 (3.0) 45.7 (17.6)

Underlying comorbidity N/A N/A

Neuromuscular 10 (28 %) 21 (36 %) 3 (7 %) 4 (11 %)

Cardiac 9 (25 %) 7 (12 %) 0 1 (3 %)

Respiratory 5 (14 %) 12 (21 %) 2 (5 %) 0

PRISM III score 11 (9); 10 [2–18] 8 (7); 7 [3–11] N/A N/A N/A N/A

PELOD score 16.7 (9.4); 13 [11–22] 11.5 (7.6); 12 [10–13] N/A N/A N/A N/A

WBC count (109/Litre) 12.9 (10.3) 13.6 (8,7) 12.8 (7.9); n =39 13.7 (7.2) N/A N/A

Platelet count (109/Litre) 185 (124) 191 (127) 277 (99); n =39 252 (93) N/A N/A

Creatinine (μmol/L) 53 (48) 60 (39) 28 (7); n =30 47 (19); n =30 N/A N/A

Lactate (mmol/L) 2.1 (1.9) 2.4 (2.5) 1.3 [1.2–1.6]; n =13 1.2 [1.0–2.0]; n =8 N/A N/A

Lowest SBP (mmHg) 77 (13) 92 (17) 96 (13) 106 (11) 104 (14) 121 (12)

Lowest MAP (mmHg) 54 (8) 63 (13) – – – –

pH 7.3 (0.1) 7.3 (0.1) – – – –

Sepsis developed after first PICU day 6 (17 %) 4 (7 %) N/A N/A N/A N/A

Site of infection N/A N/A

Pneumonia without microbiological confirmation 21 (58 %) 28 (48 %) 23 (53 %) 11 (29 %) – –

Microbiologically confirmed (culture positive) 15 (42 %)a 30 (52 %)b 12 (28 %)c 19 (50 %)d – –

Clinically diagnosed 0 (0 %) 0 (0 %) 8 (19 %)c 8 (21 %)d – –

Mechanical ventilation on first day 27 (75 %) 38 (67 %) N/A N/A N/A N/A

Inotrope/vasopressor infusion on first day 20 (56 %) 34 (57 %) N/A N/A N/A N/A

Duration of mechanical ventilation after enrollment (days) n =28 n =42 N/A N/A N/A N/A

(78 %) (69 %)

10 [5–13] 6 [3–8]
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Table 1 Description of the three cohorts of patients (Continued)

PICU length of stay after enrollment (days) <2 days: 2 (6 %) <2 days: 4 (7 %) Hospital stay Hospital stay N/A N/A

8 [3–15] 7 [3–10] 4 [3, 5]; n =20 4 [3, 6]; n =19

RRT 4 (11 %) 2 (4 %) 0 0 N/A N/A

ECLS therapy 6 (17 %) 4 (7 %) 0 0 N/A N/A

PICU mortality 1 (3 %) 1 (2 %) 0 0 0 0

Abbreviations: ECLS extracorporeal life support, MAP mean arterial pressure, N/A not applicable, PELOD pediatric logistic organ dysfunction, PICU pediatric intensive care unit, PRISM Pediatric Risk of Mortality, RRT renal
replacement therapy, SBP systolic blood pressure; WBC white blood cells
Results are given as n (%) or mean (SD) or median [IQR].
aSites of infection included meningitis (n =2), bacteremia (n =7), empyema (n =4), mediastinitis (n =1), and peritonitis (n =3)
bSites of infection included meningitis (n =9), bacteremia (n =12), empyema (n =3), peritonitis (n =7), and fasciitis (n =1)
cSites of infection included microbiologically confirmed meningitis (n =3), bacteremia (n =1), peritonitis (n =2), urinary tract infection (n =4), and Streptococcus pyogenes throat culture (n =2) and clinically diagnosed
otitis media with draining ear or mastoiditis (n =3), cellulitis (n =2), cervical adenitis (n =1), and other (n =2)
dSites of infection included microbiologically confirmed bacteremia (n =3), peritonitis (n =7), urinary tract infection (n =4), otitis media with S. pyogenes throat infection (n =5), clinically diagnosed otitis media with
mastoiditis (n =2), osteomyelitis (n =1), pelvic abscess (n =1), toxic shock syndrome (n =1), and other (3)

M
ickiew

icz
et

al.CriticalCare
 (2015) 19:320 

Page
5
of

13



Mickiewicz et al. Critical Care  (2015) 19:320 Page 6 of 13
prospectively entered into the PICU-ASN database after
deferred consent was obtained (refusal rate of 22 %). Of
205 patients in the PICU-ASN database, those under 24
months of age (n =63), with missing data (n =3), or with-
out clear bacterial sepsis (unknown, viral or other causes
of SIRS) were excluded from this PICU sepsis nested co-
hort. The PICU sepsis cohort patients had PELOD and
PRISM III severity-of-illness scores comparable to other
PICU sepsis trial patients [39, 40]. Most PICU patients
were ventilated (for about 1 week) and received support-
ive vasoactive infusions on the first day of sepsis. A sig-
nificant number required renal replacement therapy and
extracorporeal life support during their PICU stay. The
average PICU length of stay after sepsis was about 1
week. The ED sepsis cohorts showed comparable demo-
graphics, except for having fewer comorbidities and bet-
ter values for platelet count and systolic blood pressure.
The ED control cohorts had proportionately more male
subjects. Only 3 (3 %) of 94 of the PICU sepsis cohort
were admitted to the PICU from the ward; these 3 pa-
tients had blood for analysis drawn in the ED, and none
were outliers in the models.

2–17-year-old children
Ninety-four PICU sepsis, 81 ED sepsis, and 63 ED con-
trol patients were included. A total of 58 metabolites
and 48 protein mediators were recognized and quanti-
fied for each patient (Additional file 1: Table E1). Totals
of 1.12 % and 2.01 % missing values were observed in
the NMR and protein mediator datasets, and these were
randomly distributed.

Profiling
Metabolomic profiling
Three principal components (PCs) were calculated via
cross-validation to build the PCA model, with good data
grouping, explaining the following percentages of vari-
ation: PC1 17.7 %, PC2 11.7 %, and PC3 7.4 % (Fig. 1a
and Additional file 2: Figure E7a). There were nine out-
liers comprising 6 (6 %) in the PICU sepsis cohort and 3
(4 %) in the ED sepsis cohort. These outliers were ex-
cluded from subsequent analyses. A supervised PLS-DA
showed that the three different cohorts were well clus-
tered, with specific metabolic profiles for each. The model
showed excellent goodness of fit (cumulative R2Y =0.56)
and goodness of prediction (cumulative Q2 =0.47) (Fig. 2a).
The OPLS-DA method was applied to compare metabolic
variance in patient groups consisting of only two classes.
The score scatterplots for each statistical analysis show
clear separation of groups, with high values for the R2Y
and Q2 parameters (Fig. 3a and Table 2). The predictive
accuracy statistics for differentiating PICU sepsis from ED
sepsis (Table 2) show accuracy of 0.89 and area under the
ROC (AUROC) of 0.96 (standard deviation [SD] 0.01).
Protein mediator profiling
PCA revealed three PCs explaining the following per-
centages of variation: PC1 19.4 %, PC2 14.6 %, and PC3
7.6 % (Fig. 1b and Additional file 2: Figure E7b). A total
of 20 outliers comprising 13 (14 %) in the PICU sepsis
cohort, 4 (5 %) in the ED sepsis cohort, and 3 (5 %) in
the ED control cohort were excluded from further ana-
lyses. The PLS-DA model shows that the three different
cohorts are reasonably well clustered, with an R2Y cumu-
lative score of 0.54 and a Q2 cumulative score of 0.47
(Fig. 2b). The score scatterplots for each OPLS-DA statis-
tical analysis show clear separation of groups, with high
values for the R2Y and Q2 parameters (Fig. 3b and Table 2).
The predictive accuracy statistics for differentiating PICU
sepsis from ED sepsis (Table 2) showed accuracy of 0.78
and AUROC of 0.88 (SD 0.03), which were not as high as
the values for NMR metabolomics.

Combined results
When PCA was performed, a three-PC model explained
the following percentages of variation: PC1 21.5 %, PC2
8.7 %, and PC3 6.5 % (Fig. 1c and Additional file 2: Figure
E7c). There were eight outliers comprising seven (7 %) in
the PICU sepsis cohort and one (1 %) in the ED sepsis co-
hort. These outliers were excluded from subsequent ana-
lyses. A supervised PLS-DA shows that the three different
cohorts are well clustered, with excellent model descrip-
tive values: cumulative R2Y 0.63 and cumulative Q2 0.56
(Fig. 2c). The score scatterplots for each OPLS-DA statis-
tical analysis show clear separation of the groups, with
high values for the R2Y and Q2 parameters (Fig. 3c and
Table 2). The predictive accuracy statistics for differentiat-
ing PICU sepsis from ED sepsis (Table 2) show accuracy
of 0.87 and AUROC 0.95 (SD 0.01). This model had very
similar accuracy statistics compared with NMR alone;
however, the sensitivity was higher (0.90 vs 0.86), the spe-
cificity was lower (0.85 vs 0.91), and goodness of predic-
tion was higher (Q2 0.62 vs 0.60).

Models without outliers excluded
To confirm that the outliers detected in the PCA models
(and subsequently excluded) did not bias the results of
the supervised analyses, we recalculated the PLS-DA
and OPLS-DA models including all outliers. This had
only minor influence on the discriminative and predict-
ive ability of the models (Additional file 1: Table E2). For
example, for the combined dataset model differentiating
PICU sepsis from ED sepsis, R2Y =0.67 and Q2 =0.63
compared with the model with outliers excluded where
R2Y =0.69 and Q2 =0.62.

Age subgroups
Full details of the results for the separate metabolomic
and protein mediator analyses and the combined analyses



Fig. 1 Principal component analysis (PCA) results for the 2–17-year-old cohorts based on the preprocessed original data (where each point
represents one patient). a Metabolomic profiling data. b Inflammatory protein mediator profiling data. c Combined biomarker profiling data. The
three-dimensional PCA score scatterplots show the distribution of observations (red dots, pediatric intensive care unit sepsis patients; blue dots,
emergency department [ED] sepsis patients; green dots, ED controls) in the three-dimensional space formed by principal components PC1, PC2,
and PC3. The PCs are the lines in the multivariable dimensional space (variables: metabolites, protein mediators) that best approximate the observations
in the least squares sense. The sphere describes the 95 % confidence interval of the Hotelling’s T2 distribution
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in the 2–5-year-old and the 6–17-year-old children are
given in Additional files 1 and 2. A summary of the results
is shown in Table 2.

Most meaningful metabolites and protein mediators
Using the combined data, a total of 14 metabolites and 3
protein mediators defined the most significant differences
responsible for the separation between PICU sepsis and
ED sepsis cohorts in the OPLS-DA model (Fig. 4).
Discussion
The main findings of this nested cohort comparison of
three groups of patients ages 2–17 years with or without
sepsis include the following. First, our metabolomic ana-
lysis using 1H-NMR spectroscopy clearly distinguished
patients with sepsis requiring care in a PICU (n =94)
from those with sepsis in the ED (n =81) and those with-
out sepsis in the ED (controls, n =63) never requiring
care in a PICU, with few outliers excluded from the



Fig. 2 Partial least squares discriminant analysis (PLS-DA) for the 2–17-year-old cohorts based on the preprocessed original data. a Metabolomic
profiling data. b Inflammatory protein mediator profiling data. c Combined biomarker profiling data. The three-dimensional PLS-DA score scatterplots
show the distribution of observations (red dots, pediatric intensive care unit [PICU] sepsis patients; blue dots, emergency department [ED] sepsis
patients; green dots, ED controls) in the three-dimensional space formed by PLS components (PLS1, PLS2, and PLS3). During the model construction, a
discriminant plane (PLS component) was found in which the projected observations were well separated according to the class (PICU sepsis, ED sepsis,
ED controls). The sphere describes the 95 % confidence interval of the Hotelling’s T2 distribution
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model (6 % of the PICU sepsis cohort). Second, protein
mediator profiling also distinguished between these
groups; however, there were more outliers that had to be
excluded from these analyses, limiting the accuracy of
this method alone. Third, combining metabolomic and
protein mediator data produced relatively few outliers (7
% of the PICU sepsis cohort), AUROC of 0.95 (SD 0.01),
and the strongest model (Q2 =0.62), being more inform-
ative than either dataset alone. Fourth, the prespecified
age subgroups resulted in only marginally more accurate
models, but at the price of smaller patient numbers, and
more outliers were excluded from model development.
Fifth, a small group of 17 metabolites and protein medi-
ators accounted for the separation of PICU sepsis and
ED sepsis cohorts with 95 % confidence. Taken together,
our data suggest that development of a laboratory test
using these findings to help make diagnostic and triage
decisions in children with sepsis is feasible.



Fig. 3 Orthogonal partial least squares discriminant analysis for the 2–17-year-old cohorts, using metabolomic profiling (a), protein-mediator profiling
(b), and combined biomarker profiling (c) data. Red dots, pediatric intensive care unit (PICU) sepsis cohort (primary sepsis); blue dots, emergency
department (ED) sepsis cohort (secondary sepsis); green dots, ED control cohort
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These results are important for several reasons. First,
they demonstrate proof of concept for using biomarker
phenotyping in a clinical environment, generating infor-
mation on patient biology that can guide clinicians’ diag-
nosis and triage decisions [19]. Second, the potential of
this biomarker phenotyping has been demonstrated in a
disease where decisions are time-sensitive [11–13]. In
sepsis, poor decisions can mean the difference between
survival and death and between survival with or without
significant functional and/or neurocognitive sequelae
[7–13]. For example, in meningococcemia, the symptoms
in the first 4–6 h are non-specific, and many children are
initially misdiagnosed by their physicians [41]. Third, these
results were obtained in children, and regionalization of
clinical experience in pediatric EDs and PICUs leaves
most hospitals where children present without the special-
ized expertise to make timely diagnostic and triage deci-
sions [16, 17]. Biomarker phenotyping accurately tracked
the clinical decisions made by the specialized pediatric
physicians, differentiating a PICU cohort that had high
need for ventilation and vasoactive infusions and a pro-
longed PICU length of stay from an ED cohort that did
not require the specialized and costly care of a PICU.
Fourth, by using this discovery and systems biology–based
approach, we identified a limited number of metabolites
and protein mediators of interest that may realistically
lead to development of a point-of-care decision aid and
inform future research into the mechanisms of severe
sepsis in children.
Whether the 17 metabolites and mediators of interest

cause or are the result of manifestations of sepsis cannot
be determined on the basis of the observational design
of our study. Nevertheless, overall, they suggest broad
changes in metabolic and inflammatory processes induced
by severe sepsis, identified together as a specific biopattern
to inform patient triage and possible pathophysiological
mechanisms (see Additional file 1). For example, the me-
tabolite changes suggest PICU sepsis–associated enhanced



Table 2 Accuracy results of orthogonal partial least squares discriminant analysis models

Age group Data Outliers in PICU sepsis cohort, n (%) R2Y Q2 p Value Sensitivity; specificity PPV; NPV Accuracy AUROC (SD)

2–17 yr Metabolites 6 (6 %) 0.69 0.60 3.9×10−31 0.86; 0.91 0.92; 0.86 0.89 0.96 (0.01)

Mediators 13 (14 %) 0.58 0.42 4.9×10−17 0.79; 0.77 0.78; 0.78 0.78 0.88 (0.03)

Combined 7 (7 %) 0.69 0.62 5.9×10−33 0.90; 0.85 0.87; 0.88 0.87 0.95 (0.01)

2–5 yr Metabolites 3 (8 %) 0.68 0.50 4.4×10−10 0.76; 0.95 0.93; 0.83 0.87 0.95 (0.03)

Mediators 6 (17 %) 0.67 0.45 1.8×10−7 0.73; 0.83 0.76; 0.81 0.79 0.91 (0.04)

Combined 5 (14 %) 0.78 0.65 8.0×10−15 0.87; 0.93 0.90; 0.91 0.90 0.98 (0.02)

6–17 yr Metabolites 6 (10 %) 0.79 0.68 2.0×10−20 0.94; 0.92 0.94; 0.92 0.93 0.97 (0.01)

Mediators 9 (16 %) 0.67 0.45 4.5×10−10 0.86; 0.76 0.82; 0.80 0.81 0.91 (0.03)

Combined 5 (9 %) 0.82 0.76 2.7×10−25 0.94; 0.92 0.94; 0.92 0.93 0.99 (0.01)

Abbreviations: AUROC area under the receiver operating characteristic curve, NPV negative predictive value, PICU pediatric intensive care unit, PPV positive
predictive value, SD standard deviation
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fatty acid breakdown, ketoacidosis, and dysfunction in
amino acid metabolism [30]; hepatic glycogen catabolism
[42]; and disruption in glycerophospholipid and sulfur
metabolism [30]. The protein mediator changes suggest
altered leukocyte recruitment and function [43–45]. A
representative metabolic pathway network identified the
most impaired biological pathways in PICU sepsis: taurine
and hypotaurine metabolism; glycine, serine, and threo-
nine metabolism; aminoacyl–transfer RNA biosynthesis;
pyruvate metabolism; and, in 6–17-year-olds, arginine and
proline metabolism [46]. This is similar to the most
perturbed pathways in a previous PICU septic shock
(vs PICU control) cohort [23].
This study has some limitations. It was performed at

two centers, and the ED cohorts were from one center,
possibly limiting the generalizability of the results. The
number of patients included in each cohort was modest.
The exact timing of the onset of sepsis in patients is un-
clear, as some present at different times in the course of
the systemic response. In addition, the time from pres-
entation until blood was drawn was likely different in
the PICU sepsis and ED sepsis cohorts. We cannot be
sure if different models would be obtained if stricter cri-
teria for time course were applied. The PICU and ED
sepsis cohorts were broadly separated by age groups a
priori, but not strictly matched for age, sex, and clinical
severity, and the definition of sepsis was more stringent
in the PICU cohort. The ED control group was meant to
reflect children with acute stress known not to be due to
infection; thus, that group included children with pre-
dominantly fractures and lacerations. We did not deter-
mine whether the model could differentiate PICU sepsis
and ED sepsis from other non-sepsis diagnoses that may
require intensive care. Nevertheless, these patients were
recruited from the only two PICUs serving the Province
of Alberta and much of Northern Canada, with a catch-
ment population >4 million. The biomarker phenotyping
was applied in the real-world setting of patients pre-
senting to the hospital with sepsis, regardless of the
exact time of onset of their disease. Finally, the num-
ber of patients included is the largest sample for bio-
marker phenotyping in children of which we are
aware [18, 19, 22, 23, 47].
We did not compare our biomarker phenotyping with

existing Pediatric Early Warning Scores (PEWSs) used
in the ED. We do not believe that this is a major limita-
tion, for several reasons. First, most of these scores in-
clude, in addition to vital signs, subjective descriptions
of the level of consciousness, capillary refilling, work of
breathing, and worry about clinical status [48]. The goal
of our model is to allow decisions that do not rely on
this subjective expertise. Second, evaluations of the
existing PEWSs have concluded that they are not
accurate enough to replace clinical judgment, having
inadequate discriminant ability for predicting PICU
admission [48–51]. A related limitation is that we did
not determine whether PICU sepsis patients initially
presented with obvious fluid-refractory or vasoactive-
dependent sepsis making a biomarker unnecessary.
We retrospectively determined timing of interventions
in ASN patients admitted to one PICU and found
that, in patients ventilated on day 1 of sepsis, the
times from initial presentation to 20 ml/kg volume
bolus or vasoactive infusions were, on average, >3 h
and >8 h, respectively. This suggests that few patients
were declared to have fluid-refractory or vasoactive-
dependent septic shock in the first hours after pres-
entation to the ED.
A prospective validation of our findings in an inde-

pendent multicenter cohort using clear definitions of
sepsis upon presentation to an ED is needed. Although
there is need for some caution [52, 53], we believe that
developing a point-of-care test targeted at detecting the
metabolites and protein mediators of interest identified
here holds great promise, as recently found for gene
expression mosaics [54]. This may involve enzyme-
linked immunosorbent assay or novel, rapid liquid
chromatography-mass spectrometry techniques [55, 56].



Fig. 4 The regression coefficient plot for the orthogonal partial least squares discriminant analysis model differentiating pediatric intensive care
unit (PICU) sepsis from emergency department (ED) sepsis cohorts in children ages 2–17 years (Fig. 3c). Positive values of the coefficients indicate
increased concentrations in the PICU sepsis cohort samples, and negative values indicate a decrease in concentration in the PICU sepsis cohort
samples, compared with the ED sepsis cohort samples. Only statistically significant metabolites and protein mediators are shown (p <0.05). A2M
α-macroglobulin, SAA serum amyloid A, TRAIL tumor necrosis factor-related apoptosis-inducing ligand
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Conclusions
In children ages 2–17 years, combining metabolomic and
inflammatory protein mediator profiling early after pres-
entation can differentiate children with sepsis requiring
care in a PICU from children with or without sepsis who
can be safely cared for outside a PICU. By using this dis-
covery and systems biology–based approach, we identified
a limited number of metabolites and protein mediators of
interest that may realistically lead to development of a
point-of-care decision aid. This may aid triage decisions,
particularly in EDs without pediatric expertise. This find-
ing requires validation in an independent cohort.
Key messages
• In children ages 2–17 years, combining metabolomic
and inflammatory protein mediator profiling on serum
and plasma early after presentation can differentiate
children with sepsis requiring care in a PICU from chil-
dren with or without sepsis who can be safely cared for
outside a PICU.
• By using this discovery and systems biology–based

approach, we identified a limited number of metabo-
lites and protein mediators of interest that may real-
istically lead to development of a point-of-care
decision aid.
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Additional files

Additional file 1: Supplemental descriptions of methods, statistical
modeling, results of subgroups, discussion of the importance of the
metabolites and protein mediators of interest (biomarkers)
identified, and supplemental references. This file also includes two
tables. Table E1. The metabolites (non-targeted 1H NMR spectroscopy
and metabolite concentration profiling) and protein mediators (targeted
bead-based multiplex assay) detected and quantified. Table E2. Comparison
of statistical measures calculated for the supervised OPLS-DA models without
excluding outliers from the results presented in the main text of the article.
(PDF 307 kb)

Additional file 2: Results of the metabolomic and protein mediator
biomarker phenotyping in the two age subgroups. This file contains
six figures depicting the results for the age subgroups and a seventh
figure showing the loading plots that demonstrate which metabolites
and/or inflammatory protein mediators contribute most to each
component in the PCA models for the age 2–17-year-old cohort.
(PDF 4020 kb)
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