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Hemodynamic consequences of severe lactic
acidosis in shock states: from bench to bedside
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Abstract

Lactic acidosis is a very common biological issue for shock patients. Experimental data clearly demonstrate that
metabolic acidosis, including lactic acidosis, participates in the reduction of cardiac contractility and in the vascular
hyporesponsiveness to vasopressors through various mechanisms. However, the contributions of each mechanism
responsible for these deleterious effects have not been fully determined and their respective consequences on
organ failure are still poorly defined, particularly in humans. Despite some convincing experimental data, no clinical
trial has established the level at which pH becomes deleterious for hemodynamics. Consequently, the essential
treatment for lactic acidosis in shock patients is to correct the cause. It is unknown, however, whether symptomatic
pH correction is beneficial in shock patients. The latest Surviving Sepsis Campaign guidelines recommend against the
use of buffer therapy with pH ≥7.15 and issue no recommendation for pH levels <7.15. Furthermore, based on strong
experimental and clinical evidence, sodium bicarbonate infusion alone is not recommended for restoring pH. Indeed,
bicarbonate induces carbon dioxide generation and hypocalcemia, both cardiovascular depressant factors. This review
addresses the principal hemodynamic consequences of shock-associated lactic acidosis. Despite the lack of formal
evidence, this review also highlights the various adapted supportive therapy options that could be putatively added
to causal treatment in attempting to reverse the hemodynamic consequences of shock-associated lactic acidosis.
Introduction
Shock was recently redefined as a clinical state of acute
circulatory failure with inadequate oxygen utilization
and/or delivery by the cells resulting in cellular dysoxia/
hypoxia [1]. In this setting, shock-associated lactic acidosis
is the principal but not exclusive cause of metabolic
acidosis in the shock state. Current clinical practice
considers a pH ≤7.35 and lactatemia >2.0 mmol.l−1

with a PaCO2 ≤ 42 mmHg as defining lactic acidosis [2,3].
In contrast, the definition of severe lactic acidosis is
unclear. Critical care physicians usually consider that
metabolic acidosis with a pH <7.2 has deleterious
hemodynamic effects and requires symptomatic treatment
[4]. Nevertheless, despite optimal management with
adequate supportive and etiological therapy, shock and
severe lactic acidosis (that is, with pH <7.2) remain
associated with an observed high mortality rate of about
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50%, while no survival has been reported for severe lactic
acidosis with shock under pH 7.0 [5-8].
Numerous studies have assessed the cardiovascular

consequences of severe metabolic acidosis, including
lactic acidosis. These experimental studies demonstrated
that severe metabolic acidosis worsens cardiovascular
function [9,10] by exacerbating myocardial dysfunction
and hyporesponsiveness to vasopressors [11]. Nevertheless,
such findings have yet to be formally observed in human
studies.
Etiological treatment is essential while symptomatic

lactic acidosis correction remains a contentious issue.
It is unknown whether alkalinization is beneficial in
severe lactic acidosis. The Surviving Sepsis Campaign
recommends against symptomatic treatment in lactic
acidotic patients with a pH >7.15 for the purpose of
improving hemodynamic status [2]. Alternatively, the
effect of alkalinization on hemodynamics and vasopressor
requirements at pH ≤7.15 is currently unknown. Never-
theless, despite the lack of relevant results on its efficacy,
alkalinization is still largely prescribed in instances of
severe acidosis with pH ≤7.15 [4].
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The present review was written based on a critical and
personal appraisal of the literature from 1 January 1980
to 1 December 2014 searched for using the MEDLINE
database. The object of the search was the hemodynamic
consequences of lactic acidosis during the shock state.
The following terms were searched and combined:
‘bicarbonate’, ‘metabolic acidosis’, ‘lactic acidosis’, ‘pH’,
’shock’, ‘renal replacement therapy’, and ‘anion gap
acidosis’. In addition, references from each identified
article were carefully reviewed for additional suitable
references. Studies involving humans or animals were
examined, and the search was restricted to articles
published in the English language.
This review focuses only on the hemodynamic con-

sequences of severe lactic acidosis with appropriate
response of the ventilatory system; that is, pH <7.2,
PCO2 ≤ 42 mmHg and lactatemia >5 mmol.l−1 (approxi-
mation based on the Henderson-Hasselbach equation
for PCO2 = 42 mmHg). The complex association of
respiratory and metabolic acidosis is not discussed in
this article. Symptomatic therapeutic options are also
reviewed. However, other types of metabolic acidosis,
such as isolated acute renal failure, bicarbonate-losing
metabolic acidosis, ketoacidosis, hyperchloremic acidosis
or metformin-induced lactic acidosis, are not addressed,
aside from specific comparisons.

Epidemiology and outcome of severe lactic
acidosis
Lactic acidosis is one of the most common biological
concerns for intensivists. Nevertheless, clinical studies
assessing the incidence and outcome of lactic acidosis
are sparse and are mostly retrospective or prospective in
nature with small sample sizes.
For this review, the most convincing prospective

multi-center study, conducted in 2011 by Jung and
colleagues [12], noted severe lactic acidosis in 6% of the
studied population (200/2,550 patients); that is, with pH
7.09 ± 0.11 with high lactatemia values. Eighty-three
percent of these patients were treated with vasopressors
with a mortality rate of 57%. In this study, lactatemia
and the swiftness of lactic acidosis correction were
linked with survival. Interestingly, only 18% exhibited a
slight coexistent respiratory acidosis at admission.
Clearly, a causal relationship between lactic acidosis

and mortality has yet to be established. For example, in
metformin-associated lactic acidosis, even with pH
values most often around 7.0, the observed mortality rate
was 25% [13]. However, for the same pH values during
shock, regardless of origin, no survival was reported [8].
Consequently, severe lactic acidosis is much more of a
precipitator than a direct causal factor of mortality. Lactic
acidosis probably contributes to the decompensation of
underlying comorbidities and, hence, to the mortality rate.
Lactate generation in shock states
As indicated above, lactic acidosis is a common
phenomenon in shock patients and a high predictor of
mortality. The pathophysiology of shock-associated lactic
acidosis is still taught to medical students as a direct
marker of oxygen debt or hypoperfusion in tissues
(type A lactic acidosis) [14]. Lactate is produced from
pyruvate and through the glycolysis cascade. Thus,
when pyruvate production exceeds mitochondrial capacity,
lactate generation increases.
Far from being the only hypothesis explaining hypoxia-

induced hyperlactatemia, numerous other mechanisms
are involved, including under aerobic conditions (type B
lactic acidosis). Indeed, lactate is first and foremost an
energetic, non-toxic substratum. Under resting conditions,
half of the total lactate produced (1,500 mmol.day−1) is
directed toward gluconeogenesis in the liver (Cori cycle)
while the remaining 50% is consumed via oxidation [15].
Moreover, the kidney is also involved, acting as a
neoglucogenesis-directed metabolizer in the cortex and as
a producer of lactate in the medulla. At the cellular
level, in response to adrenergic stress in shock patients,
accelerated glycolysis enhances lactate production [16].
An elevated lactate/pyruvate ratio is an indicator of a
cytoplasmic accumulation of NADH that can be used
to regenerate ATP [17]:

ADP þ NADH þ Hþ ¼> ATP þ NAD

Thus, the increase in lactate/pyruvate ratio appears to
be much more of an adaptive response to shock-induced
energetic debt than an actual side effect [18].
In shock patients, acute liver or renal dysfunctions are

most often associated with decreased lactate clearance
and a pronounced increase in blood lactate level com-
pared with patients without liver or renal dysfunction.
However, liver and renal dysfunctions are inextricably
linked with the shock state and their impact on the
decreased lactate clearance in this situation remains
unclear [19,20].

Is hyperlactatemia systematically associated with
metabolic acidosis?
At first glance, it might appear somewhat counterintuitive
that lactate, an endogenous non-toxic molecule and an
energetic substrate of the neoglucogenesis process, could
be, under specific circumstances, the source of lactic
acidosis and induce such deleterious consequences for
organ function [21].
This discrepancy could be explained by the Stewart-

Fencl physicochemical approach. In this model, any
acid–base modification is a reflection of water dissociation
into protons rather than the accumulation of acid per se.
Thus, all strong acids such as lactic acid are completely
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dissociated at physiological pH in water, thus generating
protons [22]. The strong ion difference (SID) is the differ-
ence between the sums of the concentrations of the strong
cations and strong anions:

SID½ � ¼ Naþ½ � þ Kþ½ � þ Ca2þ
� �

þ Mg2þ
� �

− Cl−½ � − Other strong anions½ �

In the shock state, therefore, the increase in lactate
production and the decrease in the efficiency of lactate
clearance at the cellular level result in a net increase
in lactate and a drop in intracellular pH. To maintain
intracellular pH in physiological ranges (7.15 to 7.25),
mono-carboxylate transporters extrude lactate and H+

through the plasma membrane [23]. Following the
Stewart model, the accumulated extracellular lactate
reduces SID and lowers extracellular pH by proton
generation.
Thus, according to the Stewart approach, at constant

value of chloremia, albuminemia and PCO2, accumula-
tion of lactate is always associated with lactic acidosis
[24]. However, lactic acidosis with coexisting metabolic
acid–base disturbances (with dyschloremia, adapted or
non-adapted PCO2 , and so on) is by far the most common
situation [25].

Is lactic acidosis harmful for cardiovascular
function?
Regulation of the intracellular and extracellular pH of
cardiac or vascular smooth muscle cells (VSMCs) is
essential for the maintenance of a stable hemodynamic
status. As alluded to above, regardless of the mechanism
involved, lactate generation in shock states leads to a
drop in intracellular and extracellular pH and most often
to hemodynamic failure. Whether this severe lactic
acidosis is a causal contributor to multiple organ failure or
simply a biomarker of the patient’s critical state remains
an ongoing debate. In this situation, severe lactic acidosis
in experimental studies always causes negative effects on
cardiovascular function while its correction negates
its protective effects [26]. Again, no human study has
so far clearly replicated these same experimental
findings.
In the following sections, the hemodynamic consequences

of lactic acidosis at both the cellular and functional level are
described. However, a cautious interpretation must be made
of the available data. In fact, a large portion of the published
experimental data used non-organic acid to induce
metabolic acidosis. Therefore, the number of relevant
and published studies centered on the effects of
acidosis induced by an accumulation of extracellular
lactate reducing SID and lowering extracellular pH by
proton generation is somewhat limited. By hypothetical
reasoning, it is usually accepted that the effects of lactic
acidosis may overlap with those of metabolic acidosis.
Nevertheless, in the following sections, the manner in
which acidosis is induced will be specified for each
included reference; that is, the hypoxic lactic acidosis
model (LAM) or non-organic acidosis model (NOAM). It
is likely that some of the hemodynamic effects reported in
hypoxic LAMs are also induced in part by hypoxia [27].
However, the latter remains the most widely used
model to induce an endogenous and homogenous
shock-associated lactic acidosis. In addition, when
acidosis is induced via NOAM, the cited text will sys-
tematically carry the mention that the study involved
metabolic acidosis including lactic acidosis.

Lactic acidosis and myocardial cell dysfunction
In cardiac cells, the drop in intracellular pH has a
considerable impact on the amplitude of the systolic
calcium transient and the subsequent excitation-
contraction coupling pathway (NOAM) [28] (Figure 1).
The net impact of intracellular lactic acidosis is an increase
in the calcium transient amplitude due to increased
sarcoplasmic reticulum Ca2+ content despite a decrease in
fractional release (NOAM) [29]. Three major mechanisms
globally regulate the sarcoplasmic reticulum Ca2+ concen-
tration: 1) desensitization of the ryanodine receptor and
decreased calcium release by the sarcoplasmic reticulum
(LAM) [29,30]; 2) extrusion of H+ via Na+/H+ exchange,
increasing the intracellular Na+ concentration, which
stimulates Na+/Ca2+ exchange and further increases the
intra-cytoplasmic Ca2+ concentration (NOAM and LAM)
[31,32]; and 3) inhibition of sarco/endoplasmic reticulum
Ca2+-ATPase (SERCA) but also phosphorylation of phos-
pholamban, which in turn increases Ca2+ uptake from the
cytosol by SERCA (NOAM and LAM) [33,34].
Paradoxically, activation of the Na+/H+ exchanger (NHE)

in order to increase intracellular pH also has the potential
of giving rise to deleterious increases in cytosolic calcium
and sodium concentrations [35].
Intra- and extracellular lactic acidosis also have an

impact on all action potential mechanisms; that is, the
delicate balance between inward and outward currents.
The current literature, most of which is experimental,
reports various effects on action potential depending
on the degree and method of acidosis used. One of
the most studied aspects in acidosis is the conse-
quence of a change in calcium transient on the action
potential and its clinical relevance to cardiac arrhyth-
mias. Schematically, intracellular metabolic acidosis,
including of lactic acid origin, as seen above, increases
the intracellular calcium transient but also its alternans,
which impacts repolarization alternans susceptibility
(NOAM) [36].
It has long been known that a drop in intracellular pH

not only changes the calcium transient amplitude but also



Figure 1 Description of the principal pathophysiological effects of severe metabolic acidosis with pH <7.2 on a muscle cell. Transient
calcium amplitude: the increase in Ca2+ transient amplitude is the net consequence of the inhibitory effect of low intracellular pH on RyRs, NCX
and ICa, and the stimulatory effects of low intracellular pH on NHE, NBC, TRVP-1 and sarcoplasmic reticulum Ca2. Myofilament Ca2+ sensitivity: due
to the low intracellular pH, Ca2+ binding to troponin is altered and myofilament Ca2+ sensitivity decreased. Cellular hyperpolarization: intracellular
acidosis also enhances hyperpolarization through K+ extrusion. Apoptosis: intracellular acidosis has stimulatory effects on BNIP3, promoting apoptosis.
Adrenoreceptors: extracellular and intracellular acidosis reduces the number of adrenoreceptors on the cell membrane. Ica, L-type Ca2+ channel; IP3-R,
inositol-1,4,5-triphosphate receptor; NBC, Na+/HCO3

− co-transport; NCX, Na+/Ca2+ exchange; NHE, Na+/H+ exchange; pHe, extracellular pH;
pHi, intracellular pH; PLB, phospholamban; Ry-R, ryanodine receptor; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SR, sarcoplasmic reticulum;
TRVP-1, transient receptor potential channels-1.
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alters Ca2+ binding to troponin C (NOAM and LAM)
[37,38]. This effect occurs not only in severe but also mild
acute metabolic acidosis (LAM) [39].
The consequences of lactic acidosis on the apoptosis

pathway have been widely investigated in myocardial
ischemia models but poorly studied in sepsis-induced
cardiovascular dysfunction. Among the numerous studied
mechanisms, BNIP3, a member of the Bcl-2 pro-apoptotic
protein family, mainly contributes to cardiomyocyte cell
death (LAM) [40,41]. Undetectable in healthy cells,
hypoxic conditions such as myocardial infarction or
trauma-hemorrhage injury promote BNIP3 gene expres-
sion and its accumulation in the cytoplasm. However, only
the association of hypoxia with intracellular lactic acidosis
induces the activation of the death pathway (LAM)
[42]. Under intracellular lactic acidosis conditions,
BNIP3 translocates into the mitochondrial membrane,
thereby opening the mitochondrial permeability transition
pore. Thereafter, mitochondria subsequently release
pro-apoptotic factors (cytochrome c, apoptosis-inducing
factors, and so on) that stimulate nuclear translocation of
DNase without activation of caspases (LAM) [40]. Other
mechanisms, described in experimental endothelial cell
models of ischemic acidosis, involve accumulation of
cytosolic Ca2+ leading to the activation of caspases
and apoptosis (LAM) [43]. Finally, the drop in extracellular
pH also reduces the number of beta-adrenoreceptors on
myocardial cell surfaces (NOAM) [44].
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Lactic acidosis and vascular smooth muscle cell
dysfunction
Metabolic acidosis, including lactic acidosis, induces
significant effects on VSMCs in close relationship with
endothelial cells (Figure 1). Lactic acidosis initiates
multiple cascades of intracellular signaling reactions
in both endothelial cells and VSMCs.
As in myocardial cells, intracellular metabolic acidosis,

including lactic acidosis, also alters the calcium transient
and reduces the number of adrenoreceptors on the
cell surface (NOAM) [11,45]. More specifically, lactic
acidosis induces vascular smooth muscle relaxation
via the opening of ATP-sensitive potassium channels
(NOAM and LAM) [46,47].
Widely demonstrated, metabolic acidosis, including

lactic acidosis, also leads to the expression of inducible
nitric oxide synthase in endothelium and VSMCs.
Overproduction of nitric oxide has a direct vasodilator
effect on VSMCs (NOAM and LAM) [48-51].
Intracellular pH regulation in VSMCs is partly dependent

on transmembrane movement of acid/base equivalents.
Three well-characterized channels are known to be
involved in intracellular pH regulation: 1) the NHE, which
extrudes proton in exchange for sodium (NOAM); 2) the
Cl−/HCO3

− exchanger, which maintains a high concentra-
tion of intracellular chloride and is activated in response to
intracellular alkalinization (NOAM); and 3) Na+/HCO3

−

Figure 2 Schematic representation of cellular and functional consequ
instances of severe lactic acidosis. The same mechanisms are involved in
phospho-fructo-kinase; pHe, extracellular pH; pHi, intracellular pH.
co-transport, which is also stimulated by a drop in intra-
cellular pH (NOAM) [52-55].

Functional myocardial consequences of severe lactic
acidosis
Lactic acidosis has been known for over 50 years to impair
cardiac function [56-59] (Figure 2). In isolated rabbit
hearts, Berger and colleagues elegantly demonstrated that
lactic acidosis depressed ventricular elastance (LAM) [9].
In an in vivo model of severe lactic acidosis induced by
hemorrhagic shock, inotropism assessed by a conductance
catheter was also altered (LAM) [60]. However, human
studies are lacking on this specific subject. A recent study
on isolated human ventricular trabeculae showed that a
mild metabolic acidosis, including lactic acidosis, reduced
both contractility and beta-adrenergic response to
isoproterenol (NOAM) [39]. Other experimental studies
also confirm the metabolic/lactic acidosis-induced hypore-
sponsiveness to inotropic agents (NOAM) [44,61]. Despite
sparse data, metabolic acidosis, including lactic acidosis,
also appears to depress myocardial relaxation assessed in
isolated heart or by echocardiography (NOAM) [62,63].
Conversely, the literature is extensive on targeting

of the pathophysiology of metabolic acidosis in cardiac
arrhythmias, mainly in ischemia-reperfusion models.
By increasing cellular calcium transient alternans, meta-
bolic acidosis, including lactic acidosis, also promotes
ences in myocardial and vascular smooth muscle cells in
both cell types but with specific functional consequences. PFK,
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repolarization alternans susceptibility (NOAM) [36].
Indeed, repolarization wave alternans has been shown
to be a prognostic marker for the occurrence of severe
arrhythmias such as ventricular fibrillation [64,65].
Functional vascular consequences of severe lactic acidosis
Both in vivo and ex vivo experimental studies have
clearly demonstrated that severe lactic acidosis is associated
with major deleterious vascular consequences, although
these effects have not been formally demonstrated in
humans (Figure 2). Experimentally, the reduction in
contractile response to increasing doses of phenylephrine
defines vascular hyporesponsiveness to vasopressors. For
example, in a myography chamber, segments of healthy
rat arterial vessels exposed to a severe acidotic medium
displayed a reduced contractile response to phenylephrine
or potassium (NOAM and LAM) [10,60,66,67]. However,
vascular response assessed by changes in vascular tone to
catecholamines does not necessary translate into a
resulting change in mean arterial pressure. Indeed,
arterial pressure is measured in compliance vessels,
which represent only 30% of systemic vascular resistances.
Relaxation of arterial vessels is also decreased by severe
metabolic acidosis, including lactic acidosis, although this
aspect is less well documented (NOAM) [68].
There is no clear, published definition of vascular

hyporesponsiveness to vasopressor therapy in clinical
practice. The inability to increase arterial pressure
despite high vasopressor doses in shock patients could be
one suggested definition. However, there are currently no
available human data using this definition and demon-
strating a direct imputable link between lactic acidosis and
impaired vascular function.
Potential beneficial effect of acidosis related to
hyperlactatemia
In addition to the known deleterious effects of acidosis,
experimental studies prior to 1980 reported several
examples of the beneficial effect of moderate metabolic
(including lactic) acidosis on hemodynamics [69]. Thus,
recent literature has emerged regarding the potential
favorable effects of mild acidosis, particularly in the setting
of cardiac surgery in order to reduce the harmful effects
of postoperative ischemia-reperfusion.
For instance, in a canine model of coronary ischemic-

reperfusion syndrome, Fujita and colleagues [70] reported
that prolonged transient acidosis during early reperfusion
was found to reduce myocardial injuries (LAM). These
unintuitive effects of acidosis may be related to the
decrease in calcium overload, which attenuates myocardial
consumption [71]. Acidosis also attenuates neutrophil
activation and free radical generation [72]. Moreover,
nitric oxide and adenosine release are enhanced,
contributing to protecting the heart from reperfusion in-
jury (LAM) [73,74].
Under acidotic conditions, the sigmoid HbO2 dissociation

curve undergoes a rightward shift, resulting in a decrease in
SaO2 and an increase in tissue O2 delivery. Due to the
shape of the HbO2 curve, the effects of such a shift are
usually insignificant at normal PO2 levels but are critical at
low PO2 levels [75]. In vitro studies have determined that
acidosis activates ATP-sensitive potassium channels leading
to vasorelaxion via membrane hyperpolarization [76].
This in turn may increase microvascular flow and
thus contribute to the reperfusion syndrome. Finally,
even if counterintuitive, acidosis reduces ATP production
and energy expenditure, which could lead, at a cellular
level, to a protective effect against death [77].

Is there any proven benefit of systemic
alkalinization in severe metabolic
(including lactic) acidosis?
Literature regarding the potential beneficial effect of
alkalinization in correcting metabolic acidosis is con-
troversial. As reported above, severe lactic acidosis
with pH ≤7.15 appears to be experimentally detrimental
for organ functions. Consequently, even if not formally
demonstrated in clinical trials, it would appear reasonable
to quickly correct the pH in order to restore cellular
functions. In the absence of conclusive clinical studies,
however, most of the following treatment options are
consequently based on experimental data.

Sodium bicarbonate
Sodium bicarbonate has been removed from the treat-
ment algorithm in advanced cardiac life support [78]. The
Surviving Sepsis Campaign also recommends against the
use of sodium bicarbonate therapy for the purpose of
improving hemodynamics or reducing vasopressor re-
quirements in patients with severe lactic acidosis
with pH >7.15 [2]. Despite these strong guidelines, in
the most recent survey on this topic, 67% of intensivists
recommend administration of base to patients with
metabolic acidosis, including lactic acidosis. The blood pH
at which base therapy should be initiated remains
nonetheless controversial. Thirty-seven percent of these
intensivists continue to begin symptomatic treatment of
metabolic acidosis for a pH ≥7.1 [4]. Such discrepancy
between the literature and bedside practice warrants
further explanation.
Clinical studies investigating sodium bicarbonate therapy

in situations of severe lactic acidosis have always reported
an increase in extracellular pH whereas experimental
data are more divergent. By contrast, intracellular pH
always decreases after sodium bicarbonate administration
(Table 1). The main explanation for this so-called
paradoxical intracellular acidosis is based on the



Table 1 Reported effects of Sodium Bicarbonate on intracellular and extracellular pH, hemodynamics and mortality in in vivo experimental and clinical studies

Study Experimental (E)
or human (H)

Methodology (intervention/subjects/
protocol/measurements)

Increased PaCO2

after alkalinization
in HCO3

− group?

Decreased or unchanged
pHe or pHi after alkalinization
in HCO3

− group or compared
with other groups?

Shock associated
lactic acidosis?

Positive effects of
sodium bicarbonate
on hemodynamics
(arterial pressure/
cardiac index)a

Positive impact
of sodium
bicarbonate
on mortalityb

Kim et al.
2013 [112]

H Retrospective. 103 patients with lactic
acidosis. Effects of HCO3

− on survival
NA NA Yes NA NA

Wilson et al.
2013 [81]

H Retrospective series. Severe acidotic
trauma patients. Effects of HCO3

− on
survival, PaCO2, pH

Yes pHe: no Yes NA NA

pHi: NA.

Levraut et al.
2000 [113]

H Mild metabolic acidosis in non-shock
patients. Effects of a bicarbonate load
on CO2 generation depending on
non-bicarbonate buffer

Yes pHe: no No NA NA

pHi: no

Nielsen et al.
2002 [114]

H 5-minute rhythmic handgrip to provoke
intracellular acidosis. Healthy subjects.
HCO3

− vs. saline. Effect on arterial pH, and
muscle pHi, PaCO2

Yes pHe: no No NA NA

pHi: no

Nakashima et al.
1996 [115]

H Healthy subjects. Effects of HCO3
− infusion

on cerebral blood flow, PaCO2 and pHi
Yes pHe: no No NA NA

pHi: yes

Leung et al.
1994 [100]

H Metabolic acidosis in patients undergoing
surgery. HCO3

− vs. carbicarb. Effects on
pHe, hemodynamics

NA pHe: no No No NA

pHi: NA

Mark et al.
1993 [116]

H Intraoperative mild acidosis. HCO3
−

vs. saline. Effects on PaCO2, pH,
hemodynamics

Yes pHe: no No NA NA

pHi: NA

Fanconi et al.
1993 [117]

H Neonatal acidosis. HCO3
− before-after

study. Effect on hemodynamics, pH,
PaCO2, PtCO2

Yes pHe: no Yes Yes NA

pHi: NA

Mathieu et al.
1991 [92]

H Septic shock. HCO3
− vs. saline. Effect on

arterial pH, PaCO2, hemodynamics
Yes pHe: no Yes No NA

pHi: NA

Cooper et al.
1990 [89]

H Septic shock. HCO3
− vs. saline. Effect on

arterial pH, PaCO2, hemodynamics
Yes pHe: no Yes No NA

pHi: NA

Bersin et al.
1989 [118]

H Congestive heart disease. HCO3
− vs. saline.

Effect on acidosis, PaCO2, hemodynamics
(myocardial oxygen consumption)

Yes pHe: no No No NA

pHi: NA

Kimmoun et al.
2014 [60]

E Hemorrhagic shock. Rats. HCO3
− with

calcium adjunction and increased
respiratory rate. Effect on pHe,
muscle pHi, hemodynamics

No pHe: No Yes Yes NA

pHi: No
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Table 1 Reported effects of Sodium Bicarbonate on intracellular and extracellular pH, hemodynamics and mortality in in vivo experimental and clinical studies
(Continued)

Valenza et al.
2012 [84]

E Lactic acid infusion. Rats. Lactic acidosis
vs. lactic acidosis + sodium bicarbonate.
Effects on hemodynamics, pHe, lactate,
phosphofructokinase.

Yes pHe: No No No NA

pHi: NA

Beech et al.
1994 [87]

E Hypovolemic shock. Rats. Carbicarb
vs. HCO3

−. Muscle pHi, PaCO2 and
hemodynamics

Yes pHe: No Yes No NA

pHi: Yes

Bollaert et al.
1994 [79]

E Endotoxinic shock. Rats. HCO3
− vs. saline.

Effect on arterial pH, PaCO2, muscle pHi,
hemodynamics

Yes pHe: No Yes No NA

pHi: Yes

Rhee et al.
1993 [83]

E Hypoxic lactic acidosis. Mongrel dogs.
HCO3

− vs. Carbicarb vs. saline. Effects
on PaCO2, hemodynamics

Yes pHe: Yes Yes No NA

pHi: Yes

Cooper et al.
1993 [88]

E L-lactic infusion. Pigs. HCO3
− vs. saline.

Effects on pH, hemodynamics
Per protocol
ventilation
adjustment

pHe: No Yes No NA

pHi: NA.

Shapiro et al.
1990 [119]

E Ammonium chloride-induced metabolic
acidosis. HCO3

− vs. Carbicarb. Effects on
PaCO2, pHe, hepatic pHi, hemodynamics

Yes pHe: No No No NA

pHi: Yes

Dimlich et al.
1988 [120]

E Low-flow-induced lactic acidosis. Rats.
HCO3

− vs. NaDCA vs. NaCl. Effects on
pH, lactatemia

NA pHe: No Yes No NA

pHi: NA.

Iberti et al.
1988 [91]

E Hemorrhagic shock. Dogs. HCO3
− vs.

saline. Effect on hemodynamics, pH,
PaCO2

Yes pHe: Yes Yes No NA

pHi: NA.

Hope et al.
1988 [121]

E Incomplete cerebral ischemia in lamb.
Effects of glucose and HCO3

− on cerebral
pHi, PaCO2 and PtiCO2

Yes pHe: No No NA NA

pHi: Yes

Sessler et al.
1987 [122]

E Lactic acidosis treatment in neonatal
rabbits. Effect of HCO3

− on pHi and
pHe and PaCO2

Yes pHe: no Yes NA NA

pHi: no

Graf et al.
1985 [90]

E Hypoxic lactic acidosis. Dogs. HCO3
− vs.

saline vs. no therapy. Effects on pHe
and hemodynamics

NA pHe: yes Yes No No

pHi: NA

Graf et al.
1985 [123]

E Hypoxic lactic acidosis. Dogs. HCO3
− vs.

saline. Effects on pHe and hepatic pHi
Yes pHe: yes Yes No No

pHi: yes

Arieff et al.
1982 [82]

E Phenformin-induced lactic acidosis. Dogs.
HCO3

− vs. saline vs. placebo. Effects on
pHe, pHi, hemodynamics

NA pHe: yes Yes No No

pHi: yes

aOnly applicable in comparative studies with critical patients or experimental models. bOnly applicable in comparative studies with critical patients or experimental models. NA, not applicable; pHe, extracellular pH;
pHi, intracellular pH.
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reaction of sodium bicarbonate with a proton to form
water and carbon dioxide:

HCO3
− þ Hþ⇔H2O þ CO2

This large generation of carbon dioxide has been
observed in all previous clinical and experimental
studies (Table 1). Carbon dioxide rapidly diffuses
across the cell membrane, resulting in intracellular
hypercapnic acidosis, which impairs organ function
[79-81]. The rise in carbon dioxide partial pressure
also increases hemoglobin affinity for oxygen and
may, therefore, decrease oxygen delivery. The rise in lactate
after bicarbonate administration, noted in many studies,
could be the consequence of this impaired oxygen delivery
to tissues [82,83]. Furthermore, upon administration
of bicarbonate, the generated alkalosis favors glucose
metabolism. Consequently, glucose levels decrease more
rapidly than lactate levels, thus worsening hyperlactatemia.
Moreover, compared with low pH levels, lactate oxidation
is reduced when pH increases [84]. Moreover, bicarbonate
decreases ionized calcium, which, as discussed above, plays
a pivotal role in cellular contraction [60,85,86]. It is thus
not surprising that experimental and human studies asses-
sing the effects of sodium bicarbonate effects in shock
patients with severe lactic acidosis have not shown any
improvement in cardiovascular function [82,83,87-92].
Therefore, as suggested by Boyd and Walley [85], it is likely
that all potential beneficial effects of sodium bicarbonate
therapy have been dampened by these two major side
effects. A recent experimental study determined the
cardiovascular effects of an adapted sodium bicarbonate
therapy that included the prevention of both carbon
dioxide increase and ionized calcium decrease in a model
of severe lactic acidosis induced by hemorrhagic shock.
The main finding was that bicarbonate therapy in this
specific setting improved both cardiac and vascular function
in addition to raising intra- and extracellular pH [60].
In light of these data, bicarbonate therapy might be

useful in critical situations in the expectation of specific
etiological treatment efficacy. Translating these results
to the clinical bedside needs to be confirmed in clinical
trials aimed at determining which patients may benefit
from this strategy. The design of such a study would likely
be difficult to develop and entail several difficulties.

THAM and carbicarb
Given the side effects of sodium bicarbonate, other alkali
therapies have been developed. THAM (tris-hydroxymethyl-
aminomethane) and carbicarb (equimolar mixture of
sodium bicarbonate and sodium carbonate) constitute
the two most prominent molecules in this context.
THAM buffers protons and particularly carbon dioxide,
as described in the following reactions:

R−NH2 þ H2O þ CO2⇔R−NH3
þ þ HCO3

−

R−NH2 þ Hþ þ lactate−⇔RNH3
þ þ lactate−

THAM diffuses into the intracellular space in non-
ionized form and is able to raise intracellular pH
[93]. In theory, its use should represent an interesting
option; however, its effects on pH are limited over time by
its immediate urinary excretion. Due to its toxicity
(hyperkalemia), its usefulness in the critical care setting is
reduced in instances of significant renal impairment with
a glomerular filtration rate under 30 ml.minute−1.
In experimental studies, the buffering capacity of

THAM is comparable to that of bicarbonate but without
the generation of carbon dioxide [94]. In a blood-perfused
isolated heart model with a pH lowered to 7.0, THAM
also partially corrects pH and improves myocardial con-
tractility and relaxation. Interestingly, a mixture of sodium
bicarbonate with THAM has been shown to enable a
complete recovery of pH, improve myocardial function and
prevent intracellular paradoxical acidosis [95]. Clinical trials
in critical patients with relevant lactic acidosis assessing the
efficacy and/or the hemodynamic effects of THAM versus
other alkali therapies are alas methodologically poor. The
most recent randomized study included only 18 patients
with mild metabolic (including lactic) acidosis. The authors
concluded that THAM and sodium bicarbonate had similar
alkalinizing effects [96]. More robust randomized and
controlled studies assessing cardiovascular function
would be of valuable interest in determining which
patients may benefit from this therapeutic option.
THAM also has considerable side effects, including

hepatic failure, hyperkalemia, hypoglycemia and, if the
molecule is infused via a peripheral venous access, a
potential risk of extravasation and cutaneous necrosis
[97]. Hence, although an interesting agent, its usefulness
remains questionable, particularly in the case of acute
renal failure, which is a frequent clinical setting in the
intensive care unit.
Carbicarb was also developed in order to reduce

carbon dioxide generation. This molecule, in theory,
would limit the drop in intracellular pH compared
with that induced by a bicarbonate load. Experimental
studies in dogs comparing carbicarb versus bicarbonate
therapy showed the superiority of carbicarb in improving
intracellular pH and cardiac output [98,99]. In patients
who developed metabolic acidosis while undergoing major
surgery, carbicarb demonstrated its superiority compared
with sodium bicarbonate therapy in improving cardiac
output with no deleterious side effects [100]. As above,
however, no relevant clinical trials have been performed in
situations of more severe acidosis.
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Renal replacement therapy
While sodium bicarbonate remains a controversial
therapy in instances of severe lactic acidosis, it is
somewhat remarkable that renal replacement therapy
(RRT), which also provides a significant amount of
bicarbonate buffer, is very rarely discussed.
Similarly to the modified bicarbonate therapy, RRT could

be initiated in case of an uncontrolled shock state
mainly attributed to concomitant severe lactic acid-
osis. Two modalities could be envisaged: intermittent
hemodialysis (IHD) and continuous veno-venous
hemofiltration (CVVHF). Compared with IHD, CVVHF
corrects pH more rapidly. Moreover, because of its
permanent rebalancing effects on acid–base status,
CVVHF therapy is preferred to IHD [101]. Thus, CVVHF
should be preferred to IHD.
Many studies have also compared various buffer

solutions. Under physiological conditions, acetate and
lactate are metabolized into bicarbonate and carbon
dioxide. However, during shock states, the metabolic
rate of lactate or acetate may be reduced due to liver
failure. As demonstrated by Tan and colleagues [102],
even without hepatic failure, RRT with a lactate buffer
solution induces iatrogenic hyperlactatemia associated
with an acidifying effect. Accordingly, during the shock
state or in instances of multiple organ failure, including
hepatic dysfunction, the use of a bicarbonate buffer
solution is warranted [103].
The optimal intensity of CVVHF therapy is unclear,

particularly for the correction of the acid–base status. In
critically ill patients with acute kidney injury, however,
high-volume CVVHF does not reduce mortality at 90 days
[104]. Finally, a recent study demonstrated that, in
patients with mild metabolic, mainly non-lactic acidosis
and acute renal failure, standard and high-volume CVVHF
had similar effects on acid base status [105]. As suggested
by the Surviving Sepsis Campaign guidelines, a typical
dose of 20 to 25 ml.kg−1.h−1 is recommended [2].
Although efficient in normalizing pH, beneficial effects

of CVVHF on hemodynamics are not yet convincing.
Indeed, trials on the beneficial hemodynamic effects
of CVVHF are mostly non-randomized with low statistical
power [105-108]. Furthermore, the effects of RRT on
intracellular pH are poorly described in the literature.

Therapeutic perspectives
As presented above, alkalinization with base does not
necessarily result in improved cellular or hemodynamic
functions and survival rate [25]. Targeting the pH
regulatory protein NHE could represent an innovative
approach to lactic acidosis management. NHE activation
results in intracellular sodium and calcium overloads,
which exert deleterious effects on cardiovascular function
[109]. A recent experimental study, with a relevant LAM,
demonstrated that sabiporide improved myocardial func-
tion, reduced systemic inflammation and prevented
multiple organ failure [110]. An ensuing experimental
study with a clinically relevant model of septic shock
also demonstrated similar effects [111].

Conclusion
Deleterious hemodynamic effects of severe lactic acidosis
are largely suggested by experimental data, although not
fully confirmed by human studies. Pending the effectiveness
of an etiological treatment, there is no efficient and
validated symptomatic therapy at hand to correct a life-
threatening metabolic acidosis. Upcoming research in this
field should be focused on the optimal strategy to treat
severe metabolic acidosis, including symptomatic therapy.
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