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Abstract

Introduction: Much controversy exists on the effect of a fresh frozen plasma (FFP) transfusion on systemic
inflammation and endothelial damage. Adverse effects of FFP have been well described, including acute lung
injury. However, it is also suggested that a higher amount of FFP decreases mortality in trauma patients requiring a
massive transfusion. Furthermore, FFP has an endothelial stabilizing effect in experimental models. We investigated
the effect of fresh frozen plasma transfusion on systemic inflammation and endothelial condition.

Methods: A prospective predefined substudy of a randomized trial in coagulopathic non-bleeding critically ill
patients receiving a prophylactic transfusion of FFP (12 ml/kg) prior to an invasive procedure. Levels of inflammatory
cytokines and markers of endothelial condition were measured in paired samples of 33 patients before and after
transfusion. The statistical tests used were paired t test or the Wilcoxon signed-rank test.

Results: At baseline, systemic cytokine levels were mildly elevated in critically ill patients. FFP transfusion resulted in
a decrease of levels of TNF-a (from 11.3 to 2.3 pg/ml, P=0.01). Other cytokines were not affected. FFP also resulted
in a decrease in systemic syndecan-1 levels (from 675 to 565 pg/ml, P=0.01) and a decrease in factor VIl levels
(from 246 to 246%, P <0.01), suggestive of an improved endothelial condition. This was associated with an increase
in ADAMTS13 levels (from 24 to 32%, P <0.01) and a concomitant decrease in von Willebrand factor (vVWF) levels
(from 474 to 423%, P <0.01).

Conclusions: A fixed dose of FFP transfusion in critically ill patients decreases syndecan-1 and factor VIII levels,
suggesting a stabilized endothelial condition, possibly by increasing ADAMTS13, which is capable of cleaving VWF.

Trial registrations: Trialregister.nl NTR2262, registered 26 March 2010 and Clinicaltrials.gov NCT01143909, registered
14 June 2010.
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Introduction

Substantial units of fresh frozen plasma (FFP) are uti-
lized in the intensive care unit (ICU) [1,2]. FFP is effect-
ive in correcting clotting factor deficiencies [3] and is
therefore transfused in patients with active bleeding, but
also frequently in patients with abnormal coagulation
tests to prevent bleeding [2,4]. In sepsis patients, FFP
transfusion rates of up to 57% have been reported [5].
However, there is an association between FFP transfu-
sion and adverse outcome in the critically ill, including
transfusion-related acute lung injury (TRALI) [4,6-8],
transfusion-related circulatory overload [9,10], multior-
gan failure [8,11] and an increased risk of infections
[12]. Although not entirely understood, the pathological
mechanisms underlying the association between FFP
transfusion and lung injury is thought to result from an
inflammatory response including a neutrophil influx into
the lungs and elevated pulmonary levels of interleukin 8
(IL-8) and interleukin 1 (IL-1), as demonstrated in
TRALI patients [13,14]. In line with this, FFP increased
expression of endothelial adhesion molecules in human
pulmonary endothelial cells [15]. Together, these data
suggest that endothelial cell activation and disruption
may be an early event following lung injury due to trans-
fusion [16].

On the other hand, FFP also seems to have protective
effects. In trauma patients requiring a massive trans-
fusion, resuscitation with a higher ratio of FFP to red
blood cell units is associated with decreased mortality
[17,18]. Interestingly, some studies suggest that this de-
creased mortality is irrespective of correction of coagu-
lopathy by restoring coagulation factor levels [18,19],
although not all studies support this observation [20,21].
Instead, a beneficial effect of FFP may be related to the
restoration of injured endothelium. Syndecan-1 is a pro-
teoglycan on the luminal surface of endothelial cells that
inhibits leukocyte adhesion. During endothelial damage,
syndecan-1 is shed, resulting in increased levels of
syndecan-1 in the systemic compartment [22]. Patients
in hemorrhagic shock have a disrupted endothelial integ-
rity and glycocalyx layer, with decreased syndecan-1 ex-
pression [23]. Vascular integrity is also disrupted in
various populations of critically ill patients, as demon-
strated by increased systemic levels of syndecan-1
[24,25]. Of interest, in a hemorrhagic shock model, FFP
was found to improve endothelial integrity, associated
with increased expression of syndecan-1 on endothelial
cells [26].

The effect of transfusion of FFP on endothelial and cyto-
kine host response in patients is unknown. In a study
investigating the risk-benefit ratio of FFP transfusion in
non-bleeding critically ill patients with a coagulopathy, we
investigated the inflammatory and endothelial host re-
sponse to a fixed dose of FFP transfusion.
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Methods

Study design

This was a predefined post hoc substudy of a multicenter
trial in which non-bleeding critically ill patients with an
increased international normalized ratio (INR, 1.5 to 3.0)
were randomized between May 2010 and June 2013 to
omitting or administering a prophylactic transfusion of
FFP (12 ml/kg) prior to an invasive procedure. Only
patients randomized to receive FFP were included in
this substudy. Patients were enrolled at three sites in
The Netherlands: two university hospitals (Academic
Medical Center, Amsterdam and Leiden University Medical
Center, Leiden) and one large teaching hospital (Tergooi
Ziekenhuizen, Hilversum). The Institutional Review Board
of the Academic Medical Center approved the study
protocol. Before entry in the study, written informed con-
sent was obtained from the patient or legal representative
in accordance with the Declaration of Helsinki. The study
protocol was registered with trial identification numbers
NTR2262 and NCT01143909 [27].

Exclusion criteria were clinically overt bleeding,
thrombocytopenia of <30 x 10°/L, treatment with vita-
min K antagonists, activated protein C, abciximab, tirofi-
ban, ticlopidine or prothrombin complex concentrates
and a history of congenital or acquired coagulation fac-
tor deficiency or bleeding diathesis. Patients treated with
low-molecular-weight heparin (LMWH) or heparin in
therapeutic dose were eligible if medication was discon-
tinued for an appropriate period. Sepsis was defined by
the Bone criteria [28]. Disseminated intravascular co-
agulation (DIC) was defined by an International Society
on Thrombosis and Haemostasis (ISTH) score of =5
[29]. The FFP was quarantine plasma manufactured by
Sanquin, the Dutch National Blood Bank. As of 2007,
women are deferred for donation for preparation of FFP
in the Netherlands.

Sample collection

Citrated blood samples were drawn from an indwelling
arterial catheter before and within 10 minutes after FFP
transfusion. During transfusion, respiratory settings were
kept constant. Samples were collected in sodium citrate
(0.109 M 3.2%) tubes and were centrifuged twice within
30 minutes: the first 15 minutes at 2,000 x g and then
5 minutes at 15,000 x g, both at 18°C. Supernatant was
collected and stored at —80°C.

Assays

Tumor necrosis factor alpha (TNF-a) levels were mea-
sured by enzyme-linked immunosorbent assay (ELISA),
according to instructions of the manufacturer (R&D Sys-
tems Inc., Minneapolis, MN, USA). Serum levels of inter-
leukin 1 beta (IL-1p), interleukin 1 receptor antagonist
(IL-1RA), IL-8, interleukin 10 (IL-10), macrophage
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inflammatory proteins (MIP)-1A, monocyte chemotactic
protein (MCP)-1 and soluble CD40 ligand (sCD40L) were
determined by Luminex, according to the manufacturer’s
instructions (Merck Millipore Chemicals BV, Amsterdam,
The Netherlands). When less than 50 beads were mea-
sured by the Luminex assay, samples were excluded from
further analysis. von Willebrand factor antigen (vWF:Ag)
levels were determined with an in-house ELISA using
commercially available polyclonal antibodies against von
Willebrand factor (VWF) (Dako, Glostrup, Denmark).
ADAMTSI13 (a disintegrin and metalloproteinase with a
thrombospondin type 1 motif, member 13) activity was
determined as described earlier [30]. Factor VIII activity
was determined on a Behring XP coagulation analyzer
using reagents and protocols from the manufacturer
(Siemens Healthcare Diagnostics, Marburg, Germany).

Statistical analysis

Variables are expressed as medians and interquartile
ranges (IQRs) or means and standard deviations (SDs).
For comparisons, a paired ¢ test was used, or the Wilcoxon
signed-rank test in case of not normally distributed data.
For the analyses, we used SPSS version 21.0 (IBM Corp.,
Armonk, NY, USA) and Graphpad Prism 5 (Graphpad
Software Inc., San Diego, CA, USA).

Results

Patients

From 38 patients receiving FFP, paired samples from
33 patients were available for analysis before and
after FFP transfusion. Patients were ill, as reflected
by a high disease severity score and half of the pa-
tients had sepsis (Table 1). Patients received a mean
dosage of 11.2 (2.8) ml/kg FFP, which was transfused in
121 + 43 minutes.

Inflammatory cytokine and chemokine levels before and
after transfusion of 12 ml/kg FFP

At baseline, levels of cytokines were mildly elevated
in this cohort. After FFP transfusion, median TNF-a
decreased (P=0.01, Table 2). Levels of all other cyto-
kines were not affected by FFP transfusion. Chemo-
kine levels IL-8 and MCP-1 were elevated at baseline
but also not influenced by FFP transfusion. Levels of
sCD40L, which has been implicated as a mediator in
TRALI [31], were also not significantly altered by FFP
transfusion.

Parameters of endothelial condition before and after
transfusion of 12 ml/kg FFP

After FFP transfusion, levels of ADAMTS13 increased
(P <0.01, Table 3 and Figure 1). This increase was
accompanied by a decrease in VWF (P <0.001) and in
systemic levels of syndecan-1 (P=0.01). Factor VIII
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Table 1 Patient characteristics

FFP transfusion N=33

General characteristics

Gender, male, n (%) 21 (64)
Age (years) 61 (50-70)
APACHE IV score 96 (79-128)
SOFA score 11 (10-14)
Medical history

Pulmonary disease, n (%) 3(9)

Liver disease, n (%) 6 (18)
Cardiac failure, n (%) 6 (18)
Medical condition 24 hours

before transfusion

Mechanical ventilation, n (%) 27 (82)
Sepsis, n (%) 15 (45)
Disseminated intravascular coagulation, n (%) 16 (49)
Clinical outcomes

ICU length of stay 12 (6-23)
Mortality 21 (64)

Data expressed as median and interquartile ranges. FFP, fresh frozen plasma;
APACHE IV score, acute physiology and chronic health evaluation IV score;
SOFA score, sequential organ failure assessment score; ICU, intensive care unit.

levels were slightly decreased following FFP transfusion
(P =0.02).

Discussion

Our patients had mildly elevated levels of inflammatory
cytokines at baseline, which corresponds to levels mea-
sured before in critically ill patients [32]. We observed

Table 2 Inflammatory cytokines in critically ill patients
before and after a transfusion of fresh frozen plasma
(12 ml/kg)

Before FFP After FFP P value

Proinflammatory parameters (pg/ml)

TNF-a 11.3 (2.3-523) 23 (23-41.0 0.01
IL-18 15.0 (11.7-18.8) 144 (13.1-23.3) 097
IL-8 178 (124-418) 187 (113-412) 0.23
MCP-1 1255 (503-3376) 1101 (434-5802) 0.89
MIP-TA 19.6 (15.7-33.6) 19.1 (133-344) 0.12
sCD40L 409 (257-614) 324 (216-537) 0.08
Anti-inflammatory parameters (pg/ml)

IL-1RA 69.3 (52.1-110.6) 735 (47.8-104.9) 0.11
IL-10 36.1 (15.5-100.1) 315 (14.8-279.6) 0.62

Data expressed as median (IQR). FFP, fresh frozen plasma; TNF-a, tumor necrosis
factor alpha; IL-1B, interleukin 1 beta; IL-8, interleukin 8; MCP-1, monocyte
chemotactic protein 1; MIP-1A, macrophage inflammatory proteins 1A; sCD40L,
soluble CD40 ligand; IL-1RA, interleukin 1 receptor antagonist; IL-10, interleukin
10; IQR, interquartile range.
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Table 3 Parameters of endothelial condition in critically
ill patients before and after a transfusion of fresh frozen
plasma (12 ml/kg)

Before FFP After FFP P value
VWEF-Ag 4740 (331.5-639.5) 4230 (313.5-539.0) <0.001
Factor VIII 2464 (203.6-364.4) 24640 (321.2) <0.01
ADAMTS13 239 (15.8) 31.7.(17.9) <0.001
Syndecan-1 6746 (132.2-1689.8) 565.1 (126.8-1175.7) <0.01

Data expressed as median (IQR) or mean (SD). FFP, fresh frozen plasma; vWF:
Ag, von Willebrand factor antigen; ADAMTS13, a disintegrin and metalloproteinase
with a thrombospondin type 1 motif, member 13; IQR, interquartile range;
SD, standard deviation.

no aggravation of this inflammatory response after
FFP transfusion. Rather, there was a decrease in TNF-a
level. This is not in line with a study in which FFP
elicited an inflammatory response in endothelial cells
[33], nor with an in vitro model of transfusion, in
which whole blood incubated with FFP induced TNF-«
production [34].

Of the cytokines we measured, only TNF-a changed
after FFP transfusion. As TNF-a is known to be the
quickest responder among all cytokines, we may have
timed our measurement too early after FFP transfusion
to note an effect of FFP on other cytokine levels. How-
ever, lung injury following transfusion is thought to be
an early event. Also, we choose this early time point to
minimize confounding by other factors. Taken together,
FFP does not appear to elicit an early inflammatory
response.

Of interest, recent in vitro studies support an endothe-
lial stabilizing role of FFP, as FFP reduced vascular endo-
thelial cell permeability [26,35] and decreased expression
of endothelial adhesion markers [36] and endothelial
white blood cell binding [26,36,37]. Effects of FFP were
investigated in a rat hemorrhagic shock model, charac-
terized by systemic shedding of syndecan-1, decreased
syndecan-1 expression on pulmonary cells and increased
pulmonary vascular permeability. Resuscitation with FFP
abrogated these effects, whereas resuscitation with crys-
talloids did not [26], and was associated with preserva-
tion of the endothelial glycocalyx [38] and improvement
of lung injury [39].

In trauma patients with hemorrhagic shock, syndecan-1
levels are also increased [23]. Studies of the effect of FFP
on endothelial condition in patients are, however, lacking.
Of note, recent evidence in trauma patients requiring a
massive transfusion suggests that higher dose and earlier
administration of FFP decreases mortality [17,18,40,41].
This effect was not associated with improved coagulation
ability, as the reduction in mortality in their study was
irrespective of the admission INR [18] and coagulopathy
does not seem to improve with higher amounts of FFP
[19]. Given that FFP restores coagulation factors but also
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anti-coagulant proteins and that the net effect on
hemostasis is unclear, FFP may exert protection via other
mechanisms. We found that FFP decreased levels of
syndecan-1, associated with decreased levels of factor VIII,
which both reflect improved endothelial condition. These
results support earlier experimental work indicating that
FFP preserves endothelial integrity.

The mechanism underlying this beneficial effect of FFP
has not yet been described. We found that FFP transfusion
was associated with an increase in ADAMTS13 and a de-
crease in VWF. Thereby, ADAMTS13 may have increased
the ability to cleave large vWF multimers present on the
activated endothelium. As large vVWF multimers damage
the endothelium, this effect may have preserved endo-
thelial condition. This is also the rationale behind the
treatment of thrombotic thrombocytopenic purpura by
therapeutic plasma exchange.

A protective effect of FFP on the endothelium is in ap-
parent contrast with studies that have linked FFP to the
occurrence of TRALI [4,6-8]. In an effort to reconcile
these findings, we suggest that FFP associated with
TRALI occurs as a result of an antibody-mediated
pathogenesis. Indeed, efforts to reduce antibody-positive
blood products by male-only policies are associated with
a significant reduction in TRALI [42]. In patients in
whom transfusion is associated with lung injury in the
absence of antibodies, other products such as red blood
cells and platelets may be more important in inducing
lung injury. Although dissecting these effects in multiple
transfused patients is a challenge, future research should
focus on the differential effects of the various blood
products.

This study is limited by a small and heterogeneous pa-
tient population. Thereby, some of the effects may be
caused by chance or by regression to the mean. Findings
need to be confirmed in a larger sample. The strengths
of this study are the use of a fixed dose of FFP and the
timing of blood draws both prior and after transfusion,
limiting a possible effect of confounders on findings.
Thereby, long-term effects of FFP were not investigated
in this design.

Conclusions

In conclusion, this study is the first to describe the effect
of a fixed dose of FFP transfusion in critically ill patients.
Results suggest that FFP stabilizes endothelial condition.

Key messages

e Transfusion of fresh frozen plasma in critically ill
patients did not aggravate their inflammatory
response.

o In critically ill patients, fresh frozen plasma may
stabilize endothelial condition.
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Figure 1 Markers of endothelial condition in critically ill patients before and after a transfusion of fresh frozen plasma (12 ml/kg):
ADAMTS13, von Willebrand factor, factor VIIl and syndecan-1. ADAMTS13, a disintegrin and metalloproteinase with a thrombospondin type
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