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Abstract

non-linear mixed effects modeling.

control patients.

Introduction: The aim of this study was to describe the population pharmacokinetics of vancomycin in critically ill
patients treated with and without extracorporeal membrane oxygenation (ECMO).

Methods: We retrospectively reviewed data from critically ill patients treated with ECMO and matched controls
who received a continuous infusion of vancomycin (35 mg/kg loading dose over 4 hours followed by a daily
infusion adapted to creatinine clearance, CrCl)). The pharmacokinetics of vancomycin were described using

Results: We compared 11 patients treated with ECMO with 11 well-matched controls. Drug dosing was similar
between groups. The median interquartile range (IQR) vancomycin concentrations in ECMO and non-ECMO patients
were 51 (28 to 71) versus 45 (37 to 71) mg/L at 4 hours; 23 (16 to 38) versus 29 (21 to 35) mg/L at 12 hours; 20 (12
to 36) versus 23 (17-28) mg/L at 24 hours (ANOVA, P =0.53). Median (ranges) volume of distribution (Vd) was 99.3
(49.1 t0 212.3) and 92.3 (224 to 149.4) L in ECMO and non-ECMO patients, respectively, and clearance 2.4 (1.7 to 4.9)
versus 2.3 (1.8 to 3.6) L/h (not significant). Insufficient drug concentrations (that is drug levels <20 mg/dL) were more
common in the ECMO group. The pharmacokinetic model (non-linear mixed effects modeling) was prospectively
validated in five additional ECMO-treated patients over a 6-month period. Linear regression analysis comparing the
observed concentrations and those predicted using the model showed good correlation (* of 0.67; P <0.001).

Conclusions: Vancomycin concentrations were similar between ECMO and non-ECMO patients in the early phase of
therapy. ECMO treatment was not associated with significant changes in Vd and drug clearance compared with the

Introduction

Extracorporeal membrane oxygenation (ECMO) is a tem-
porary life support system, which is increasingly used for
the management of acute severe cardiac and/or respiratory
failure [1]. Veno-venous (VV) ECMO is used to treat severe
respiratory failure, and veno-arterial (VA) ECMO can pro-
vide cardiovascular and respiratory support for patients
with severe circulatory shock and heart failure [2]. Antibi-
otics are commonly required during ECMO therapy in pa-
tients who are infected, so that it is essential to understand
any potential changes in antibiotic pharmacokinetics (PK)
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that may occur during ECMO to enable rational dose ad-
justments to be made [3]. There are currently relatively few
data available regarding antibiotic PK during ECMO and
patients are generally managed with similar antibiotic dos-
ing regimens to those used in patients who are not receiv-
ing ECMO. This approach may, however, be flawed because
ECMO and sepsis have been shown to result in altered anti-
biotic PK, leading to sub-therapeutic drug concentrations
[4-6]. Moreover, ECMO equipment can introduce add-
itional confounding factors, from the circuit itself (with as-
sociated drug sequestration) and the associated systemic
inflammation (with vasodilation and capillary leak) [3].

In a recent review, Shekar et al. highlighted that the
major PK changes commonly associated with ECMO are
an increased volume of distribution (Vd) and decreased
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drug clearance (CL) [7], although the extent of such
changes remains poorly characterized, especially in adult
patients. Moreover, emerging in vitro/ex vivo data on dose
requirements for adult patients on ECMO suggest that
standard drug regimens may be inadequate [8], because of
significant drug sequestration on the ECMO tubing and/
or membrane leading to lower plasma concentrations [9].

Vancomycin remains one of the first options for treat-
ing nosocomial infections caused by methicillin-resistant
Staphylococcus aureus (MRSA) or other resistant Gram-
positive bacteria, such as coagulase-negative staphylo-
cocci and ampicillin-resistant enterococci [10]. In the
critical care setting, continuous infusion (CI) of vancomycin
may enable a more rapid and consistent attainment of tar-
get drug concentrations than standard intermittent admin-
istration [11]. As vancomycin is expected to be poorly
soluble in organic materials, drug concentrations and CL
would be only minimally affected by ECMO, while the use
of priming fluids and the cardiovascular alterations, which
are often associated with the use of ECMO, would contri-
bute to increase its Vd [9]. Furthermore, vancomycin can
be nephrotoxic and patients undergoing ECMO treatment
are at high risk to develop renal failure because pre-existing
kidney damage is frequent in this setting [12]. Thus, moni-
toring of vancomycin levels is fundamental in such patients,
especially in the case of prolonged therapy [13]. Moreover,
when renal replacement therapy (RRT) is initiated in those
patients, the risk of insufficient drug levels when standard
regimens are used is around 20% and also warrants close
monitoring of vancomycin concentrations [14].

Only one study has previously evaluated vancomycin
concentrations and PK in adult patients undergoing ECMO
[15]. This study evaluated vancomycin administration as an
intermittent infusion with data compared to neonates or
pediatric data on ECMO, but not to a critically ill adult
population without ECMO. Thus, the aim of this study
was, therefore, to compare the population PK of vanco-
mycin given as CI in critically ill patients treated with and
without ECMO. Our hypothesis is that the use of ECMO
would result in an increased Vd and unchanged CL of
vancomycin when compared to critically ill patients not
treated with ECMO.

Materials and methods

Extracorporeal membrane oxygenation patients and

data collection

We reviewed the medical charts of all adult (>18 years
old) patients who received ECMO support (VV, VA, or
both) and, at the same time, were given a continuous infu-
sion of vancomycin, either as monotherapy or combined
with other antibiotics, in our multidisciplinary 35-bed
Department of Intensive Care (Brussels, Belgium) between
January 2011 and May 2012. Continuous infusion of
vancomycin is the standard of care in our ICU. Patients
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were identified using the department’s patient data moni-
toring system (PDMS) (Picis Inc., Wakefield, MA, USA).

We included all adult patients who had serial measure-
ments of serum vancomycin concentrations during the first
24 h of treatment during ECMO. Patients who had previ-
ously received vancomycin by intermittent infusion (within
48 h of the start of the CI) were excluded, as were those
where vancomycin and ECMO treatment were not simul-
taneous, and those with pregnancy, burns or cystic fibrosis.
No patient included in previous publications [16-18] was
included in the present study. The protocol was approved
by the Ethics Committee of Erasme Hospital, which waived
the need for informed consent because of the retrospective
nature of the study.

The following data were collected for all patients:
demographics; pre-existing chronic diseases; admission
diagnosis; ECMO indications and settings; fluid balance;
and microbiological findings. The severity of illness of
each patient was assessed using the acute physiology and
chronic health evaluation (APACHE) II score [19] at
ICU admission and the sequential organ failure assess-
ment (SOFA) score [20] at initiation of antibiotic ther-
apy. Use of vasopressor agents or mechanical ventilation
was recorded, as was the length of ICU stay and out-
come. Creatinine clearance (CrCl) was calculated from
the 24-h urine collection, using the following formula:

CrCl, mL/minute = ((Urine output, mL) *
(Urinary creatinine, mg/dL))/((Serum creatinine, mg/dL)

*(Time of urine collection, minutes)).

Continuous renal replacement therapy

The decision to initiate continuous renal replacement ther-
apy (CRRT) was made according to standard practice [17];
CRRT was performed using a double-lumen catheter
inserted into a central vein. Continuous veno-venous hemo-
diafiltration (CVVHDF) or hemofiltration (CVVHF) were
performed using a Prisma-Flex machine (Gambro Hospal,
Bologna, Italy), with polyacrilonitrile (AN69 - Hospal,
Meyzieu, France) or polysulfone (PS, Gambro Lundia AB,
Lund, Sweden) hemofilters. Anticoagulation was obtained
using a continuous infusion of either heparin or citrate. Initial
CRRT settings were as follows: blood flow 130 to 150 mL/
minute; ultrafiltration rate 15 to 20 mL/kg/h; dialysate rate
15 to 20 mL/kg/h. Fluid removal was decided according to
patient’s condition. CRRT intensity was calculated as:

(Dialysate rate (mL/h) + Ultrafiltrate rate (mL/h))/Weight (kg).

Extracorporeal membrane oxygenation circuit and
management

All ECMO equipment was implanted surgically with
peripheral (femoro-femoral if VA and femoro-jugular if
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VV) or central heparin-coated cannulation (20- to 22-Fr
arterial cannula and 22- 24-Fr venous cannula, Edwards
Lifesciences, Irvine, CA, USA). A centrifugal blood pump
(Revolution blood pump, Sorin, Milan, Italy) was initially
set at a blood flow of 3 to 4 L/minute. The ECMO circuit
was primed with 700 mL of a balanced crystalloid infusion
(Plasmalyte, Baxter Healthcare Corporation, Deerfield,
IL, USA). In patients with peripheral VA implantation,
an anterograde single-lumen 8-Fr catheter (Arrow Inc,
Reading, PA, USA) was placed to prevent limb ischemia.
A heat exchanger (Blanketrol II, Sub-Zero Products
Inc., Cincinnati, OH, USA) was used to maintain body
temperature at 37°C.

Vancomycin treatment and measurements

Vancomycin (Vancocin®; Eli Lilly, Saint-Cloud, France)
was reconstituted according to the manufacturer’s guide-
lines. The drug was given as a 35 mg/kg loading dose
over 4 h followed by a CI dose adapted to CrCl to pro-
vide serum concentrations of 20 to 30 mg/L (considered
appropriate) (Table 1); this drug regimen has been the
standard of care in our institution since 2011 and was
adapted according to a previous publication [18]. Doses
were not changed during the first 24 h of therapy; after-
wards, the daily drug regimen was adapted using a spe-
cific approach, as previously published [16-18]: if the
serum vancomycin concentration was <20 pg/mL (con-
sidered insufficient), an additional dose of 500 to 1,000 mg
was given followed by an increase in the daily dose by 500
to 1,000 mg. If the concentration was >30 pg/mL (consid-
ered excessive), the CI was discontinued for 4 to 8 h and
the daily dose reduced by 500 to 1000 mg per day.

Blood samples (3 mL) for measurement of drug concen-
trations were retrieved at 4 (T1), 12 (T2) and 24 h (T3)
after the start of therapy as part of standard care and were
immediately sent to the central laboratory. The nursing
staff recorded the exact sampling time in the PDMS system.
Serum concentrations of vancomycin were determined by
particle-enhanced turbidimetric inhibition immunoassay
(Dimension® XPand®; Siemens Healthcare Diagnostics,

Table 1 Daily vancomycin doses according to the
creatinine clearance (CrCL)

Daily dose

CrCL, L/minute

>150 45 mg/kg
120 to 150 40 mg/kg
80 to 120 35 mg/kg
50 to 80 25 mg/kg
25 to 50 14 mg/kg
<25 or oliguria 7 mg/kg
Continuous renal replacement therapy 14 mg/kg

Oliguria was defined as urine output <0.5 mL/kg/h.
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Newark, DE, USA). The limit of quantification and the
total imprecision of the assay were 0.8 mg/L and <5%,
respectively.

Matched controls

Using an institutional database of all ICU patients with-
out ECMO who received the same vancomycin regimen
(n=107) during the same period, ICU ECMO patients
were matched (1:1) with non-ECMO ICU patients ac-
cording to four criteria: 1) renal function (either same
CrCl, with a range of eligibility for matching of +10 mL/
minute, or if on CRRT, the same CRRT intensity, with a
range of eligibility for matching of +5 mL/kg/minute); 2)
estimated total body weight; 3) SOFA score at the time of
treatment initiation; and 4) age (range of eligibility for
matching of +5 years). The use of such variables for the
matching process was decided based on the impact of esti-
mated body weight and renal function on drug Vd and
CL, respectively, as well as the importance of the disease
severity, multiple organ dysfunction and age on drug PK
and metabolism [4,5,7].

PK data

The concentration-time data for serum vancomycin con-
centrations were described using non-linear mixed-effects
modeling (NONMEM version 7.2.0, ICON Development
Solutions, Ellicott City, MD, USA) [21]. A Digital Fortran
compiler was used and the runs were executed using
Wings for NONMEM [22]. Data were analyzed using the
first-order conditional estimation method with interaction.
One- and two-compartment linear models were both eval-
uated. Between-subject variability was calculated using an
exponential variability model. Residual unexplained vari-
ability was evaluated as additive, exponential or combined
(additive plus exponential). Visual inspection of diagnostic
scatter plots and the NONMEM objective function value
(OFV) were used to evaluate goodness of fit. Statistical
comparison of nested models was undertaken in the
NONMEM program on the basis of a chi-square (x°) test
of the difference in OFV. A decrease in the OFV of 3.84
units (P <0.05) was considered statistically significant. We
estimated the area under the concentration-time curve of
the first 24 h (AUC,_»4) using the trapezoidal rule.

Bootstrap

A nonparametric bootstrap method (n =1,000) was used
to study the uncertainty of all PK parameter estimates in
the final base model. From the bootstrap empirical poster-
ior distribution, we were able to obtain the 95% confi-
dence interval (2.5 to 97.5% percentile) for the parameters,
as described previously [23].
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Covariate screening

The covariates analyzed were age, estimated total body
weight, CrCl, SOFA score, APACHE II score, sex, pres-
ence of shock, presence of CRRT and the presence of
ECMO. Possible covariates were added in a stepwise fash-
ion into the model. Covariates were considered for inclu-
sion in the model if they were biologically plausible and
there was improvement in the base model, that is, de-
crease in objective function (at least 3.84 units), decrease
in the unexplained between-subject variability of the par-
ameter, or decrease in residual unexplained variability.

Dosing simulations

Two sets of Monte Carlo dose simulations were under-
taken. We simulated a) different loading doses (15 mg/kg
versus 25 mg/kg versus 35 mg/kg) followed by the same
CI dose for each loading dose (15 mg/kg/day) in patients
on CRRT compared to patients without CRRT; b) different
maintenance doses (10 mg/kg/day versus 15 mg/kg/day
versus 20 mg/kg/day) in patients on CRRT compared to
patients without CRRT after a loading dose of 35 mg/kg.
The ability of each dosing regimen to achieve predefined
pharmacodynamic targets in both patients, that is, vanco-
mycin concentration of at least 20 mg/L, was also assessed.

External validation of model

To prospectively evaluate the effectiveness of the model
to predict vancomycin concentrations during ECMO
therapy, we included all consecutive patients who were
treated with ECMO between January and June 2013 and
received the same drug regimen (see section, Vanco-
mycin treatment and measurements).

Statistical analysis

Statistical analyses were performed using the SPSS 13.0
for Windows NT software package (SPSS Inc. 2004). De-
scriptive statistics were computed for all study variables.
The Kolmogorov-Smirnov test was used, and histograms
and normal-quantile plots were examined to verify the
normality of distribution of continuous variables. Discrete
variables were expressed as counts (percentage) and con-
tinuous variables as median (25th to 75th percentiles).
Demographics and clinical differences between study
groups were assessed using the x> test, Fisher’s exact test,
Student’s ¢-test, or Mann-Whitney U-test, as appropriate.
The coefficient of regression (") was used to indicate the
prediction of drug concentrations using the PK model.
P <0.05 was considered to be statistically significant.

Results

Demographics and vancomycin concentrations

We treated a total of 11 patients with vancomycin dur-
ing ECMO therapy and matched them to another 11
critically ill patients not receiving ECMO (Table 2).
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ECMO patients had a longer ICU stay (21 (12 to 68) ver-
sus 12 (3 to 24) days, respectively) and were more likely
to have shock (9/11, 82%, versus 5/11, 45%) than the
non-ECMO patients; they also had a higher ICU mortal-
ity (6/11, 55%, versus 3/11, 27%). All patients had sepsis
on the day of vancomycin initiation and the sources of
sepsis were similar in the two groups, mostly pulmonary
and abdominal. Blood cultures were positive in almost
30% of patients. All patients were treated concomitantly
with other antibiotic therapies. ECMO characteristics
remained unchanged over the study period.

The duration of vancomycin therapy was similar (3 (2
to 9) versus 3 (2 to 10) days) for the two groups. Median
vancomycin loading (2,500 (1,610 to 2,975) mg versus
2,450 (1,645 to 3,500) mg) and daily (1,125 (750 to 3,000)
versus 1,200 (750 to 2,500) mg) doses were similar for the
ECMO and non-ECMO groups. Vancomycin concentra-
tions in ECMO and non-ECMO patients were: 51 (28 to
71) versus 45 (37 to 71) mg/L at T1; 23 (16 to 38) versus
29 (21 to 35) mg/L at T2; 20 (12 to 36) versus 23 (17 to
28) mg/L at T3 (analysis of variance (ANOVA), P =0.53)
(Table 3). The percentage of patients with insufficient drug
concentrations in the ECMO group was 18% (n=2/11) at
T2 and 36% (n=4/11) at T3, compared to 0% (n=0/11)
and 9% (n = 1/11), respectively, in the control group.

Population pharmacokinetic model building, covariate
screening and model evaluation

The time course of vancomycin concentrations was best
described by a two-compartment model with exponential
residual error and between-subject variability (BSV) on
drug clearance (CL), volume of distribution of the central
compartment (Vc) and volume of distribution of the per-
ipheral compartment (Vp), but not intercompartmental
clearance (Q). Total volume of distribution was expressed
as Vd (where Vd =Vc + Vp). This model included zero
order input of drug into the central compartment.

The only covariate that statistically improved the base
model was the presence of CRRT for CL, which reduced
the objective function value by 5.774 (P <0.05). To describe
this, we created a dichotomous descriptor for the popula-
tion value for CL, which accounted for the presence of
CRRT (CLcrrr) or absence of CRRT (CLyocrrr). The
presence of ECMO was associated with a 15% increase in
CL and 10% decrease in Vc but these relationships did not
reach sufficient statistical significance and so were not in-
cluded in the final covariate model. The final model is rep-
resented by:

TVCL = CL * CLCRRT * CLNOCRRT
where TVCL is the typical value of clearance, CLcggr is

1 when there is no CRRT present and CLyocrrr is 1 for
patients receiving CRRT.
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Table 2 Characteristics of patients undergoing ECMO and controls

ECMO (n=11) Controls (n=11)
Male, n 4 5
Age, years 43 (19 to 59) 55 (24 to 64)
Estimated weight, kg 70 (46 to 85) 70 (47 to 95)
Estimated body mass index, I<g/m2 26 (18-29) 24 (18-29)
Medical admission, n 9 8
APACHE Il score on ICU admission 22 (3 to 33) 18 (5 to 34)
Mechanical ventilation on ICU admission 9 7
SOFA score on the first day of therapy 11 (510 13) 11 2t 15)
Time from ICU admission to ECMO, days 3(0to9) NA
Time from ICU admission to vancomycin therapy, days 7 (410 18) 40to8)*
Mechanical ventilation on the first day of therapy 11 7
Fluid balance (the day preceding the loading dose), mL/24 h 1959 (1404 to 5877) 2153 (=1592 to 9686)
Albumin concentration (before the loading dose), g/dL 26 (210 33) 28 (210 3.8)

Protein concentration (before the loading dose), g/dL
Lactate level (before the loading dose), mmol/L
CrCl on the first day of therapy, mL/minute (n=4)
CRRT intensity, mL/kg/h (n=7)

Reason for ECMO initiation

Cardiogenic shock/ARDS/Sepsis, n

VA ECMO/W ECMO, n

Overall ICU mortality, n

Comorbidities

CvD

COPD/asthma

Diabetes

Previous serum creatinine >2.0 mg/dL

Liver disease

Solid organ transplant

Chronic immunosuppressive therapy

Neutropenia

4.2 (28 t0 4.8)
1.1 (05 t0 17.9)
64 (39 to 99)

46 (34 to0 64)
18 (0.7 to 7.9)
61 (46 to 109)

38 (19 to 53) 42 (20 to 50)

5/4/2 2/4/5

5/6 NA
6 3
2 1
3 2
3 2
1 0
0 1
2 2
3 3
1 2

Data are presented as count or median (range). *P <0.05. APACHE, acute physiology and chronic health evaluation; SOFA, sequential organ failure assessment;
CrCl, creatinine clearance; CRRT, continuous renal replacement therapy; VA ECMO, veno-arterial extracorporeal membrane oxygenation; VWV ECMO, veno-venous
extracorporeal membrane oxygenation; ARDS, acute respiratory distress syndrome; CVD, cardiovascular disease; COPD, chronic obstructive pulmonary disease;

CRF, chronic renal failure; NA, not applicable.

Goodness-of-fit plots for the final model were evalu-
ated and showed acceptable results in terms of visual or
statistical biases (statistically significant systematic devi-
ation away from the observed data) for predicted con-
centrations (Figure 1). Furthermore, the mean values for
all parameters from the bootstrap analysis were similar
to those in the final model (Table 4).

The final PK parameter estimates for the included pa-
tients receiving ECMO versus the control patients are
shown in Table 4. The results of the model evaluations
confirmed the suitability of this model to describe vanco-
mycin PK in this specific population and for use with
dosing simulations.

Table 3 Vancomycin serum concentrations and
pharmacokinetics in the ECMO group and in the
control group

ECMO (n=11) Controls (n=11)
At T1 (4 h), mg/L 51 (28 to 71) 45 (37 t0 71)
At T2 (12 h), mg/L 23 (16 to 38) 29 (21 to 35)
At T3 (24 h), mg/L 20 (12 to 36) 23 (17 to 28)

vd, L 99.3 (49.1 to 212.3)
Total CL, L/h 24 (1.7 10 49) 23 (1.8 10 3.6)
AUCo_24, mg*h/L 628 (537 to 840) 698 (622 to 753)

ECMO, extracorporeal membrane oxygenation; Vd, drug median volume of
distribution; CL, drug clearance; AUC,_,4, area under the curve of the first
24 hrs of therapy.

92.3 (224 to 1494)
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Figure 1 Goodness-of-fit plots for the final covariate
vancomycin pharmacokinetic model. The top panel presents the
population predicted concentrations versus the observed
concentrations. The lower panel presents the individual predicted
concentrations versus the observed concentrations. For both graphs,
the solid line represents the linear correlation (* = 0.60 population
predicted concentrations and r* = 0.9 for the individual predicted
concentrations using linear regression).

Dosing simulations

Figures 2 and 3 show vancomycin concentrations obtained
through simulations for different loading and maintenance
doses in the presence/absence of CRRT (50 years of age,
70 kg of weight and a CrCl of 100 mL/minute). Figure 2
shows that even a loading dose of at least 15 mg/kg was
necessary to ensure rapid achievement of target vanco-
mycin concentrations. Using the same loading dose in the
presence of CRRT did not significantly influence drug
concentrations when compared to no use of CRRT.
Figure 3 shows that after a 35 mg/kg loading dose, a main-
tenance CI dose of at least 10 mg/kg/day was required
during CRRT, whereas doses of 10 or 15 mg/kg/day were
both able to provide drug concentrations between 20 and
30 mg/L in the case of no need for CRRT.
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Table 4 Bootstrap parameter estimates of the final
covariate model

Parameter Vancomycin
Model Model Bootstrap
mean standard error % Mean 95% confidence
interval
2.5% 97.5%
Fixed effects
CL (L/h) 3.7 19.5 3.7 3.1 44
Cleggr (L/D) 06 20.2 0.6 02 038
Clnocrer (L/h) 1.0 8.0 09 06 1.2
Ve (L) 318 10.7 316 255 379
Vp (L) 571 135 68.8 299 152.1
Q (L/h) 36 364 3.7 30 47
Random effects BSV, % CV
CL (L/h) 164 420 204 04 339
Ve (L) 47.0 36.2 455 311 63.7
Vp (L) 101.0 72.8 95.5 34.7 183.1
Random error
ROV, % CV 85 355 77 50 10.2

CL, clearance; V¢, volume of distribution of central compartment; CLyocgrr, CL
relative to population parameter estimate for CL for patients not receiving
continuous renal replacement therapy (CRRT); CLcggr, CL relative to population
parameter estimate for CL for patients that were receiving CRRT; Vp, volume
of distribution of peripheral compartment; Q, intercompartmental clearance;
BSV, between-subject variability; RUV, residual unexplained variability; CV,
coefficient of variation.

Model validation

Five additional patients (four on VV ECMO and one on
VA ECMO) treated with vancomycin during ECMO
therapy were identified. Four of the patients were male;
the median (IQR) age was 64 (55 to 68) years, weight 71
(70 to 80) kg, and three of the patients were receiving
CRRT at an intensity of 21 (21 to 26) mL/kg/h. The

== 15LD 15MD No RRT
= 15LD 15MD RRT
== 25LD 15MD No RRT
—— 25LD 15MD RRT
—= 35LD 15MD No RRT
~— 35LD 15MD RRT

Vancomycin concentration (mg/L)

Time (hours)

Figure 2 Effect of different loading doses (LD) on rapid
attainment of target vancomycin concentrations (>20 mg/L).
Daily continuous infusion regimen (MD) was 15 mg/kg/day. The
dashed line presents simulations for patients on continuous renal
replacement therapy (CRRT) and the solid line those for patients not

receiving CRRT.
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—— 35LD 20MD RRT
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Concentration (mg/L)

Time (hours)

Figure 3 Effect of different maintenance doses (MD) on rapid
attainment of target vancomycin concentrations (>20 mg/L)
after a loading dose of 35 mg/kg. The dashed line presents
simulations for patients on continuous renal replacement therapy
(CRRT) and the solid line those for patients not receiving CRRT, who
had an estimated creatinine clearance of 100 mL/minute.

patients received a loading dose of 2,485 (2,450 to 2,800)
mg of vancomycin and a maintenance continuous infu-
sion of 1,250 (1,050 to 1,750) mg (Table 5). The linear
regression analysis confirmed the adequacy of the model
by comparing the observed concentrations from the ex-
ternal dataset and those predicted using the model (+* of
0.67; P <0.001) (Figure 4).

Discussion

This is the first study describing vancomycin PK during
continuous infusion of vancomycin in adult critically ill
patients undergoing ECMO. Extracorporeal therapy had
a non-significant impact on serum vancomycin concen-
trations when higher doses than the recommended drug
regimen were used. Finally, our results highlighted that
with this drug regimen, vancomycin concentrations were
appropriate in most of ECMO adult patients.

In this cohort, we found similar Vd and CL for vanco-
mycin in patients receiving ECMO when compared to
others. These findings are in contrast with neonatal
ECMO PK studies in which increased Vd and decreased
antibiotic CL were reported [24,25]. Furthermore, it is rea-
sonable to assume that the decreased drug CL observed in
neonates was the result of immature hepatic and renal
antibiotic metabolic pathways rather than the ECMO cir-
cuitry itself [26]. Similarly, the volume of priming fluid for
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the ECMO system is likely to have a more profound effect
on vancomycin Vd in newborns because of a larger prim-
ing/blood volume ratio. Thus, data in adult patients may
differ significantly from those in neonatal studies, under-
pinning the need for further PK studies that can be used
to optimize antibiotic dosing during ECMO in this setting.
Finally, ECMO may have different effects on antibiotic
PK depending on the class of antibiotic used. In con-
trast to studies on aminoglycosides, vancomycin Vd was
similar in neonates treated with ECMO compared to
controls (0.45+0.18 versus 0.39+0.12 L/kg), whereas
half-life was significantly shorter during ECMO (8.3 £
2.2 versus 6.5 versus 2.0 h, P = 0.02) [27].

The Vd of vancomycin was not affected during ECMO
therapy but remained substantially higher than values re-
ported for healthy volunteers or non-severely ill patients
(that is, from 0.4 to 1.0 L/kg) [10,28]. These findings could
be explained in the context of critical illness by the ab-
sence of significant circuit drug sequestration, as described
in ex vivo studies [9]. Moreover, in our study, both fluid
balance and serum protein concentrations, which influ-
ence the distribution of antibiotics, were similar between
groups and did not bias the final observations [28]. In sup-
port of our findings, a recently published population PK
study of meropenem using similar methodology found no
statistically significant difference in meropenem Vd be-
tween ECMO and non-ECMO ICU patients (0.45 versus
0.41 L/kg respectively, P =0.21) [29]. A significant increase
in Vd was also reported for the antiviral drug, oseltamivir,
during ECMO and RRT in adult patients [30]. Neverthe-
less, the stability at room temperature, protein binding
and sequestration in the ECMO circuit of these drugs are
different and may explain the discrepancies in Vd that
were observed [28]. Moreover, endothelial activation oc-
curring during extracorporeal support, which may pro-
mote capillary leakage and increase Vd [31], may differ
among patients and with the indication for ECMO ther-
apy, contributing to the large discrepancies among re-
ported data on antibiotic PK in this setting. Importantly, if
ECMO causes an increased drug Vd during the initial
phase of therapy, then given that the ECMO patients in
this study were treated with vancomycin later in their ICU

Table 5 Characteristics of the validation cohort of ECMO patients (n = 5)

Patient Weight, kg LD, mg DD, mg CrCl, mL/minute CRRT CRRT Intensity, ml/kg ECMO
1 71 2485 1750 260 N NA W
2 70 2450 1000 53 Y 21 W
3 80 2800 1250 " Y 31 W
4 70 2450 1050 17 Y 21 W
5 80 2800 3500 267 N NA VA

Age (range 45 to 71 years) and gender (4 male/1 female) were not reported to protect the anonymity of the patients. LD, loading dose; DD, daily dose; CrCl,
creatinine Clearance; CRRT, continuous renal replacement therapy; VA ECMO, veno-arterial extracorporeal membrane oxygenation; VV ECMO, veno-venous

extracorporeal membrane oxygenation; Y, yes; N, no.
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Figure 4 Observed concentrations from the patients included in
the validation cohort versus the concentrations predicted by the
model for those patients (linear regression r? 0.66; P <0.001).
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stay, the resulting drug behavior could be associated with
a different phase of the inflammatory process, with less ca-
pillary leakage and fluid requirement than the non-ECMO
patients. Thus, whether our data could have been influ-
enced by a higher than recommended vancomycin dose,
to the use of a priming solution volume that is lower than
what is used in in vitro systems or to a reduced inflamma-
tory status, requires further study.

The increase in vancomycin CL during ECMO therapy
was modest, confirming the findings of other studies
[30,31]. Moreover, in these patients, total drug CL during
CRRT was lower than in patients without CRRT. The lack
of increased vancomycin CL during ECMO was probably
due to the lack of circuit sequestration, as vancomycin ap-
pears to be relatively stable in the circuit [9]. Also, although
peripheral VA ECMO is known to cause a significant in-
crease in renal blood flow and as such to promote renal
elimination of vancomycin [7], three of the five patients
treated with VA ECMO in our cohort had acute kidney in-
jury with ongoing CRRT. It is possible that the use of CrCl
or CRRT intensity in the matching process may have
underestimated or overestimated the actual drug CL. As
such, other biomarkers of renal function, such as cysta-
tin C, have been shown to be more accurate than CrCl
to predict vancomycin CL, particularly among patients
with normal serum creatinine concentrations [32]. Finally,
antibiotic elimination is proportional to the unbound
(free) drug concentration; however, total vancomycin con-
centrations were not predictive of free drug concentra-
tions in ICU patients, suggesting that direct determination
of the free component may be desirable in this setting
[33]. Further investigations are required to investigate the
role of ECMO technique (VA versus VV) and the different
biomarkers of renal vancomycin excretion in this setting.

Vancomycin concentrations were comparable in ECMO
and non-ECMO groups in the early phase of therapy
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(24 h), which may be a reflection of the slightly higher
loading doses used as well as the continuous administra-
tion. However, we cannot draw any conclusions on the ef-
fects of ECMO on drug concentrations in the following
days of therapy and whether the 15% increase in vanco-
mycin CL would need a more accurate dose adjustment to
avoid drug concentrations that will rapidly fall below
therapeutic targets remains to be further evaluated. Be-
cause intermittent dosing may result in therapeutic failure
when dealing with several strains of MRSA [34], continu-
ous infusion has been proposed as an alternative approach
to optimize drug concentrations and efficacy [11]. Al-
though not superior to intermittent infusion for clinical ef-
fectiveness, continuous infusion may result in a reduced
risk of renal toxicity and in a more rapid attainment of
therapeutic concentrations [35].

This study has potential limitations. First, the match-
ing process resulted in statistically comparable control
and ECMO groups, but it was not possible for us to con-
trol for other pathophysiological disturbances that may
affect antibiotic PK. Although we accept that the match-
ing process is extremely complicated in critically ill pa-
tients, in our opinion the approach we have chosen is
sufficient to understand whether ECMO per se alters
antibiotic PK in adult patients or if the presence of crit-
ical illness not requiring ECMO is sulfficient to produce
such PK abnormalities. This study found that ECMO
numerically increased vancomycin clearance by 15%, al-
though this result was not statistically significant. In this
setting, the role of CRRT intensity on antibiotic PK
needs to be further quantified, as we did not record
whether CRRT settings were modified during the first
24 h of therapy. Also, we took into account drug clear-
ance from CRRT intensity but this could be a significant
confounder in the interpretation of the results on such a
small patient population. Thus, our simulations need to
be interpreted with some caution because they were de-
veloped from a limited cohort of 11 ECMO patients,
with a potentially high degree of heterogeneity. Also, we
are aware that a more accurate estimation of the true
variability of Vd and clearance would require data from
a larger patient population. Nevertheless, we validated
the accuracy of the model to predict drug concentrations
in this setting, if only in a few patients, and showed that
comparison between ECMO and non-ECMO patients
including those with CRRT was sufficient. Second, we
could not perform a different evaluation for VA and VV
ECMO because of the limited cohort, and future models
should investigate whether ECMO modality may influ-
ence antibiotic concentrations. Third, we did not record
data on clinical and microbiological response to vanco-
mycin. Thus, to determine whether optimizing antibiotic
concentrations during ECMO leads to improved out-
comes requires further study. Fourth, sequestration of
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drug by the ECMO circuit could not be assessed because
we did not perform sampling immediately before and
after the ECMO membrane. Fifth, another confounder
could be the time elapsed from ECMO initiation to drug
administration, as adsorption of vancomycin on the
ECMO membrane may vary between new and old mem-
branes/circuits. Finally, the observed high proportion of
patients with adequate vancomycin levels during ECMO
therapy was related to the higher-than-recommended
drug regimen used, while a risk of under-dosing may be
significantly present in ECMO patients treated with
standard doses.

Conclusions

In this matched-cohort study, critically ill patients receiv-
ing ECMO therapy had similar Vd and vancomycin CL to
control non-ECMO patients. Although vancomycin con-
centrations were quite similar between groups in the early
phase of therapy, vancomycin dose adjustment should be
considered during CRRT therapy to avoid drug accumula-
tion thereafter. In the first 24 h of treatment, loading and
maintenance doses of vancomycin similar to those used in
this study appear to be appropriate for patients on ECMO
requiring vancomycin therapy.

Key messages

e Vancomycin concentrations were similar between
ECMO and non-ECMO patients in the early phase
of therapy

e ECMO treatment was not associated with significant
changes in Vd and drug clearance compared with
the control patients

e The main determinant of drug CL was the presence
of CRRT
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