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Abstract

Background: Genes in the homologous recombination pathway have shown varying results in the literature
regarding ovarian cancer (OC) association. Recent case-control studies have used allele counts alone to quantify
genetic associations with cancer.

Methods: A retrospective case-control study was performed on 6,182 women with OC referred for hereditary cancer
multi-gene panel testing (cases) and 4,690 mothers from trios who were referred for whole-exome sequencing
(controls). We present age-adjusted odds ratios (ORAdj) to determine association of OC with pathogenic variants
(PVs) in homologous recombination genes.

Results: Significant associations with OC were observed in BRCA1, BRCA2, RAD51C and RAD51D. Other homologous
recombination genes, BARD1, NBN, and PALB2, were not significantly associated with OC. ATM and CHEK2 were only
significantly associated with OC by crude odds ratio (ORCrude) or by ORAdj, respectively. However, there was no
significant difference between ORCrude and ORAdj for these two genes. The significant association of PVs in
BRIP1 by ORCrude (2.05, CI = 1.11 to 3.94, P = 0.03) was not observed by ORAdj (0.87, CI = 0.41 to 1.93, P = 0.73).
Interestingly, the confidence intervals of the two effect sizes were significantly different (P = 0.04).

Conclusion: The lack of association of PVs in BRIP1 with OC by ORAdj is inconsistent with some previous literature
and current management recommendations, highlighted by the significantly older age of OC onset for BRIP1 PV
carriers compared to non-carriers. By reporting ORAdj, this study presents associations that reflect more informed
genetic contributions to OC when compared to traditional count-based methods.
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Background
Next-generation sequencing (NGS) has enabled clinical
laboratories to analyze simultaneously a growing number
of genes. Clinical multi-gene hereditary ovarian cancer
(OC) panels include genes that function in the same
homologous recombination (HR) DNA repair pathway
as BRCA1 and BRCA2, such as ATM, BARD1, BRIP1,
CHEK2, NBN, PALB2, RAD51C, and RAD51D. These
genes have been linked to hereditary ovarian cancer, but
the extent to which some of these genes contribute to

hereditary OC varies in the literature [1–7]. The identifi-
cation of pathogenic or likely pathogenic variants (PVs)
in these genes with ambiguous associations leads to diffi-
cult patient management decisions for clinicians and
patients alike.
Identifying an appropriate control group for genetic

association studies is vital for accurate estimation of can-
cer risks. Before high-throughput NGS, researchers re-
lied on collaboration by pooling multi-center genotype
data to achieve a large enough sample size to detect sig-
nificant genetic associations [8, 9]. Recent association
studies have drawn control data from the Exome Aggre-
gation Consortium (ExAC), a public database which
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contains genotype information on over 60,000 individ-
uals who have participated in genetic studies on condi-
tions such as inflammatory bowel disease, heart disease,
and schizophrenia [10–12]. The FLOSSIES database has
also been used to perform genetic association studies
specifically in women’s cancer [13]. The advantage of
such cohorts are the large, readily available number of
genotyped individuals with diverse ancestries and varied
clinical histories, but drawbacks include the lack of spe-
cific phenotypic information including age and cancer
history of the participants.
Clinical laboratories are addressing this limitation by

leveraging data from exome sequencing (ES) tests per-
formed internally [14]. In our laboratory, ES can be
performed on trios (child and both parents) to help
identify variants contributing to rare Mendelian diseases.
Healthy parents from these trios serve as a reliable
control cohort for hereditary cancer studies considering
the breadth of genotyping coverage and the adequate
phenotypic information provided. We performed a case-
control study with an internal control population and
report age-adjusted ORs to clarify equivocal genetic as-
sociations in HR genes with OC.

Methods
Cohort assembly
Genotypic and phenotypic data were collected from
women who underwent germline genetic testing at Gen-
eDx (Gaithersburg, MD) between 2013 and 2018. The
study was conducted in accordance with all guidelines
set forth by the Western Institutional Review Board,
Puyallup, WA (WIRB 20162523). Informed consent for
genetic testing was obtained from all individuals under-
going testing, and WIRB waived authorization for use of
de-identified aggregate data for both cases and controls.
Individuals or institutions who opted out of this type of
data use were excluded. Cases were women with OC re-
ferred for BRCA1/2 alone or multi-gene hereditary can-
cer panel testing who did not also have a targeted test
for a known familial variant. Controls were mothers
from a subset of complete trios referred for ES due to a
neurodevelopmental delay in the proband. These
mothers all self-reported that they did not have a dis-
order with genetic etiology. Both case and control co-
horts were limited to those over 18 years of age and
those who self-reported as White/Caucasian. Women
were excluded if they were missing age at diagnosis or
age at testing or if they had more than one PV, including
homozygous variants, in any of the cancer predisposition
genes available on ordered panels (Additional file 1:
Table S1). Of all individuals referred for multi-gene her-
editary cancer panel testing, 9,688 women were diag-
nosed with OC, 6,182 of whom met inclusion criteria.

From the control cohort, there were 8,643 mothers of
probands, of whom 4,690 satisfied the filtering criteria.

Sequencing and variant calling
Cases were sequenced and genotyped with targeted NGS
panels and a clinical bioinformatics pipeline as previ-
ously described [15]. Controls were sequenced by clinical
ES as previously described using either Agilent SureSe-
lect Human All Exon v4 or Agilent Clinical Research Ex-
ome capture protocols (Agilent, Santa Clara, CA) [16].
Separate from clinical ES testing, control samples were
jointly genotyped across the entire cohort following
Genome Analysis Toolkit Best Practices using Haploty-
peCaller (version 3.7.0) in GVCF mode followed by
GenotypeGVCFs and variant quality score recalibra-
tion [17–19]. Single nucleotide variants with genotype
quality less than 50 and insertions and deletions
(indels) with genotype quality less than 99 were consid-
ered low confidence, and therefore not included in the
analysis. Additionally, for all novel prospective PVs in con-
trols, de-identified NGS alignment data were manually
inspected to remove suspicious variants. Sequencing
methods for cases and controls were evaluated for poten-
tial bias (Additional file 2: Additional Sequencing Methods
and Table S2). Copy number variants were not evaluated
as part of this study.

Variant classification
Analysis of genetic variants were limited to those located
in the HR genes, ATM, BARD1, BRCA1, BRCA2, BRIP1,
CHEK2, NBN, PALB2, RAD51C, and RAD51D. For
cases, the pathogenic classification of each variant was
reviewed according to internal protocol, which follows
ACMG/AMP guidelines [20]. Exon-level deletions and
duplications were not included in the PV count since de-
tection of these copy-number variants from ES is more
limited and variable than from panel testing. Pathogenic
status of variants in controls were systematically classi-
fied using a rule-based algorithm (Fig. 1). Variants that
were previously classified in cases were assigned the
same classification. Novel variants in the controls were
assigned ClinVar classifications or were manually classi-
fied when ClinVar classifications were not available or
conflicting. ClinVar classifications were obtained from
the variant call format file released September 5, 2017
[21]. The common founder pathogenic missense vari-
ants, CHEK2*I157T and CHEK2*S428F were excluded
from both cases and controls. All PVs are listed in
Additional file 3: Table S3.

Statistical analysis
A two-sample, independent t-test was performed to
compare the mean age between cases and controls. Gen-
etic associations were estimated by ORs using Firth bias-
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corrected logistic regression [22]. Crude ORs (ORCrude)
were generated by simple logistic regression using status
of PV in a gene as the independent variable. Multivariable
logistic regression was performed with PV status and pa-
tient age (diagnosis in cases, at time of testing in controls)
as independent variables to generate ORAdj. Reported 95%
confidence intervals (CIs) were calculated using penalized
profile likelihood. A z-test was performed to compare
ORCrude and ORAdj for each gene (Additional file 4). The
aggregate PV prevalence per-gene was compared to re-
ported prevalence from Lilyquist et al. using Fisher’s exact
test [23]. To correct for multiple independent tests, a
Benjamini-Hochberg false discovery rate (FDR) correction
was applied and a corrected p-value significance threshold
of 0.05 was used when considering genetic association re-
sults and results from Fisher’s exact test. The t-test and z-
tests were two-sided and P < 0.05 were considered signifi-
cant. A sensitivity analysis was performed by reporting
OC associations in a subset of women who were diag-
nosed with serous OC subtype (Additional file 5:
Table S4). Finally, a power analysis was performed using
a test of proportions to determine the statistical power of
the study. Conditions of the test used the total cohort
sizes, assumed a significance level of 0.05, and a subjective,
but realistic, assumption that rate of PVs in each cohort
were 0.01, and 0.005, respectively. Statistical analyses were
performed using the R programming language.

Results
Cohort summary
After filtering into final cohorts, the mean age (standard
deviation) at OC diagnosis was significantly higher in
cases than age at testing in controls (58.8 (13.4) versus
41.9 (9.4), P < .05, t-test). The median age at diagnosis of
PV carriers in OC cases ranged from 53 years in BRCA1
to 67 years in BRIP1, while the median age of testing of
PV carriers in controls ranged from 32.5 years in
RAD51D to 46 years in BRIP1 (Table 1). There were 780

(12.6%) OC cases who also had a breast cancer diagno-
sis. Across all genes, the observed aggregate PV preva-
lence in either the case or control cohort were not
significantly different, respectively, from those reported
by Lilyquist et al. (P = 0.05, Fisher’s exact test). There
were 588 women of the 6,182 cases who harbored PVs
(9.5%) while 98 of the 4,690 controls (2.1%) harbored
PVs (Table 1).

Genetic associations
Well-established OC susceptibility genes showed signifi-
cant associations when measured by both ORCrude and
ORAdj: BRCA1 (ORCrude = 38.46, CI = 17.03 to 115.32,
P = 1.03 × 10− 47; ORAdj = 47.80, CI = 20.76 to 145.03,
P = 1.87 × 10− 46), BRCA2 (ORCrude = 8.19, CI = 5.22 to
13.67, P = 1.17 × 10− 28; ORAdj = 5.10, CI = 3.12 to 8.83,
P = 2.89 × 10− 12), RAD51C (ORCrude = 15.28, CI =3.97 to
137.01, P = 6.09x− 06; ORAdj = 12.09, CI = 2.78 to 114.43,
P = 7.85 × 10− 04), and RAD51D (ORCrude = 7.99, CI =
2.56 to 39.77, P = 1.97 × 10− 04; ORAdj = 8.38, CI =2.17 to
47.23, P = 2.51 × 10− 03) (Table 1).
Some genes with no significant association with OC

measured by ORCrude consistently showed no significant
association with OC as measured by ORAdj, including
BARD1 (ORCrude = 1.59, CI = 0.31 to 9.56, P = 0.57;
ORAdj = 6.30, CI =0.55 to 74.25, P = 0.19), NBN
(ORCrude = 0.52, CI = 0.15 to 1.54, P = 0.27; ORAdj = 0.45,
CI = 0.10 to 1.82, P = 0.33), and PALB2 (ORCrude = 2.06,
CI = 0.90 to 5.19, P = 0.11; ORAdj = 1.78, CI = 0.61 to
5.59, P = 0.33).
ATM (ORCrude = 2.01, CI = 1.15 to 3.64, P = 0.03;

ORAdj = 1.72, CI = 0.89 to 3.44, P = 0.18) and BRIP1
(ORCrude = 2.05, CI = 1.11 to 3.94, P = 0.03; ORAdj = 0.87,
CI =0.41 to 1.93, P = 0.73) were significantly associated
with OC by ORCrude but were not significantly associ-
ated with OC by ORAdj. Conversely, CHEK2 (ORCrude =
1.62, CI = 1.00 to 2.69, P = 0.07; ORAdj = 2.64, CI = 1.48

Fig. 1 Rule-Based Algorithm Used to Classify Variants. #No classification discrepancies were identified for variants falling into this category (not
previously seen at GeneDx but in ClinVar). ^Variants requiring manual review were not classified based on strict ACMG criteria as is done for
variants that were clinically reported. Variants were classified as either a PV, which includes variants that would meet criteria for a pathogenic or
likely pathogenic classification, or not a PV. Variants determined to be not a PV were not worked up further to determine if they would be classified as
variant of uncertain significance, likely benign, or benign. *NGS data manually assessed to ensure variant was real. Default as real if it was determined
that the variant in question could not be confidently called real or not real based on NGS data. NMD = nonsense mediated decay
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to 4.79, P = 2.36 × 10− 3) was not significantly associated
with OC by ORCrude but was significantly associated with
OC by ORAdj.

Power analysis and effect size comparison
The power analysis revealed that the study can detect a
difference in proportions from 0.01 to 0.005 with 85.9%
power. The per-gene comparison of effect sizes was not
significantly different for the majority of the genes evalu-
ated. The single exception was BRIP1, for which ORAdj

was significantly lower than ORCrude (z-test, P = 0.04)
(Table 1).

Discussion
Our approach is supported by the agreement of ORCrude

and ORAdj with previously reported ORs for BRCA1,
BRCA2, RAD51C, and RAD51D, genes with clearly
established OC associations. The other HR pathway
genes have been reported with conflicting evidence for
association with OC [10, 14, 23–25]. Association of PVs
in each these genes with OC are in agreement with at
least one of these studies by either ORCrude or ORAdj.
While this validates that our methodology is comparable,
it also highlights the disparity of concordance among
these studies.
To check for potential ascertainment bias, PV preva-

lence in cases and controls was compared to those previ-
ously reported by Lilyquist et al. [26] Given the similar
ascertainment of cases and robustness of the estimates
from the ExAC non-Finnish European control popula-
tion, this data serves as a germane baseline for compari-
son. The prevalence of PV was not significantly different
in any gene (Additional file 6: Table S5). Small

differences in PV counts due to differences in variant
classification between studies can have a significant im-
pact on effect size, especially for genes where PVs are
rare. For example, Weber-Lassalle et al. reported 9 of 7,
325 (0.12%) European PV carriers from the FLOSSIES
database; however, our variant classification system
would have reported 14 of 7,325 (0.19%), on the basis of
including 5 European carriers of BRIP1 c.139C > A
(ClinVar: SCV000210833.12) (Fig. 1) [13].
Genes in which PVs are rare in one cohort (four or

less PVs), BARD1, BRCA1, NBN, RAD51C and RAD51D,
result in wide confidence intervals for the ORs. For
example, RAD51C appears to confer greater risk than
BRCA2, a gene whose association with OC has been
well-established. However, with the exception of CHEK2,
confidence intervals for ORs in all HR genes overlapped
with those previously published, indicating the true ef-
fect size falls somewhere in the overlapping range [10].
Results from the power analysis can be interpreted that
genes with moderate effect sizes are adequately powered
to detect significant association but the result also sup-
ports the argument in favor of performing studies on
genotyped cohorts large enough to sufficiently detect
genetic associations in genes where PVs rare and the ef-
fect sizes are small.
No significant association with OC were consistently

observed with PVs in BARD1, NBN, and PALB2. The re-
ported low frequency of PVs in BARD1, similar to other
studies, will require still larger sample sizes to detect a
significant effect [10, 23, 24]. Association of NBN with
OC is the low to moderate risk HR pathway gene with
the most concordant results. It is widely regarded as not
significantly associated with OC, with the exception of

Table 1 Associations of ovarian cancer with pathogenic variants in homologous recombination genes among self-reported white
women

Gene Median Age of
PV Carriers
(Casesa, Controlsb)

Crude Odds
Ratio (CI)

p-value,
Crudec

Adjusted Odds
Ratio (CI)

p-value,
Adjustedc

Case Carriers,
No. (Non-Carriers)d

Control Carriers,
No. (Non-Carriers)

p-value,
z-teste

ATM 55.0, 47.0 2.01. (1.15 to 3.64) 0.03 1.72 (0.89 to 3.44) 0.18 35 (4724) 17 (4673) 0.35

BARD1 60.0, 34.5 1.59 (0.31 to 9.56) 0.57 6.30 (0.55 to 74.25) 0.19 3 (4122) 2 (4688) 0.80

BRCA1 53.0, 37.0 38.46 (17.03 to 115.32) 1.03 × 10−47 47.80 (20.76 to 145.03) 1.87 × 10−46 219 (5944) 4 (4686) 0.60

BRCA2 63.0, 40.0 8.19 (5.22 to 13.67) 1.17 × 10−28 5.10 (3.12 to 8.83) 2.89 × 10−12 193 (5969) 18 (4672) 0.14

BRIP1 67.0, 46.0 2.05 (1.11 to 3.94) 0.03 0.87 (0.41 to 1.93) 0.73 30 (4805) 14 (4676) 0.04

CHEK2 52.0, 42.0 1.62 (1.00 to 2.69) 0.07 2.64 (1.48 to 4.79) 2.36 × 10−3 45 (4923) 24 (4287) 0.79

NBN 64.5, 37.0 0.52 (0.15 to 1.54) 0.27 0.45 (0.10 to 1.82) 0.33 4 (4232) 9 (4681) 0.46

PALB2 62.0, 39.0 2.06 (0.90 to 5.19) 0.11 1.78 (0.61 to 5.59) 0.33 16 (5004) 7 (4683) 0.50

RAD51C 61.0, 39.0 15.28 (3.97 to 137.01) 6.29 × 10−06 12.09 (2.78 to 114.43) 7.85 × 10−04 23 (4809) 1 (4689) 0.34

RAD51D 60.0, 32.5 7.99 (2.56 to 39.77) 1.97 × 10−04 8.38 (2.17 to 47.23) 2.51 × 10−03 20 (4809) 2 (4688) 0.44
aAge (in years) at time of ovarian cancer diagnosis
bAge (in years) at time of testing
cCorrected for False Discovery Rate
dAll genes were not tested for every sample
eComparing crude odds ratio to adjusted odds ratio
CI Confidence Interval, No. Number
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Lilyquist, et al. who reported that its association was
“marginally significant” [23]. Additionally, Lilyquist et al.
initially reported a significant association of PALB2 with
OC, but the association was lost upon removal of
women with a personal or family history of breast cancer
[23]. We also report no significant association of PALB2
with OC.
Multiple studies have reported ATM as a moderate

risk OC gene [14, 23]. The observed significance by
ORCrude is concordant with these results. In controls,
ATM PV carriers had the highest median age (47 years,
time of testing) of any HR pathway genes. Given that
PVs in ATM were only moderately associated with OC
by ORCrude, the median age of PV carriers was high
enough compared to the median age of non-carriers to
decrease the ORAdj below the significance threshold.
Notably, an insignificant z-test result indicates that the
true effect size is likely to overlap the two reported CIs.
The presence of undiagnosed cancer patients in the
control cohort could falsely lower the calculated ORs,
a similar effect was previously described in a study
which used the ExAC controls with cancer samples
included [10].
A well-known breast cancer risk gene, CHEK2, has

been consistently reported to have no significant associ-
ation with OC [10, 14, 23]. Similar to reported associa-
tions from ATM, the observed significance by ORCrude is
concordant with previously reported associations. In
contrast, however, CHEK2 PV carriers in cases had the
lowest median age (52 years, time of OC diagnosis) of
any of the HR pathway genes, which increased the ORAdj

enough to reach the level of significant association with
OC. Again, similar to ATM, the z-test comparing the
two effect sizes was insignificant, indicating that the true
effect size is likely in the overlapping range of the CIs
(Table 1). When limiting cases to women with serous
OC pathology, association of OC with PVs in CHEK2
disappears and the median age of OC diagnosis in
PV carriers increases from 52 years to 63.5 years
(Additional file 5: Table S4). None of the 12 CHEK2
PV carriers with serous OC subtype were also diag-
nosed with breast cancer (not shown), suggesting
that the significant ORAdj result from the larger case
cohort was a direct effect from the bias introduced
by the younger CHEK2 PV carriers who were also
diagnosed with breast cancer.
Multiple publications have concluded that BRIP1 is

significantly associated with OC [10, 13, 23, 24]. While
ORCrude in BRIP1 was significantly associated with OC,
the ORAdj showed no OC association. The significantly
decreased effect size in BRIP1 can be attributed to PV
carriers displaying the oldest median age at time of OC
diagnosis and the second oldest median age at time of
testing among all of the genes (67y case PV carriers, 46y

control PV carriers; Table). Advanced age of PV carriers
in BRIP1 is not a novel observation [10, 13, 23, 24].
BRIP1 was the only gene in which ORAdj was signifi-
cantly different than ORCrude, which, given PV carriers
are older compared to non-carriers, suggests that BRIP1
PV carriers are more likely to be diagnosed with late-
onset OC. Recent updates to National Comprehensive
Cancer Network® (NCCN) guidelines for BRIP1 PV car-
riers include consideration of risk-reducing salpingo-
oophorectomy at 45–50 years of age [26]. The consist-
ently reported older age at time of diagnosis and the
observed lack of association by ORAdj suggests caution
before surgical intervention and the need for further
studies of larger cohorts of older controls, as previously
recommended [27].
A recent study reported no significant association of

BRIP1 with OC, but our results reveal a clinically rele-
vant factor that offers insight which may have contrib-
uted to the observed lack of association. Age (mean
[SD]) at time of OC diagnosis in cases (55.7y [14.1]) and
age at time of testing in controls (39.7y [14.7]) were both
younger than our cohorts, which could lead to under-
counting BRIP1 PV carriers. Finally, it has been sug-
gested that BRIP1’s OC association may be restricted to
high-grade serous epithelial ovarian cancer, but when
cases were restricted to women diagnosed with high-
grade serous OC histologic subtype, the OC association
was consistent (Additional file 5: Table S4) [7].
By presenting ORAdj in addition to ORCrude this study

allows for comparison of the two effect sizes. This com-
parison provides insight into the age difference between
PV carriers and non-carriers and enables inference of
early/late onset OC. Genes with PV carriers who are
older than non-carriers demonstrate decreased ORAdj

compared to ORCrude and conversely, genes with PV car-
riers who are younger than non-carriers have increased
ORAdj compared to ORCrude. Comparing the two effect
sizes for each gene using a z-test revealed that control-
ling for age did not significantly change the OR, except
in BRIP1. A significant z-test result suggests that BRIP1
PV carriers are more likely to be diagnosed with late-
onset OC (Table 1).
As a referral laboratory, clinical information was lim-

ited to that provided by ordering providers with submit-
ted samples. With ES, the referrals are not routinely
submitted for cancer-related testing and, therefore,
cancer history may not have been included in the clinical
histories by the ordering physician. In addition, because
the mean age of controls was lower than the mean age
of OC diagnosis, it cannot be ruled out that some of
these women will ultimately be diagnosed with OC. The
OC referral cases could be biased toward a higher risk
than the general ovarian cancer population. Variant de-
tection sensitivity filters for controls were conservatively
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chosen which may lead to under-reporting of PVs and
thus overestimation of ORs. Another source of possible
under-reporting of PVs in controls is due to the incom-
plete gene coverage in controls, although the minor dif-
ference would have negligible effect (Additional file 2:
Additional Sequencing Methods and Table S2). Copy
number variants would have likely contributed a small
number of PVs to cases and controls. But since this type
of variant was not evaluated it acts as a source of bias
toward under-reporting PVs. As not all PVs in controls
were orthogonally confirmed as they were in cases, it is
possible that a small number of control PVs were se-
quencing artifacts. Targeted BRCA1 and BRCA2 testing
tends to have a lower positive yield compared to panel
testing with other HR genes, as previously described
[28]. The overall pathogenic variant rate in OC (9.5%) is
lower than published rates from other studies [10, 23].
This can be attributed 873 women in the case cohort
who underwent testing for BRCA1 and/or BRCA2 only.

Conclusions
We present age-adjusted genetic associations for PVs in
HR genes with OC, leveraging an internal control cohort
of women who self-report as White/Caucasian. Our
study design and analysis provide more informed esti-
mates of association compared to recently published OC
associations by reporting both ORCrude and ORAdj. These
results are most relevant for BRIP1 PV carriers, as our
findings for this gene are disparate from recent literature
and conflict with current management guidelines.
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