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Abstract 

Purpose  This study aims to explore the contribution of differentially expressed programmed cell death genes 
(DEPCDGs) to the heterogeneity of serous ovarian cancer (SOC) through single-cell RNA sequencing (scRNA-seq) 
and assess their potential as predictors for clinical prognosis.

Methods  SOC scRNA-seq data were extracted from the Gene Expression Omnibus database, and the principal com-
ponent analysis was used for cell clustering. Bulk RNA-seq data were employed to analyze SOC-associated immune 
cell subsets key genes. CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) were utilized to calculate 
immune cell scores. Prognostic models and nomograms were developed through univariate and multivariate Cox 
analyses.

Results  Our analysis revealed that 48 DEPCDGs are significantly correlated with apoptotic signaling and oxida-
tive stress pathways and identified seven key DEPCDGs (CASP3, GADD45B, GNA15, GZMB, IL1B, ISG20, and RHOB) 
through survival analysis. Furthermore, eight distinct cell subtypes were characterized using scRNA-seq. It was found 
that G protein subunit alpha 15 (GNA15) exhibited low expression across these subtypes and a strong association 
with immune cells. Based on the DEGs identified by the GNA15 high- and low-expression groups, a prognostic model 
comprising eight genes with significant prognostic value was constructed, effectively predicting patient overall 
survival. Additionally, a nomogram incorporating the RS signature, age, grade, and stage was developed and validated 
using two large SOC datasets.

Conclusion  GNA15 emerged as an independent and excellent prognostic marker for SOC patients. This study pro-
vides valuable insights into the prognostic potential of DEPCDGs in SOC, presenting new avenues for personalized 
treatment strategies.
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Introduction
Ovarian cancer (OC) is a prevalent gynecologic malig-
nancy that affects the female reproductive system. Serous 
ovarian cancer (SOC) is the most common subtype, 
accounting for approximately 70–80% of all cases OC. 
SOC is characterized by high mortality and the rising 
number of cases each year, posing a significant threat to 
women’s well-being [1]. Despite significant advancements 
in debulking surgery and chemotherapy treatments, the 
overall survival rate of SOC remains suboptimal, with 
only approximately 30% of patients surviving beyond 
five years [2]. The tumor heterogeneity of SOC patients 
presents a significant challenge for predicting overall 
survival and treatment efficacy. Traditional prognostic 
indicators have included pathological types and stages, 
the presence of residual disease after debulking surgery, 
serum markers like CA125 and HE4, and imaging indi-
cators such as ultrasound [3]. However, these predictors 
no longer meet the clinical requirements of precision 
medicine in managing SOC. Therefore, it is imperative to 
expedite the development of efficacious prognostic mark-
ers and novel treatment targets to enhance the survival 
rates of SOC.

Programmed cell death (PCD) is a genetically regu-
lated process of cellular demise that serves a vital func-
tion in maintaining homeostasis [4]. Extensive research 
has focused on PCD in malignancies, revealing its sig-
nificance in the development and dissemination of malig-
nant cells [5]. Studies have shown that PCD, such as 
ferroptosis, necroptosis, and pyroptosis, are closely asso-
ciated with OC’s occurrence, progression, and therapeu-
tic potential [6]. However, intra-tumoral heterogeneity 
remains a significant challenge in the context of ovarian 
cancer [7, 8], with implications for cancer progression 
and survival rates [9, 10]. Therefore, investigating how 
PCD contributes to the heterogeneity of SOC is essential 
for providing precise treatment guidance and improving 
overall survival rates.

The advent of single-cell RNA sequencing (scRNA-seq) 
has revolutionized the study of tumoral heterogeneity 
in OC. It has facilitated the identification of critical fac-
tors and cellular subpopulations involved in tumor pro-
gression [11–13]. By enhancing our understanding of 
tumoral heterogeneity, scRNA-seq offers novel perspec-
tives on cancer biology [14]. Liu et  al. utilized scRNA-
seq to identify four M2 tumor-associated macrophage 
(TAM)-associated genes that possess predictive signifi-
cance in OC patients [15]. Similarly, Tan et  al. utilized 
scRNA-seq to reveal dynamic alterations occurring in the 
immunological milieu of bladder cancer and establish a 
predictive model [16]. Moreover, scRNA-seq has led to 
the discovery of new malignant cell populations associ-
ated with unfavorable prognostic outcomes in OC [17]. 

Additionally, Yu et  al. [18] identified flavin-containing 
monooxygenase 2 as a novel cancer-associated fibroblast-
derived biomarker for predicting the course of OC. How-
ever, despite these advancements, a comprehensive study 
of the relationship between PCD and tumor heteroge-
neity in SOC still needs to be conducted. The detailed 
mechanism of PCD in SOC’s heterogeneity remains 
thinly investigated.

In this study, we identified 48 differentially expressed 
programmed cell death-related genes (DEPCDGs) asso-
ciated with apoptotic signaling and oxidative stress 
pathways. We further identified seven key DEPCDGs 
(CASP3, GADD45B, GNA15, GZMB, IL1B, ISG20, and 
RHOB) with prognostic significance through survival 
analysis. We identified eight distinct cell subtypes corre-
sponding to 13 clusters using scRNA-seq on SOC tumor 
tissue samples. Interestingly, G protein subunit alpha 15 
(GNA15) exhibited low expression across these single-
cell subtypes and was strongly associated with immune 
cells in the RNA-seq data. To further investigate GNA15, 
we conducted a single-gene bioinformatics analysis and 
constructed a prognostic model. This model displayed 
promising predictive ability in both the TCGA and GEO 
cohorts, establishing GNA15 as a valuable autonomous 
prognostic determinant for SOC patients. Overall, our 
scRNA-seq investigation offers crucial insights into the 
complex tumoral heterogeneity of SOC, shedding light 
on potential avenues for developing novel therapeutic 
strategies.

Materials and methods
Data preparation
We collected 375 tumor tissues samples (TCGA-OV) 
(Homo sapiens) from the University of California 
Santa Cruz Xena (UCSC Xena, https://​xenab​rowser.​
net/​datap​ages/) [19], ensuring all selected samples had 
complete survival data. These samples provided tran-
scriptome sequencing data with fragments per kilobase 
million (FPKM) expression values, along with relevant 
clinical information, such as age, histologic grade, and 
clinical stage (Table S1). Additionally, we sourced 88 
healthy ovarian tissue samples (Homo sapiens) from 
the Genotype-Tissue Expression database (GTEx, 
https://​gtexp​ortal.​org/​home/) [20]. These samples pro-
vided the transcriptome sequencing FPKM expression 
profile and count matrix. In addition, we downloaded 
the RNA-seq dataset GSE63885 [21] from the Gene 
Expression Omnibus database(GEO, https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) through the “GEOquery” R package 
[22]. This dataset was derived from the GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 
2.0 Array, which focuses on Homo sapiens and com-
prises a total of 75 ovary tumor samples after removing 

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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missing survival data. We further downloaded scRNA-
seq data GSE184880 from the GEO database [23], 
which was derived from the platform GPL24676 Illu-
mina NovaSeq 6000 (Homo sapiens) and contained 
seven SOC samples without treatment and five control 
samples. The inclusion and exclusion criteria of this 
study were defined as follows: (1) The inclusion crite-
ria: ① Patients diagnosed and treated for SOC initially, 
excluding those with recurrent SOC; ② Complete 
clinical and pathological data. (2) The exclusion crite-
ria: ① Excluded patients with incomplete pathologica 
or clinical data; ② Patients with incomplete follow-up 
time, other causes of death and unknown death sta-
tus; ③ Patients with multiple tumors and non-primary 
tumors.

Identification and enrichment analysis of DEPCDGs
Initially, we collected 268 programmed cell death genes 
(PCD genes) from existing literature sources [24, 25]. 
Using scRNA-seq datasets, we identified 3,000 cell Dif-
ferential genes (cellDiffgenes) intersecting with PCD 
genes to obtain our target gene. Subsequently, we 
obtained a combined dataset by emerging OC samples 
from TCGA databases with healthy ovarian samples 
from GTEx databases using the “ComBat” R package 
[26]. We successfully identified differentially expressed 
programmed cell death genes (DEPCDGs) in SOC by 
analyzing these target genes in the combined dataset 
using the “limma” R package [27] (p < 0.05 and | logFC 
(Fold Change) |> 1). Among the DEPCDGs, those with 
a p-value less than 0.05 and logFC more than 1 were 
classified as up-regulated. Conversely, DEPCDGs with 
a p-value less than 0.05 and logFC less than -1 were 
categorized as down-regulated. The “heatmap” and 
“ggplot2” R packages were employed to generate visual 
representations of heat and volcano maps.

Gene Ontology (GO) [28] is a commonly used 
approach in conducting comprehensive investiga-
tions of functional enrichment studies. This method 
encompasses the examination of cell composition 
(CC), biological process (BP), and molecular function 
(MF). Similarly, the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [29] is an extensively utilized data-
base encompassing comprehensive data on genomes, 
biological processes, diseases, and pharmaceuticals. 
To analyze the functional characteristics and pathway 
enrichment of the DEPCDGs, we performed GO and 
KEGG analyses using the “ClusterProfler” R package 
[30] and graphically represented using the “ggplot2” R 
package. For statistical significance, we defined enrich-
ment as a function or pathway term with a false dis-
covery rate (FDR) less than 0.25 and a p-value less 

than 0.05. The p-value adjustment used the Benjamini-
Hochberg (BH) approach [31].

Identification of key DEPCDGs based on survival analysis
We performed survival analysis on DEPCDGs utilizing 
the “survival” R package [32] and identified key prognos-
tic genes with statistical significance (p < 0.05). These key 
prognostic genes were then selected as key DEPCDGs for 
further analysis.

Expression of key DEPCDGs on scRNA‑seq data
We imported raw data from SOC samples in the scRNA-
seq dataset utilizing the “Seurat” R package (version 4.0) 
[33] and created Seurat objects for subsequent analy-
sis. We applied gene < 200 or > 3,000 filtration condi-
tions to remove low-quality cells [34]. The proportion 
of mitochondrial genes in relation to the total genetic 
material can indicate cellular homeostasis. Cells with 
mitochondrial gene content > 10% were excluded from 
further analysis due to potential stress. Consequently, we 
obtained a final set of 3,555 cells for subsequent analysis.

The scRNA-seq data was normalized using the Log-
Normalize method. We identified cellDiffgenes in indi-
vidual cells after controlling for the relationship between 
average expression and dispersion. Next, we employed 
Principal Component Analysis (PCA) to decentralize all 
genes and cluster all cells. Subsequently, we displayed 
the resulting cell subclusters utilizing Uniform Manifold 
Approximation and Projection (UMAP) [35]. The cell 
type of each cluster was determined by referencing the 
Human Primary Cell Atlas (HPCA) dataset using the sin-
gleR method [36].

Evaluation of immune cell infiltration
CIBERSORT (https://​ciber​sortx.​stanf​ord.​edu/) is a com-
putational tool that employs linear support vector regres-
sion to deconvolute the transcriptome expression matrix. 
Its purpose is to estimate the composition and number of 
immune cells within a mixture of cells [37]. We utilized 
the CIBERSORT algorithm to determine the fraction of 
22 immune cell types, exploring the association between 
key DEPCDGs and the immunological microenviron-
ment. The relative abundance of immune cells in a data-
set sample can be calculated using single-sample gene 
set enrichment analysis (ssGSEA) [38]. The immune cell 
enrichment scores of combined datasets were assessed by 
using ssGSEA with the “GSVA” R package. This analysis 
was performed based on the relative abundance of each 
immunocyte infiltrate in every sample. Samples with a 
p-value less than 0.05 were filtered and included in the 
output. Finally, the correlation analysis results between 
key DEPCDGs and infiltrating immune cells in combined 
datasets were visually represented using the “pheatmap” 

https://cibersortx.stanford.edu/
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R package. The core genes for further analysis were 
selected based on the most relevant key DEPCDGs.

Difference and enrichment analysis of core gene
Within the TCGA-OV dataset, SOC patients were clas-
sified into high- and low-expression groups by utilizing 
the median value of the core gene. Differential analysis 
was performed using the “limma” R package to identify 
the differentially expressed genes (DEGs) with statisti-
cal significance (p < 0.05 and | logFC |> 1). To determine 
the biologically significant pathways mediated by the hub 
gene, we performed GO and KEGG enrichment analyses 
using the “ClusterProfiler” R package [39] and visualized 
using the “ggplot2” R package.

In order to evaluate the contribution of DEGs to the 
phenotype, we employed Gene Set Enrichment Analy-
sis (GSEA) [40]. GSEA is a computational methodology 
in which genes in a predetermined genetic set are ana-
lyzed within the gene list ordered by phenotypic corre-
lation. We performed enrichment analysis on all DEGs 
with high and low phenotype correlations in both groups 
using the “clusterProfiler” R package. The parameters 
employed for GSEA were as follows: a seed value of 
2020 was utilized for random number generation, 10,000 
computations were performed, and each gene set con-
tained a minimum of 10 genes and a maximum of 500 
genes. Enrichment analysis was conducted using the “c2.
cp.v7.2.symbols.gmt” gene set obtained from the Molec-
ular Signatures Database (MSigDB) [41] via the GSEA 
method. We defined statistically significant enrichment 
as a pathway or function term with an FDR less than 0.25 
and a p-value less than 0.05. The p-value correction was 
conducted using the BH method.

Construction and evaluation of a prognosis model based 
on core gene
DEGs identified from hub gene grouping were selected as 
candidate genes. To investigate their prognostic value for 
SOC, we assess the correlation between these candidate 
genes and survival outcomes via univariate Cox regres-
sion analysis using “survival” and “forestplot” R packages. 
Based on the DEGs with noteworthy prognostic value 
(p < 0.05), we conducted multivariate Cox regression 
analysis to calculate regression coefficients and develop a 
risk model. This model enabled us to assign a risk score 
(RS) to each tumor sample using the following formula,

Where N denotes the number of genes, coef(k) repre-
sents the multivariate Cox regression coefficient, and x(k) 
represents the expression value of each gene.

(1)RS =

N

k=1

coef (k)+ x(k) ,

Our data analysis identified seven prognosis-related 
feature genes: CD3E, CD2, IL2RG, FCGBP, RARRES1, 
UBD, VSIG4, and STAB1. Subsequently, the patients 
were classified into high- and low-risk groups according 
to the median of the RS. To evaluate the predictive effec-
tiveness of our risk model, we employed several meth-
ods: the Risk Triptych, time-dependent receiver operator 
characteristic (time-ROC) curve analysis [42], Kaplan–
Meier (K-M) curve analysis [43], and decision curve anal-
ysis (DCA).

Construction and evaluation of a nomogram based 
on the risk score
In order to determine the potential independence of the 
prognostic factor, we assess the correlation between sur-
vival outcomes and variables such as RS, age, stage, and 
grade via univariate Cox regression using the “survival” 
and “forestplot” R packages. Furthermore, we explored 
independent influencing factors through multivariate 
Cox regression and visualized them in forest plots. A 
nomogram was ultimately constructed utilizing the RS 
and clinical characteristics in order to forecast the prog-
nosis of SOC. The performance of this nomogram was 
subsequently assessed through the use of the Calibration 
curve and ROC curve.

Statistical analysis
We performed statistical analysis in this study using 
RStudio (version 4.2). The Kruskal–Wallis test was 
employed to compare groups consisting of three or 
more, while the Wilcoxon rank sum test was utilized for 
the comparison of two groups. Spearman’s method was 
employed for correlation analysis. The “survival” R pack-
age was employed to conduct univariate and multivariate 
Cox analyses. Additionally, survival differences were dis-
played using K-M survival curves. The Log-rank test was 
employed to evaluate the extent of the disparity in sur-
vival durations among the various groups of patients. All 
statistical tests were conducted with bilateral p-values, 
and a significance level of p < 0.05 was employed.

Results
Workflow chart
In order to provide a clearer understanding of the 
research process, we presented the workflow of our study 
in Fig. 1.

Identification and pathway enrichment analysis 
of DEPCDGs
We identified a total of 97 PCD-related cellDiffgenes 
by intersecting 3,000 cellDiffgenes from the scRNA-
seq dataset with 268 PCD genes from existing literature 
sources. Moreover, the 171 genes are uniquely associated 
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with the PCD gene set, which were not present among 
the cellDiffgenes., hinting at their potential involvement 
in specific PCD pathways relevant to ovarian cancer 
(Fig.  2A). A combined dataset was obtained by emerg-
ing OC samples from TCGA databases with healthy 
ovarian samples from GTEx databases. We identified 
48 DEPCDGs by performing differential analysis on the 
expression of PCD-related cellDiffgenes in the com-
bined dataset using the “limma” R package ( |logFC|> 1 
and p < 0.05). Among them, 18 genes were up-regulated 
( logFC > 1 and p < 0.05), and 30 genes were down-regu-
lated ( logFC < -1 and p < 0.05). The volcano plot visual-
ized these DEPCDGs (Fig. 2). The differential expression 
of DEPCDGs between various sample groups in com-
bined datasets was analyzed. The results of this analysis 
were visualized using a heatmap plot generated by the 
“pheatmap” R package (Fig. 2C).

Forty-eight DEPCDGs were analyzed by GO and 
KEGG pathway enrichment analysis (Table  1). GO 
analysis revealed enrichment of DEPCDGs in pathways 
such as extrinsic apoptotic signaling pathway, cellular 
response to chemical stress, regulation of extrinsic apop-
totic signaling pathway, response to oxidative stress, and 
regulation of apoptotic signaling pathway (Fig.  2D). In 
the KEGG pathway analysis, several enriched pathways of 

DEPCDGs were identified, including legionellosis, prote-
oglycans in cancer, and salmonella infection (Fig. 2E).

Identification of key DEPCDGs based on survival analysis
We conducted survival analysis on 48 DEPCDGs in the 
TCGA-OV group and identified seven key DEPCDGs 
with prognostic significance in SOC (p < 0.05). These 
genes were the third comparative assessment of tech-
niques of protein structure prediction (CASP3), growth 
arrest and DNA-damage-inducible protein 45 beta 
(GADD45B), GNA15, Granzyme B (GZMB), cytokine 
interleukin-1β (IL1B), Interferon-stimulated gene 20 
(ISG20), and RhoB (RHOB) (p < 0.05) (Fig.  3A-G). The 
differential expression of these seven genes in the com-
bined dataset shown in Fig.  3H, with GASP3, GNA15, 
GZMB, and IL1B strongly expressed in the tumor 
group, while GADD45B, ISG20, and RHOB were lowly 
expressed (p < 0.001). Additionally, correlation analy-
sis revealed that GNA15 and IL1B were relatively highly 
correlated (Fig.  3I). These findings suggest the potential 
prognostic significance of these key DEPCDGs in SOC.

Expression of key DEPCDGs on scRNA‑seq data
In our study, RNA sequencing was performed on single 
cells from seven ovarian cancer samples. To ensure the 

Fig. 1  Flow chart for the comprehensive analysis of DEPCDGs. DEPCDGs, differentially expressed programmed cell death genes
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overall quality of single-cell data, we implemented filter-
ing conditions to eliminate low-quality cells and batch 
effects. Specifically, we set the filtering condition as fol-
lows: the number of RNA features (nFeature_RNA) had 
to be between 200 and 3,000, and the percentage of mito-
chondrial genes (percent.mito) had to be below 20%. 
Through this filtering process, we successfully identified 
and retained a total of 3,555 high-quality cells.

Following data normalization and gene centralization, 
we performed PCA dimensionality reduction by extract-
ing the top 3, 000 cellDiffgenes at the single-cell level. To 
identify distinct groups of cells with similar gene expres-
sion profiles, we employed the top 50 principal compo-
nents for clustering. This clustering analysis yielded 13 
independent clusters, which were subsequently visual-
ized using UMAP (Fig. 4A).

Fig. 2  Identification and pathway enrichment analysis of DEPCDGs. A Venn diagram displaying the overlap genes between cell Diff genes and PCD 
genes (3,000 PCD genes shown in red, 268 cellDiffgenes shown in blue, and 97 PCD-related cellDiffgenes overlap between both sets). B The 
volcano plot of DEPCDGs in combined datasets. C Clustered heatmap of DEPCDGs in combined datasets. D GO enrichment analysis of DEPCDGs 
(FDR < 0.05). E KEGG enrichment analysis of DEPCDGs (FDR < 0.05). Blue represents the normal group; orange represents the tumor group. DEPCDGs, 
differentially expressed programmed cell death genes; PCD, programmed cell death; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; FDR, false discovery rate
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Using the HPCA data to identify cell type of each 
cluster, we found eight cell subtypes after annotating, 
including intermediate monocytes, myeloid dendritic 
cells (mDCs), NK cells, plasmablasts, progenitor cells, 
switched memory B cells, Tregs, and Vdelta2 gamma-
delta (Vδ2 gδ) T cells (Fig. 4B). Expression levels of seven 
key DEPCDGs in various cell types visually showed 
by the UMAP (Fig.  4D-J). Our findings revealed that 
GADD45B exhibited a high expression level in interme-
diate monocytes, GZMB was highly expressed in NK 
cells, and IL1B showed significant expression in inter-
mediate monocytes. Interestingly, GNA15 displayed low 
expression across all cell subtypes. These results were 
further validated by the violin diagram (Fig.  4K-Q) and 
heatmap (Fig. 4C).

Immune cell infiltration in the transcriptome and its 
correlation with key DEPCDGs
In order to examine the relationship between key DEP-
CDGs and immune infiltration in the transcriptome, we 
conducted an analysis of immune cell infiltrates in the 
combined datasets utilizing CIBERSOFT and ssGSEA 
methods. The CIBERSORT algorithm analyzed immune 
infiltrates abundance of Tregs, gδT cells, NK cells acti-
vated, monocytes, dendritic cells resting, dendritic cells 
activated, and B cells memory. The results revealed that 
the tumor group exhibited higher immune infiltration 
levels of Tregs, gδT cells, dendritic cells resting, and 
dendritic cells activated compared to the normal group. 

Additionally, the infiltration abundance of monocytes 
displayed a statistically significant decrease in the tumor 
group (Fig.  5A, p < 0.001). Using the ssGSEA algorithm, 
we analyzed immune infiltrates’ abundance of gδT cells, 
plasmacytoid dendritic cells, NK cells, Tregs, monocytes, 
activated B cells, activated dendritic cells, immature B 
cells, and immature dendritic cells. The results indicated 
that gδT cells, NK cells, Tregs, monocytes, and acti-
vated dendritic cells exhibited higher immune infiltra-
tion levels in the tumor group compared to the normal 
group (Fig.  5C, p < 0.01). We screened out GNA15 as a 
core DEPCDG in SOC, as it showed a strong correlation 
with dendritic cells resting in the CIBERSORT algorithm 
(R = 0.35), none of the other genes were highly correlated 
with cells (Fig.  5B). Similarly, GNA15 demonstrated a 
high correlation with all identified immune cell subtypes 
in the ssGSEA algorithm(all R ≥ 0.58) (Fig.  5D). Specific 
high correlation results were shown in Fig. 5E-H, where 
GNA15 exhibited a correlation with activated dendritic 
cells (R = 0.80, p < 0.001, Fig.  5E), monocytes (R = 0.70, 
p < 0.001, Fig. 5F), NK cells (R = 0.73, p < 0.001, Fig. 5G), 
and Tregs (R = 0.82, p < 0.001, Fig. 5H).

Analysis of variance and functional enrichment based 
on GNA15
Based on our analysis results, we specifically focused 
on the core gene GNA15 for single-gene bioinformat-
ics analysis. The HGSOC patients were categorized 
into high- and low-expression groups using the median 

Table 1  Results of GO and KEGG enrichment analysis for DEPCDGs

ONTOLOGY ID Description GeneRatio BgRatio p p.adjust qvalue Count

BP GO:0097191 extrinsic apoptotic signaling pathway 11/48 221/18800 7.12E-12 1.71E-08 9.44E-09 11

BP GO:0062197 cellular response to chemical stress 12/48 332/18800 2.97E-11 3.57E-08 1.97E-08 12

BP GO:2001236 regulation of extrinsic apoptotic signaling 
pathway

9/48 153/18800 1.58E-10 1.27E-07 6.98E-08 9

BP GO:0006979 response to oxidative stress 12/48 433/18800 6.30E-10 3.78E-07 2.09E-07 12

CC GO:0043202 lysosomal lumen 4/48 97/19594 9.29E-05 0.007156323 0.005711273 4

CC GO:0045121 membrane raft 6/48 326/19594 0.000137999 0.007156323 0.005711273 6

CC GO:0098857 membrane microdomain 6/48 327/19594 0.00014032 0.007156323 0.005711273 6

CC GO:0005775 vacuolar lumen 4/48 174/19594 0.000861927 0.032968701 0.02631145 4

MF GO:0005126 cytokine receptor binding 6/47 272/18410 6.36E-05 0.009836915 0.007129429 6

MF GO:0030291 protein serine/threonine kinase inhibitor 
activity

3/47 33/18410 8.06E-05 0.009836915 0.007129429 3

MF GO:0019887 protein kinase regulator activity 5/47 207/18410 0.000178926 0.012633891 0.009156573 5

MF GO:0032813 tumor necrosis factor receptor superfamily 
binding

3/47 49/18410 0.000264592 0.012633891 0.009156573 3

KEGG hsa05134 Legionellosis 6/39 57/8163 2.42E-07 3.03E-05 1.63E-05 6

KEGG hsa05205 Proteoglycans in cancer 9/39 205/8163 3.68E-07 3.03E-05 1.63E-05 9

KEGG hsa05132 Salmonella infection 9/39 249/8163 1.88E-06 0.000103558 5.55E-05 9

KEGG hsa05210 Colorectal cancer 6/39 86/8163 2.83E-06 0.000116793 6.26E-05 6
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value of the GNA15 in the TCGA-OV dataset. Through 
differential analysis, we identified 5 down-regulated 
DEGs and 180 up-regulated DEGs (|logFC|> 1, p < 0.05) 
(Fig.  6A). To gain insights into biological pathways 
modulated by GNA15, we conducted GO and KEGG 
enrichment analyses on these DEGs. The GO enrich-
ment analysis revealed a predominant involvement of 
DEGs in leukocyte-mediated immunity, B cell-medi-
ated immunity, antigen-binding pathways, and other 
relevant pathways (Fig.  6B). Meanwhile, the KEGG 

enrichment analysis discovered that DEGs enrichment 
in pathways associated with staphylococcus aureus 
infection, phagosome, and other related pathways 
(Fig. 6C). Additionally, we employed GSEA analysis to 
investigate the implications of GNA15 expression fur-
ther (Table  2). The results of our study indicate a sig-
nificant association between the high expression of 
GNA15 and B cell receptor signaling pathway, T cell 
receptor signaling pathway, and Toll-like receptor sign-
aling pathway (Fig.  6D-F). Conversely, low expression 

Fig. 3  Identification of key DEPCDGs based on survival analysis. A-G Kaplan–Meier survival curves of seven key DEPCDGs in TCGA-OV: CASP3 (A), 
GADD45B (B), GNA15 (C), GZMB (D), IL1B (E), ISG20 (F), RHOB (G). H Group comparison boxplot of seven key DEPCDGs. I Correlational analysis 
of seven key DEPCDGs. Red represents positive correlation, blue represents negative correlation. *, p < 0.05; **, p < 0.01; ***, p < 0.001; DEPCDGs, 
differentially expressed programmed cell death genes; TCGA-OV, The Cancer Genome Atlas—Ovarian Cancer; CASP3, the third comparative 
assessment of techniques of protein structure prediction; GADD45B, growth arrest and DNA-damage-inducible protein 45 beta; GNA15, G protein 
subunit alpha 15; GZMB, Granzyme B, IL1B, cytokine interleukin-1β; ISG20, Interferon-stimulated gene 20; RHOB, RhoB
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of GNA15 was enriched in the ribosome, spliceosome, 
and RNA polymerase pathways (Fig. 6G-I).

Construction and evaluation of a prognostic model based 
on GNA15
A predictive model was created utilizing the core gene 
GNA15. Initially, a univariate Cox regression analysis 
was performed on DEGs between high and low GNA15 
expression. Our results revealed 11 genes with signifi-
cant prognostic value (p < 0.05) in SOC (Fig.  7A). Sub-
sequently, we performed multivariate Cox regression 
analysis on these 11 genes to construct the predictive 
model consisting of eight genes: CD3E, CD2, IL2RG, 
FCGBP, RARRES1, UBD, VSIG4, and STAB1 (Fig.  7B). 
We categorized patients into high- and low-risk groups 
based on the RS median. The Risk Triptych showed the 
strong predictive capacity of the model in both TCGA-
OV and GSE63885 datasets (Fig.  7D-E, H-I). Fur-
thermore, the K-M survival curve indicated that the 
high-risk group had worse prognoses compared to the 
low-risk group in both TCGA-OV and GSE63885 data-
sets (p < 0.0001, p = 0.048) (Fig.  7C, G). The timeROC 

curve showed the RS’s strong predictive ability for overall 
survival (OS) in SOC patients, with AUCs of 0.690, 0.694, 
and 0.713 for 1-year, 3-year, and 5-year respectively 
(Fig. 7F). Finally, the DCA confirmed the substantial pre-
dictive ability of the RS signature (Fig. 7J).

Construction of a nomogram prediction model based 
on RS
We conducted a comprehensive analysis to determine 
whether RS could used as an independent prognostic fac-
tor. Firstly, a univariate Cox regression analysis was per-
formed to assess the relationship between RS, age, stage, 
grade, and OS. The forest plots revealed that age and RS 
are significantly related to OS (Fig.  8A). Further analy-
sis was undertaken using multivariate Cox regression, 
considering the aforementioned variables. Remarkably, 
both RS and age emerged as independent prognostic fac-
tors for predicting patients’ OS without relying on other 
clinical features (Fig. 8B). Subsequently, we constructed a 
nomogram model that incorporates RS along with three 
other clinical features for forecasting SOC patient out-
comes (Fig. 8C). The good predictive power of this model 

Fig. 4  Expression of key DEPCDGs on scRNA-seq data. A UMAP plot of 13 cell clusters with similar gene expression profiles. B UMAP plot of eight 
cell subtypes. C Heatmap of key DEPCDGs’ expression level in eight cell subtypes. D-J UMAP plots of key DEPCDGs’ expression level in eight cell 
subtypes. GZMB (D), IL1B (E), ISG20 (F), CASP3 (G), GADD45B (H), GNA15 (I), RHOB (J). K-Q Violin diagrams of key DEPCDGs’ expression level in eight 
cell subtypes. GZMB (K), IL1B (L), ISG20 (M), CASP3 (N), GADD45B (O), GNA15 (P), RHOB (Q). Red represents low expression; yellow represents high 
expression. DEPCDGs, differentially expressed programmed cell death genes; UMAP, uniform manifold approximation and projection; CASP3, 
the third comparative assessment of techniques of protein structure prediction; GADD45B, growth arrest and DNA-damage-inducible protein 45 
beta; GNA15, G protein subunit alpha 15; GZMB, Granzyme B, IL1B, cytokine interleukin-1β; ISG20, Interferon-stimulated gene 20; RHOB, RhoB
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was demonstrated by the Calibration curve (Fig.  8D). 
Moreover, the ROC curve analysis of the nomogram 
displayed its precise predictive ability for OS of SOC 
patients, with AUC values of 0.670, 0.650, and 0.653 for 
the 1-year, 3-year, and 5-year OS predictions, respec-
tively (Fig. 8E).

Discussion
SOC is an aggressive neoplasm of the reproductive sys-
tem. Despite improvements in therapy, the high intra-
tumor heterogeneity makes improving the overall 
survival rate challenging. scRNA-Seq technologies have 
been widely recognized for their ability to examine tumor 
heterogeneity through the evaluation of gene expres-
sion at the individual cell level [44]. Several studies have 
focused on developing accurate and sensitive predictive 
models for SOC prognosis, incorporating immune genes, 
serum biomarkers, and other factors [45–47]. However, 
to enhance the validity and reliability of these models, it 
is imperative to take into account the heterogeneity of 
tumor samples. PCD is a fundamental process for cellular 
self-repair and regulation, and its dysregulation contrib-
utes to malignant tumor development and metastasis [5]. 
PCD-related genes are critical in SOC [48]. In this study, 
we employed a combination of scRNA-Seq and bulk 
RNA-Seq techniques to examine tumor heterogeneity 

and investigate the involvement of PCD in the progres-
sion of SOC. To the best of our understanding, this bio-
informatics analysis is the initial demonstration of the 
role of PCD and tumor heterogeneity on the prognosis of 
SOC using scRNA-Seq, and we establish prognostic sig-
natures based on core DEPCDGs.

Our study identified 48 DEPCDGs contributing to the 
heterogeneity of SOC by performing differential analy-
sis using TCGA-OV and GTEx datasets. Through GO 
analysis, we determined enrichment pathways for these 
DEPCDGs, including the extrinsic apoptotic signaling 
pathway, cellular response to chemical stress, regulation 
of the extrinsic apoptotic signaling pathway, response to 
oxidative stress, and regulation of the apoptotic signal-
ing pathway. Additionally, the KEGG analysis revealed 
enrichment pathways, such as legionellosis, proteogly-
cans in cancer, and salmonella infection. In small intes-
tinal neuroendocrine neoplasia, GNA15 inhibits cell 
proliferation and promotes apoptosis through the NFκB 
and Akt signaling pathways [49]. LINC02474 inhibits 
apoptosis by impeding GZMB expression in colorectal 
cancer [50]. Moreover, proteoglycans have been found to 
play a significant role in cancer progression by influenc-
ing cancer cell aggressiveness, angiogenesis, and stromal 
microenvironment [51]. These studies provide support 
for the validity of the current study.

Fig. 5  Immune infiltration analysis in combined datasets. A Group comparison chart of immune cell infiltration analysis in combined datasets 
by the CIBERSOFT method. B Heatmap of the relationship between key DEPCDGs and specific immune cell subtypes calculated by the CIBERSOFT 
method. C Group comparison chart of immune cell infiltration analysis in combined datasets by the ssGSEA method. D Heatmap of the relationship 
between key DEPCDGs and specific immune cell subtypes by the ssGSEA method. E–H Correlation analysis between GNA15 and specific immune 
cell subtypes (activated dendritic cell (E), monocyte (F), NK cell (G), Tregs (H)). Red represents the tumor group; blue represents the normal group. 
*, p < 0.05; **, p < 0.01; ***, p < 0.001; DEPCDGs, differentially expressed programmed cell death genes; ssGSEA, single-sample gene set enrichment 
analysis; GNA15, G protein subunit alpha 15



Page 11 of 16Zhan et al. Journal of Ovarian Research           (2024) 17:92 	

Among the genes studied, GNA15 exhibited consist-
ently low expression across all eight cell subtypes and 
strongly correlated with immune cell subtypes. GNA15 
is a member of the GNA gene family, which is crucial in 
regulating cell proliferation and apoptosis. It is expressed 
in highly specific cell types, such as hematopoietic [52] 
and epithelial cells [53], during certain stages of differen-
tiation. GNA15 has been identified as highly expressed 
in small intestinal neuroendocrine neoplasia [49] and 
pancreatic ductal adenocarcinoma [54], correlating with 
poor survival. It is worth noting that prior research has 
yet to explore the specific role of GNA15 in the SOC 

tumorigenesis and progression mechanism. We predict 
that GNA15 is involved in the development and advance-
ment of SOC, serving as a potential theoretical founda-
tion for SOC treatment and prognosis.

The comparative analysis conducted on groups exhib-
iting contrasting levels of GNA15 expression demon-
strated that a total of 180 genes showed up-regulation, 
whereas a mere 5 genes displayed down-regulation. We 
investigated the role of GNA15 in various biological 
pathways through GO and KEGG analyses. GO analy-
sis revealed the involvement of GNA15 in leukocyte and 
B cell-mediated immunity, as well as antigen-binding 

Fig. 6  Single-gene bioinformatic analysis of GNA15. A Volcano plot of DEGs in high and low GNA15 expression groups in TCGA-OV. B GO 
enrichment analysis of DEGs n high and low GNA15 expression groups in TCGA-OV. c KEGG enrichment analysis of DEGs n high and low GNA15 
expression groups in TCGA-OV. D-F GSEA analysis of high GNA15 expression group. B cell receptor signal transduction (D), T cell receptor signaling 
pathway (E), TOLL-like receptor signaling pathway (F). G-I GSEA analysis of low GNA15 expression group. RNA polymerase (G), spliceosome (H), 
ribosome (I). GNA15, G protein subunit alpha 15; DEGs, differentially expressed genes; TCGA-OV, The Cancer Genome Atlas—Ovarian Cancer; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis
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pathways. Meanwhile, KEGG analysis identified staphy-
lococcus aureus infection, phagosome, and other bio-
logical processes. These findings underscore the diverse 
functions of GNA15 in various cellular pathways. Fur-
thermore, GSEA analysis demonstrated a significant 
correlation between high expression of GNA15 and the 
activation of T-cell receptor and B-cell receptor signal-
ing pathways. In contrast, low expression is correlated 
with ribosome and spliceosome pathways, which indi-
cates that GNA15 is engaged in the regulation of cellular 
processes associated with immunological signaling and 
protein synthesis. Moreover, a study by Zeng et  al. [55] 
highlighted that the carcinogenic role of miR-211-5p 
mediated by GNA15, which modifies the immune func-
tion of the tumor microenvironment extrinsically while 
also impacting the intracellular processes of pyropto-
sis and glycolysis in melanoma cells. Additionally, the 
expression levels of GNA15 have been implicated in the 
effectiveness of anti-tumor chemotherapeutic medicines 
[56]. Overall, these findings underscore the multifaceted 
functions of GNA15 in tumor cellular processes. Further 
investigation into the role of GNA15 in these pathways 
can enhance our understanding of cellular mechanisms 
and contribute to the development of novel treatments.

To evaluate the predictive capability of GNA15, we 
constructed a prognostic model incorporating eight 
genes (CD3E, CD2, IL2RG, FCGBP, RARRES1, UBD, 
VSIG4, and STAB1), which were identified as DEGs in 

the GNA15 high- and low-expression groups. This model 
demonstrated predictive solid ability in the TCGA-OV 
and GSE63885 datasets, confirming that the result-
ing RS signature can be an independent prognostic fac-
tor for SOC. These findings suggest that GNA15 holds 
promising potential in forecasting overall survival in 
SOC patients, indicating its crucial role in PCD for het-
erogeneity of SOC. For instance, Innamorati et  al. [54] 
conducted pancreatic ductal adenocarcinoma (PDAC), 
Zanini et al. [49] focused on small intestinal neuroendo-
crine neoplasia, and Li et al. [57] investigated acute mye-
loid leukemia. These studies provide valuable insights 
into the role of GNA15 in identifying and predicting the 
progression and prognosis of these malignancies. These 
studies align with our findings and further support the 
idea that GNA15 is involved in diverse malignancies. The 
relationship between increased expression of GNA15, 
early relapse, and poor survival in SOC may be attrib-
uted to the induction of a stem cell-like phenotype in 
human ovarian cancer cells through the downregulation 
of AKT activity. Additionally, GNA15 facilitates cellular 
signaling and migratory properties in transformed cells. 
Moreover, high expression of GNA15 is linked to the het-
erogeneity and prognosis of SOC. These findings suggest 
that GNA15 holds promise in predictive and prognostic 
analyses of SOC.

Despite offering valuable insights, this study has several 
limitations that warrant attention. Firstly, the exclusion 

Table 2  TOP 20 results of GSEA for TCGA-OA dataset

ID setSize enrichmentScore NES p p.adjust qvalues

KEGG_RIBOSOME 88 -0.881642594 -2.35478993 1.00E-10 1.42E-09 8.42E-10

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 263 0.818850512 2.211493886 1.00E-10 1.42E-09 8.42E-10

KEGG_CHEMOKINE_SIGNALING_PATHWAY​ 188 0.829317495 2.189465877 1.00E-10 1.42E-09 8.42E-10

KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY​ 102 0.870671429 2.177440979 1.00E-10 1.42E-09 8.42E-10

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 132 0.836256916 2.152736693 1.00E-10 1.42E-09 8.42E-10

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 81 0.886790285 2.144698591 1.00E-10 1.42E-09 8.42E-10

KEGG_AUTOIMMUNE_THYROID_DISEASE 50 0.945297962 2.141011487 1.00E-10 1.42E-09 8.42E-10

KEGG_HEMATOPOIETIC_CELL_LINEAGE 85 0.875785337 2.13708209 1.00E-10 1.42E-09 8.42E-10

KEGG_LEISHMANIA_INFECTION 69 0.884430569 2.104761525 1.00E-10 1.42E-09 8.42E-10

KEGG_CELL_ADHESION_MOLECULES_CAMS 131 0.809666125 2.084812817 1.00E-10 1.42E-09 8.42E-10

KEGG_VIRAL_MYOCARDITIS 68 0.876151547 2.079476127 1.00E-10 1.42E-09 8.42E-10

KEGG_LYSOSOME 121 0.802078295 2.045087934 1.00E-10 1.42E-09 8.42E-10

KEGG_FOCAL_ADHESION 199 0.759222161 2.007323323 1.00E-10 1.42E-09 8.42E-10

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 56 0.900458059 2.087142871 1.35E-10 1.78E-09 1.05E-09

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 69 0.866012639 2.060930668 3.31E-10 3.83E-09 2.27E-09

KEGG_ALLOGRAFT_REJECTION 35 0.946485716 2.018567298 3.26E-10 3.83E-09 2.27E-09

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY​ 108 0.801131037 2.015904273 1.40E-09 1.52E-08 9.00E-09

KEGG_JAK_STAT_SIGNALING_PATHWAY​ 155 0.744247373 1.932325326 1.62E-09 1.66E-08 9.84E-09

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 45 0.914558119 2.039161727 2.73E-09 2.66E-08 1.57E-08

KEGG_TYPE_I_DIABETES_MELLITUS 41 0.917534976 2.019273297 4.09E-09 3.60E-08 2.13E-08
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criteria applied to patient selection enhance the quality 
and integrity of the data, thereby stabilizing and consistent 
results while ensuring the accuracy, reliability, and repeat-
ability of the findings. However, this approach may also 
introduce sample selection bias, potentially limiting the 
generalizability of our conclusions. Secondly, our study 
does not statistically compare the clinical efficacy of our 
nomogram with any previously developed and validated 
models. This comparison is crucial for establishing the rela-
tive performance and potential advantages of our approach. 
Thirdly, the data analyzed in this study were exclusively 

derived from public databases, including TCGA, GTEx, 
and GEO, without incorporating raw data from our own 
investigations. This reliance on secondary data sources may 
affect the direct applicability of our findings to other data-
sets or clinical scenarios.

Conclusion
In conclusion, our research demonstrates the potent 
prognostic value of GNA15 for the overall survival of 
SOC patients. We have developed a novel single-cell 
prognostic model for SOC, shedding new light on the 

Fig. 7  Construction evaluation of a predictive model based on GNA15. A Univariate Cox regression analysis of DEGs in the TCGA-OV dataset. 
B Multivariate Cox regression analysis of DEGs in the TCGA-OV dataset. C The K-M survival curve analysis of prognostic models in the TCGA-OV 
dataset (p < 0.001). D Distribution of SOC patients with different RS in the TCGA-OV dataset. E Survival status analysis of SOC patients with different 
RS in TCGA-OV dataset. F timeROC analysis of 1-, 3- and 5-year in the TCGA-OV dataset. G The K-M survival curve analysis of the prognostic 
model in the GSE63885 dataset (p < 0.05). H Distribution of patients with various RS in the GSE63885 dataset. I Survival status analysis of patients 
with various RS in the GSE63885 dataset. J DCA curve of the RS’ prediction power in the TCGA-OV dataset. Red represents the high-risk group; blue 
represents the low-risk group. GNA15, G protein subunit alpha 15; DEGs, differentially expressed genes; TCGA-OV, The Cancer Genome Atlas—
Ovarian Cancer; SOC, serous ovarian cancer; K-M, Kaplan–Meier; ROC, receiver operator characteristic; DCA, decision curve analysis
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progression of this disease. Our study highlights the 
critical role of GNA15 in predictive analysis. Perform-
ing an in-depth analysis of gene patterns in SOC can 
further enhance our understanding of the disease’s 
etiology, prognosis, and treatment options. Future 
research in this area should focus on investigating the 
potential implications of GNA15 and related genes in 
the context of SOC. By doing so, we can make signifi-
cant strides in advancing our knowledge of this com-
plex disease and potentially identifying new therapeutic 
targets. In conclusion, we emphasize the significance 
of investigating the processes of carcinogenesis using 
the methodology of single-cell genomics, as it has the 
potential to yield vital insights into the underlying 
mechanisms of SOC formation.
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