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Abstract

Background: Ovarian carcinoma (OC) is a common cause of death among women with gynecological cancer.
MicroRNAs (miRNAs) are believed to have vital roles in tumorigenesis of OC. Although miRNAs are broadly
recognized in OC, the role of has-miR-182-5p (miR-182) in OC is still not fully elucidated.

Methods: We evaluated the significance of miR-182 expression in OC by using analysis of a public dataset from the
Gene Expression Omnibus (GEO) database and a literature review. Furthermore, we downloaded three mRNA
datasets of OC and normal ovarian tissues (NOTs), GSE14407, GSE18520 and GSE36668, from GEO to identify
differentially expressed genes (DEGs). Then the targeted genes of hsa-miR-182-5p (TG_miRNA-182-5p) were
predicted using miRWALK3.0. Subsequently, we analyzed the gene overlaps integrated between DEGs in OC and
predicted target genes of miR-182 by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis. STRING and Cytoscape were used to construct a protein-protein interaction (PPI)
network and the prognostic effects of the hub genes were analyzed.

Results: A common pattern of up-regulation for miR-182 in OC was found in our review of the literature. A total of
268 DEGs, both OC-related and miR-182-related, were identified, of which 133 genes were discovered from the PPI
network. A number of DEGs were enriched in extracellular matrix organization, pathways in cancer, focal adhesion,
and ECM-receptor interaction. Two hub genes, MCM3 and GINS2, were significantly associated with worse overall
survival of patients with OC. Furthermore, we identified covert miR-182-related genes that might participate in OC
by network analysis, such as DCN, AKT3, and TIMP2. The expressions of these genes were all down-regulated and
negatively correlated with miR-182 in OC.

Conclusions: Our study suggests that miR-182 is essential for the biological progression of OC.

Keywords: Ovarian cancer, miR-182, Differentially expressed genes, Functional enrichment analysis, Protein-protein
interaction, Survival analysis
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Background
Ovarian carcinoma (OC) is a common cause of death
among women with gynecological cancer [1]. Owing to
the lack of specific symptoms and methods for early
screening, approximately 75% of women have an ad-
vanced stage of the disease at diagnosis, which is conse-
quently associated with poor outcome [2]. Therefore, it
is urgent to determine the underlying mechanisms and
develop new strategies for OC treatment.
MicroRNAs (miRNAs or miRs), a group of endogenous

non-coding RNA molecules, can repress gene expression by
mRNA degradation/destabilization or through impaired
translation [3–5]. The abnormal expression of miRNAs oc-
curs in a variety of tumors and often appears to be associated
with altered malignant potential, such as changes in tumor
cell development, cell proliferation, and apoptosis [6–8].
Increasing studies have revealed that aberrant expres-

sion of has-miR-182-5p (miR-182) contributes to the bio-
logical processes of various types of cancer. For example,
some studies have indicated that over-expression of miR-
182 shows increased tumour cell growth and proliferation,
highly aggressive features, and tumor progression through
repression of a plethora of targets (e.g., CAMK2N1 [9],
RAB27A [10] and activation of Wnt/β-catenin signal path-
way [11]; Perilli et al. [12] have found that circulating
miR-182 can serve as a biomarker for tumor progression.
However, some studies have shown different conclusions.
For example, one study has shown that over-expression of
miR-182 inhibits the epithelial to mesenchymal transition
and metastasis via inactivation of Met/AKT/Snail in non-
small cell lung cancer cells [13], Sun et al. [14] have re-
ported that the miR-182 expression in cervical cancer is
down-regulated and miR-182 induces cervical cancer cell
apoptosis by suppressing DNMT3a expression.
MiR-182-related aggressive growth is mainly mediated

by the direct regulation of genes associated with tumor
invasion and metastasis [15, 16]. Furthermore, it has
been found that miR-182 plays oncogenic roles by dir-
ectly targeting and negatively regulating PDCD4 in ovar-
ian cancer [17]. Previous studies have shown that miR-
182 expression levels are significantly up-regulated in
ovarian cancer [15, 18], whereas one study has found
that miR-182 is down-regulated [19].
Owing to data published on miR-182 expression in OC

are partly conflicting and heterogeneous, our study aims
to unveil the role of miR-182 in ovarian cancer through
investigation of miRNAs expression and identification of
putative molecular targets by bioinformatics analysis and
analysis based on GEO and literature reviews.

Materials and methods
Selection of GEO dataset
We obtained the microarray profiles of OC from the
GEO database (Gene Expression Omnibus, http://www.

ncbi.nlm.nih.gov/geo/). The following keywords were
used in the GEO database: (ovarian) AND (cancer OR
carcinoma OR tumor OR neoplasia OR neoplasm OR
malignant OR malignancy) AND (microRNA OR
miRNA OR noncoding RNA OR ncRNA OR small
RNA). The microarray datasets reporting miR-182 ex-
pression between OC and normal ovarian tissues
(NOTs) were included in our study.

Study selection and data extraction for literature review
A full-scale literature search was performed in PubMed
and Embase (up to March 31, 2019) by using the follow-
ing terms: (microRNA OR miRNA OR noncoding RNA
OR ncRNA OR small RNA) AND (182 OR 182-5p)
AND (ovarian) AND (cancer OR carcinoma OR tumor
OR neoplasia OR neoplasm OR malignant OR malig-
nancy). Publications were considered eligible if they met
the following criteria: (1) studies examining the expres-
sion of miR-182 in OC; and (2) NOTs were used as con-
trol group. The studies were considered ineligible based
on the following criteria: (1) reviews, non-clinical
studies, case reports, meta-analyses, and conference
abstracts; and (2) absence of control groups.

Gene ontology enrichment and target prediction analysis
The gene expression profile of GSE14407, GSE18520,
and GSE36668 were obtained from Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) data-
base. The array data of GSE14407, GSE18520, and

Fig. 1 Flow chart of study selection for GEO dataset
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xGSE36668 consisted of 12, 53, and 4 OC and 12, 10,
and 4 NOTs samples, respectively. All data were
analyzed on the GPL570 Platform Affymetrix Human
Genome U133 Plus 2.0 (Affymetrix; Thermo Fisher
Scientific, Inc., Waltham, MA, USA).
The Limma package (version 3.36.5) in R/Bioconduc-

tor was used to identify the differentially expressed genes
(DEGs) between OC and NOTs [20]. The adjusted P
value (adj. P.Value) was applied to correct for the occur-
rence of false positive results using Benjamini and Hoch-
berg false discovery rate (FDR) method by default [21].
The adj. P. Value < 0.05 and |log2(FC)| > 1 were set as
the cut-off criterion. The original probe-level data in
Series Matrix Files were converted into gene symbol
based on the downloaded platform annotation files. The
expression values of multiple probes corresponding to
the same gene were selected by the minimum adj.
P.Value.

The targeted genes of hsa-miR-182-5p (TG_miRNA-182-
5p) were predicted using miRWALK3.0 (http://zmf.
umm.uni-heidelberg.de/apps/zmf/mirwalk2/miRretsys-self.
html) [22]. Subsequently, we analyzed the gene overlaps
integrated between DEGs in OC and predicted TG_
miRNA-182-5p by bioinformatics software. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis
were performed for the gene overlaps using DAVID
database. FDR < 0.05 was set as the cut-off criterion.
Protein-protein interaction (PPI) network was con-
structed based on the gene overlaps using the
Search Tool for the Retrieval of Interacting Genes
(STRING, version 11.0, https://string-db.org/) data-
base, which was then visualized by Cytoscape soft-
ware (version 3.7.1) [23]. And confidence score C ≥
0.7 was set as the cut-off criterion. Then, the Mo-
lecular Complex Detection (MCODE) was performed

Table 1 Characteristics of studies based on GEO dataset

Study Ovarian cancer tissue Normal ovarian tissue t p

Mean SD n Mean SD n

GSE47841 9.598 0.353 12 4.681 0.352 9 9.658 < 0.0001

GSE83693 2.696 0.494 8 0.168 0.068 4 3.523 0.006

GSE53829 4.497 0.019 39 4.756 0.022 14 7.689 < 0.0001

GSE23383 1.558 0.428 3 1.493 0.677 3 0.081 0.94

Total SMD(95%CIs) = 1.42(−7.62,10.46), p = 0.76; I2 = 98%, p < 0.00001

Fig. 2 Expression of miR-182 in ovarian cancer and normal ovarian tissues in GEO datasets. OV: ovarian cancer tissue; Normal: normal ovarian
tissue; miR-182: hsa-miR-182-5p
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Fig. 3 Forest plot (A) and funnel plot (B) of the combined SMD for hsa-miR-182-5p expression between ovarian cancer and normal ovarian tissue
by the random effects models

Fig. 4 Flow chart of study selection for the literature review
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to screen modules of PPI network with degree cut-
off = 2, node score cutoff = 0.2, k-core = 2, and max.
Depth = 100 [24].

Survival analysis
Kaplan–Meier plotter (KM plotter, www.kmplot.com)
was capable to assess the effect of 54,675 genes on sur-
vival using 18,674 cancer samples, include 5143 breast,
1816 ovarian, 2437 lung, 364 liver, and 1065 gastric can-
cer patients. Based on the median expression level of a
particular gene, the patients with OC were divided into
two groups (high vs. low). The overall survival of pa-
tients with OC was analyzed using a Kaplan–Meier plot.
The hazard ratio (HR) with 95% confidence intervals
(CI) and log rank P value were calculated and displayed.

Statistical analysis
All data are displayed as mean ± standard deviation (SD)
from each group. Student’s t-test was performed to

analyze the differences between two groups. Standard-
ized mean difference (SMD) was applied to evaluate the
association between miR-182 levels and OC by RevMan
5.3 software. We pooled SMD across GEO datasets
using the Mantel–Haenszel formula (fixed-effect model)
or the DerSimonian–Laird formula (random effects
model). A random-effect model was adopted when the
Q statistic was considered significant (p < 0.1 or I2 >
50%), otherwise, a fixed-effect model was used. The rela-
tionship of DEGs expression with miR-182 level was an-
alyzed by Spearman’s rank correlation. A two-sided P-
value < 0.05 was considered statistically significant.

Results
MiR-182 expression in OC based on GEO
MiR-182 expression was initially assessed in a series of
OC and NOTs based on GEO dataset (Fig. 1). A total of
four GEO datasets (GSE47841, GSE83693, GSE53829,

Table 2 Overview of the 6 studies selected from literature

Author Year Country Case Control Result Detection methods

Source name n Source name n

Wei Lu 2016 China OC 12 NOTs 8 Down-regulation qRT-PCR

Barbara Marzec-Kotarska 2016 Poland EOC 47 NOTs 26 Up-regulation microRNA microarrays

Lin Wang 2014 China OC 41 NOTs 15 Up-regulation Real-time PCR

Bente Vilming Elgaaen 2014 Norway HGSC 35 NOTs 9 Up-regulation qRT-PCR

Zhaojian Liu 2012 USA HG-PSC 56 FT 21 Up-regulation microRNA microarrays

Yu-Quan Wang 2013 China OC 13 NOTs 2 Up-regulation stem-loop RT-PCR

OC ovarian cancer, EOC epithelial ovarian cancer, HGSC High-grade serous ovarian carcinoma; HG-PSC high-grade papillaryserous carcinoma; NOTs normal ovarian
tissues, FT fallopian tube tissue

Fig. 5 Volcano plot of detectable genome-wide mRNA profiles in ovarian cancer tissue and normal ovarian tissue samples from GSE14407,
GSE18520, and GSE36668, respectively. Blue and red plots represent aberrantly expressed mRNAs with P<0.05 and |log(FC)|>1. Blue plots indicate
up-regulated genes, red plots indicate down-regulated genes and green plots indicate normally expressed mRNAs. The x-axis is the fold-change
value between the expression of mRNAs in ovarian cancer tissues and normal ovarian tissues. The y-axis is the -log10 of the adj.P.Value for each
mRNA, representing the strength of the association. adj.P.Value, adjusted P value; FC, fold change
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and GSE23338) were collected in our study. The ex-
pression levels of miR-182 in OC tissues were signifi-
cantly higher than in NOTs in GSE47841 and
GSE83693 datasets (p < 0.001 and p = 0.006; respect-
ively), the expression levels of miR-182 in OC tissues
were significantly lower than in NOTs in GSE53829
dataset (p < 0.001), whereas no significant difference
was found in GSE23338 dataset. Characteristics of
studies based on GEO dataset are presented in Table 1
and Fig. 2. However, no significant difference was
found between ovarian cancer and normal ovarian tis-
sue groups based on all the included GEO datasets
(SMD = 1.42; 95% CI: − 7.62 to 10.46; p = 0.76) with
significant heterogeneity by random-effected model
(p < 0.0001, I2 = 98%). The results of forest plot are
shown in Fig. 3.

Literature review of miR-182 expression profiles in OC
versus NOTs
Next, we explored miR-182 expression in OC based
on literature data. As shown in Fig. 4, six studies
that met the criteria for selection were selected from
the literature [15, 17, 19, 25–27]. Five of the six studies
included showed that the expression level of miR-182 in
OC tissues was significantly higher than that in the NOTs,
while one study showed the opposite conclusion
(Table 2).

miR-182 prediction and bioinformatics analyses
Data preprocessing and DEGs screening
A total of 5751, 5484, and 5115 DEGs were identified
from GSE14407, GSE18520, and GSE36668 datasets, re-
spectively; 1213 common DEGs were screened out in
these three datasets with Venny 2.1.0(http://bioinfogp.cnb.
csic.es/tools/venny/index.html) [28] (Fig. 5, Fig. 6). Follow-
ing, based on miRWALK3.0, 3240 predicted TG_hsa-miR-
182-5p were obtained, of which 268, were validated in
1213 commonly identified DEGs. There were 130 up-
regulated and 138 down-regulated hsa-miR-182-5p-re-
lated genes in OC tissues compared with NOTs according
to data from Gene Expression Omnibus (Fig. 6, Table 3).

Functional analysis of miR-182-related DEGs in OC
Functional and pathway enrichment analysis was per-
formed using DAVID. The analysis revealed that numer-
ous target genes were involved in the biological
processes, such as nucleus, protein binding, and extra-
cellular matrix organization. Moreover, three KEGG
pathways were over-represented in these potential target
genes, that is, pathways in cancer, focal adhesion, and
ECM-receptor interaction (Table 4).

PPI network construction and modules selection
The PPI network of miR-182-related DEGs consisted of
153 nodes and 439 edges, including 73 up-regulated

Fig. 6 Venn plots of hsa-miR-182-5p-related differentially expressed genes from four datasets ( GSE14407, GSE18520, GSE36668, and TG_miR-182-
5p), the overlapping area corresponds to the commonly identified DEGs. DEGs: differentially expressed genes; TG_miR-182-5p, target genes
of hsa-miRNA-182-5p.
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genes and 60 down-regulated genes (Fig. 7). Degrees ≥10
was set as the cutoff criterion [29], a total of 28 genes
were selected as hub genes, Moreover, there were close
correlations among hub genes (Fig. 8a, Additional file 1:
Table S1). A significant module was obtained from PPI
network of miR-182-related DEGs using MCODE, in-
cluding 17 nodes and 122 edges (Fig. 8b).

Survival analysis
The prognostic value of 28 hub genes in PPI network
was assessed in www.kmplot.com. The overall survival of
patients with OC was analyzed depending on the high
and low expression of each hub gene. It was found that
low mRNA expression of MCM3 (HR 0.75 [0.58–0.97],
P = 0.027) was associated with worse overall survival for
ovarian cancer patients, as well as GINS2 (HR 0.75
[0.58–0.97], P = 0.026) (Fig. 9). In the PPI network, a
total of 21 genes (TPM1, COL1A1, PDGFRA, UBE2B,
MEF2C, SNAI2, CACNA2D1, RECK, FOXO1, FBN1,
ANTXR2, NKX3–1, TIMP2, AKT3, RBPMS, EGLN3,
DERL1, PRKD1, SLC2A13, MAF, and DCN) were re-
vealed to exert their potential roles in OC by interactions
with miR-182 (Table 5, Additional file 2: Figure S1).

Discussion
In current study, we identified aberrantly expressed miR-
182 associated with OC through the comparison of miRNA
expression profiles in OC tissues with that of NOTs based
on data from GEO datasets and published studies. In
addition, we identified and analyzed novel markers and po-
tential targets for miR-182 that were involved in the regula-
tion of crucial biological processes in OC by GO analysis,
KEGG pathway annotation, protein-protein interaction
(PPI) network, and Kaplan-Meier plotter.

Table 3 Top 10 hsa-miR-182-5p-related differentially expressed
genes in ovarian cancer tissues compared with normal ovarian
tissues according to data from Gene Expression Omnibus
(GSE14407)

DEG logFC P.Value adj. P.Value

up-regulated genes

MECOM 4.902333971 9.81E-08 1.99E-05

TFAP2A 4.745918435 1.88E-08 6.04E-06

DEPDC1 4.032946443 5.66E-09 3.03E-06

AIF1L 3.868411982 3.79E-08 9.54E-06

BIRC5 3.7736042 8.61E-09 3.89E-06

BCL11A 3.534029736 1.11E-06 1.13E-04

L1CAM 3.279255511 1.66E-06 1.49E-04

HMMR 3.262907245 2.33E-06 1.95E-04

NCAPG 3.229344903 1.07E-08 4.36E-06

DTL 3.208682435 1.51E-10 3.76E-07

down-regulated genes

PDE7B −5.031930277 6.84E-09 3.37E-06

TCEAL7 −4.928868798 4.70E-09 2.66E-06

DCN −4.886965887 1.16E-08 4.61E-06

GPM6A −4.799779935 2.81E-08 7.77E-06

PGR −4.345763842 2.85E-08 7.83E-06

PPM1E −4.270922539 1.43E-08 5.13E-06

TMOD2 −4.108261122 5.21E-10 7.49E-07

NKX3–1 −3.851343755 1.34E-07 2.48E-05

TACC1 −3.745549626 5.00E-08 1.18E-05

FGF13 −3.684968538 2.31E-09 1.78E-06

DEG differentially expressed gene, FC fold-change

Table 4 Functional and pathway enrichment analysis of hsa-miR-182-5p-related differentially expressed genes in ovarian cancer

Term Description Count P-Value FDR

Cellular components

GO:0005634 nucleus 120 4.67E-08 6.23E-05

GO:0005737 cytoplasm 108 1.38E-05 1.85E-02

Molecular function

GO:0005515 protein binding 173 1.58E-07 2.23E-04

GO:0043565 sequence-specific DNA binding 23 1.18E-05 1.67E-02

Biological processes

GO:0030198 extracellular matrix organization 14 1.00E-05 1.70E-02

KEGG pathway

hsa05200 Pathways in cancer 22 1.93E-06 2.41E-03

hsa04510 Focal adhesion 15 8.20E-06 1.02E-02

hsa04512 ECM-receptor interaction 10 1.38E-05 1.72E-02

FDR false discovery rate, Count the number of enriched genes in each term, GO gene ontology, KEGG Kyoto Encyclopedia of Genes and Genomes
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Fig. 7 Protein-protein interaction network of hsa-miR-182-5p-related DEGs. Blue nodes stand for up-regulated genes, while red nodes stand for
down-regulated genes. The lines represent interaction relationship between nodes. DEGs, differentially expressed genes
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To date, there have been only a few studies on the char-
acteristics of miR-182 in OC. In 2012, Liu et al. [15] dem-
onstrated that the expression level of miR-182 was higher
in high-grade papillary serous carcinoma (HG-PSC) than
in fallopian tube tissues. Subsequently, several other stud-
ies also supported the conclusion that miR-182 expression
was up-regulated in ovarian cancer tissues [17, 25–27].
Interestingly, a recent study have suggested that the

expression level of miR-182 is down-regulated in ovarian
cancer tissues compared with paracancerous and NOTs
[19]. Based on the data of included GEO datasets, only
two sets of GSE datasets (GSE47841 and GSE83693)
showed the expression level of miR-182 was up-regulated
in OC. Due to the result of the expression level of miR-
182 in OC is still controversial, further investigation is ne-
cessary to elucidate the role of miR-182 in OC.

Fig. 8 Protein-protein interaction network. (A): Protein-protein interaction network of hube genes of hsa-miR-182-5p-related DEGs. (B): A
significant module selected from protein-protein interaction network of hsa-miR-182-5p-related DEGs. Blue nodes stand for up-regulated genes,
while red nodes stand for down-regulated genes. The lines represent interaction relationship between nodes. DEGs, differentially expressed genes
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MiR-182 is one of the most frequently deregulated
miRNA in OC. Marzec-Kotarska et al. [25] demon-
strated that miR-182 expression was significantly in-
creased, higher miR-182 expression was linked with
significantly shorter overall survival, and Deletion of the
PRDM5 locus may play a supportive role in miR-182
overexpression in OC. Additionally, Wang et al. [17]
found that in ovarian cancer, miR-182, as an oncogenic
miRNA, promoted cell growth, invasion, and chemore-
sistance by directly and negatively regulating PDCD4.
Liu et al. [15] proposed that the oncogenic properties of
miR-182 in ovarian cancer may be partly due to its im-
paired repair of DNA double-strand breaks, negative
regulation of breast cancer 1 (BRCA1) and metastasis
suppressor 1 (MTSS1) expressions, and positive regula-
tion of oncogene high-mobility group AT-hook 2
(HMGA2). Interestingly, a recent study has found that
miR-182 could induce apoptosis of ovarian cancer by
regulating of DNTM3a expression [19]. In view of the
current situation, it is necessary to further elucidate the
molecular mechanism and clinical value that is associ-
ated with abnormal expression of miR-182 in OC.
MCM3 is a member of minichromosome maintenance

protein family with a critical role in initiation of DNA
replication [30]. It is present during cellular proliferation
of normal cells, premalignant and neoplastic cells but
absent in cells that are in G0 phase [31]. MCM3, pre-
sented in a variety of human tumors, is involved in
tumor proliferation [32], diagnosis [33], and prognosis.
For example, Hua et al. [34] reported that high mRNA
expression levels of MCM2 and MCM3 were correlated

Fig. 9 Overall survival analysis of MCM3 and GINS2 expression with prognosis of ovarian cancer patients. The patients with ovarian cancer were
divided into two groups (high vs. low), according to the median expression level of MCM3 and GINS2

Table 5 Correlation between hsa-miR-182-5p (miR-182) and
target genes in patients with ovarian cancer(n = 376)

miRNA Target gene r p-value FDR

hsa-miR-182-5p TPM1 −0.143 5.61E-03 1.99E-02

hsa-miR-182-5p COL1A1 −0.154 2.74E-03 1.14E-02

hsa-miR-182-5p PDGFRA −0.18 4.40E-04 2.87E-03

hsa-miR-182-5p UBE2B −0.149 3.87E-03 1.49E-02

hsa-miR-182-5p MEF2C −0.201 8.70E-05 8.01E-04

hsa-miR-182-5p SNAI2 −0.154 2.84E-03 1.18E-02

hsa-miR-182-5p CACNA2D1 −0.104 4.44E-02 1.01E-01

hsa-miR-182-5p RECK −0.153 2.93E-03 1.21E-02

hsa-miR-182-5p FOXO1 −0.115 2.57E-02 6.58E-02

hsa-miR-182-5p FBN1 −0.139 6.81E-03 2.33E-02

hsa-miR-182-5p ANTXR2 −0.187 2.62E-04 1.90E-03

hsa-miR-182-5p NKX3–1 −0.136 8.32E-03 2.70E-02

hsa-miR-182-5p TIMP2 −0.194 1.51E-04 1.23E-03

hsa-miR-182-5p AKT3 −0.205 6.28E-05 6.32E-04

hsa-miR-182-5p RBPMS −0.17 9.57E-04 5.21E-03

hsa-miR-182-5p EGLN3 −0.113 2.83E-02 7.09E-02

hsa-miR-182-5p DERL1 −0.164 1.41E-03 6.98E-03

hsa-miR-182-5p PRKD1 −0.177 5.57E-04 3.44E-03

hsa-miR-182-5p SLC2A13 −0.115 2.57E-02 6.58E-02

hsa-miR-182-5p MAF −0.268 1.26E-07 5.19E-06

hsa-miR-182-5p DCN −0.236 3.68E-06 6.45E-05

miRNA or miR, microRNA, FDR false discovery rate
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with a poor outcome and thus might be clinically useful
molecular prognostic markers in glioma. Jankowska-
Konsur et al. [35] found that MCM3 was reliable param-
eters for the correlation with clinical stage of mycosis
fungoides and MCM3 expression was of prognostic
value in mycosis fungoides. In current study, survival
analysis of the hub genes related to target genes of miR-
182 revealed that MCM3 was highly associated with
poor prognosis of patients with OC. GINS complex sub-
unit 2 (GINS2), is a member of the GINS complex, com-
posed of GINS1, GINS2, GINS3, and GINS4, which is
involved in DNA replication [36]. GINS2 is up-regulated
in a variety of aggressive tumors. For example, Liu et al.
[37] found that lung cancer tissues over-expressed GIN2,
which was connected to lung cancer metastasis. Recent
years, some studies have found that GINS2 is a novel
prognostic biomarker and promoted tumor progression in
early-stage cervical cancer [38]; GINS2 is closely related to
the occurrence and development of glioma, and may be-
come a prognostic marker for glioma patients [39]; GINS2
is markedly expressed in EOC tissues and cell lines, stable
GINS2 knockdown in SKOV-3 cells could significantly in-
hibit cell proliferation and induce cell cycle arrest and cell
apoptosis [40]. In current study, survival analysis of the
hub genes related to target genes of miR-182 showed that
GINS2 was highly associated with poor prognosis of pa-
tients with OC.
In current study, we identified that novel candidate

target genes for miR-182 were involved in the regulation
of crucial biological processes in OC, such as DCN,
AKT3, and TIMP2. DCN is a component of connective
tissue, binds to type I collagen fibrils and plays a role in
collagen fibrillogenesis when helps to orient fibers. Some
previous studies showed that DCN played an important
function in cancer development and metastasis. For ex-
ample, Ehlen et al. [41] found that DCN gene was up-
regulated in OC cells and played an important role in
SEOC angiogenesis and tumor progression; highly
expressed DCN could increase angiogenesis and tumor
cell invasiveness in bladder cancer [42]. Our current
study revealed that DCN mRNA was decreased in OC
compared with NOTs, which was consistent with some
previous studies [43–46], we hypothesized that DCN can
act as a tumor suppressor in OC. AKT3 is a homologous
gene that belongs to the serine/threonine protein kinase
AKT subfamily and is critical in the AKT signal pathway
[41, 47]. The expression and activation of AKT3 medi-
ates cancer progression and controls cellular processes
such as cell growth, proliferation, apoptosis, and inva-
sion [48]. Some studies found that AKT3 was up-
regulated in many types of cancers and knockdown of
AKT3 isoforms could abrogate the growth of tumors
through inducing cell apoptosis and inhibiting prolifera-
tion [49–51]. Moreover, lots of evidence suggested that

AKT3 was regulated by miRNAs, such as miR-497 [52],
miR-338 [53], and miR-16 [54], which could suppress
cancer progression. In line with these findings, we hy-
pothesized that AKT3 can be identified as a target gene
of miR-182 in OC. TIMP2 is one of four well-known
members of the TIMP family: TIMP1, TIMP2, TIMP3,
and TIMP4. The function of TIMP2 in carcinogenesis is
multifaceted. For example, some previous studies showed
that an increasing level of TIMP2 can promote cellular
proliferation and invasion in some tumors [55, 56]. On
the contrary, some studies found that TIMP2 could inhibit
vascular endothelial growth factor A (VEGF-A)-induced
endothelial cell proliferation and angiogenesis by binding
to α3β1 integrin [57]. Moreover, TIMP2 could prevent the
activation of tyrosine kinase receptors in tumor cells, in-
cluding focal adhesion kinase [58], AKT [59] and epithelial
growth factor receptor [60], which played key roles in
tumor migration and growth. Our current study revealed
that TIMP2 mRNA was decreased in OC compared with
NOTs, which was consistent with some previous
studies [61–63]. To the best of our knowledge, few
studies have shown that the down-regulation pattern
of TIMP2 occurs in OC tissues. Thus, further investi-
gation is required to explore the ectopic expression of
TIMP2 in OC.

Conclusions
In summary, the results presented here suggest that
miR-182 plays an important role in the biology of OC.
However, further studies in vitro and in vivo are still
needed on the pathogenesis to validate the role of miR-
182-regulated molecular networks in OC.
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