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Abstract

Although existence of ovarian stem cells (OSCs) in mammalian postnatal ovary is still under controversy, however, it
has been almost accepted that OSCs are contributing actively to folliculogenesis and neo-oogenesis. Recently,
various methods with different efficacies have been employed for OSCs isolation from ovarian tissue, which these
methods could be chosen depends on aim of isolation and accessible equipments and materials in lab. Although
isolated OSCs from different methods have various traits and characterizations, which might become from their
different nature and origin, however these stem cells are promising source for woman infertility treatment or
source of energy for women with a history of repeat IVF failure in near future. This review has brought together
and summarized currently used protocols for isolation and propagation of OSCs in vitro.
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Main text

It had been widely accepted that mammalian females are
endowed with a fixed number of oocytes and follicles at
birth, but this long-standing dogma has been recently
challenged. The Ovarian Stem cells (OSCs) discovery
milestone has been shown in Fig. 1. By the end of 19th
century and during the first half of the 20th century, two
different opinions regarding oogenesis were raised. The
first hypothesis was introduced by Waldeyer [1] in 1870
and followed by Kingery [2] who claimed that before
and after birth, oocytes originate from germinal epithe-
lium of ovary. The second hypothesis was firstly raised
by Beard [3] in 1900 and elaborated by Pearl and
Schoppe [4]. They proposed that all oocytes are formed
before birth in embryonic period and then they are
stored and utilized until menopause. Ultimately, in 1951
Lord Solomon Zuckerman published a paper and sum-
marized all existing data at the time for and against pre-
sumption of postnatal neo-oogenesis [5]. This belief
persisted constant and changeless until 2004 which fi-
nally by Professor Tilly’s group [6] this idea of fixed
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ovarian reserve was challenged and gates were opened
for a more reliable and promising source for combating
ovarian aging and keep the hopes alive for women who
suffering from their infertility especially in the cases of
Decrease Ovarian Reserve (DOR), Primary Ovarian In-
sufficiency (POI), Premature Ovarian Failure (POF) and
age-associated ovarian dysfunction. Like some landmark
discoveries which have accomplished in biology seren-
dipitously, presence of OSCs in postnatal mammalian
ovaries was recognized accidentally through oocyte-
counting experiments in mice [6]. Meanwhile, kinetics
experiments of declining in number of follicles through
the life indicated that presence of OSCs is vital for supply
of folliculogenesis during expected chronological lifespan
[6, 7] and mathematical analysis shows that mouse ovaries
are replenished with ~77 new follicles per day [6].

In spite of existing documents, there are three other evi-
dences which confirm the theory of neo-oogenesis in post-
natal mammalian ovaries, 1) germ cell-specific meiosis-
commitment gene, stimulated by retinoic acid gene 8
(Stra8) [8], which is expressed highly in adult testes and in
embryonic ovaries during the period of oogenesis [9] is
rare but not absent in ovaries of reproductive-age mice
[10, 11], 2) unilateral ovariectomy in female mice at first
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They described a detailed protocol fordsolation of OSCs from
mouse and human ovary by MVH and Fragilis markers

They transplated both female PGCs and embryonic
gonadal somatic cells under ovarian bursa or kidney capsules
of recipient mice‘and then showed that oocyte-like cells were
formed in ovaries and matured into fully functional germinal vesicle stage.

Rare mitotically active cells were isolated by DDX4
marker from mouse and human ovaries and 2]
generated oocytes (diameter of 35 — 50 micron) in vitro and % ‘9«%,'
entered into meiotic division and produced healthy offspring.

They descibed two different populatioNl}‘e

putative stem cells detected in scrapped OSE
of postnatal mammalian ovary,
namely VSELSs and slightly larger

ovarian stem cells termed as OGSCs. ¢ Parte et al.
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Mouse ovarian OSCs are isolated by FACS in a model in
which GFP is expressed under a germ cell specific Oct-4

prom_ole!' and were cultured long'u.me with %QSX\\'&
maintainance of telomerase activity and Q N
express germ cell and stem cell markers. é},‘b
N

They isolated mouse ovarian OSCs by MACS
and transplanted into ovaries of infertile mice
undergo oogenesis and produced offspring.

Tranfering of aged mouse ovaries into young ovary
leat to form premeiotic germ cells
(high expression of Stra8 and Dazl1), and
concluded that decline in the number of follicles

They believed that before and after birth,
oocytes originate from ovarian germinal epithelium

Waldayer
&

in history of
OSCs &
neo-oogenesis
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She claimed that VSELs in OSE able to generate

They proposed that all oocytes.are formed
before birth in embryonic period and
then they are stored and utilized until menopause

He proposed that germ cells exist
in postnatal mammalian ovary

but remain in a arrest status and that,
,g? é’ after menarche, some germ cells
§ % 5 exit from arrest during
‘s,% every menstrual cycle.

It was for first time that existance
of OSCs was claimed. Chimeric follicles
observed when wild type ovarian tissue
is grafted onto ovary of GFP
expressing transgenic mice

Johnson et al. >

Bone marrow and peripheral blood were

Son shown as a source of germ cells.
4 61‘7/. Germ line markers
llfo s, ‘7 were found in the bone marrow.

.

They showed that Putative germ cells
< within the OSE of postnatal ovary

\ can be differentiated from
mesenchymal progenitors in the ovarian.

They suggested that follicle renewal occure
in postnatal and adult mouse ovaries, because the
follicle numbers remain constant in ovaries
of juvenile and early adult mice

oocyte-like cells in vitro. These oocytes were able to generate
blastocyst-lke structues folliwing parthenogenetic activation
and expressed pluripotent specific markers
Oct-4, Oct-4 A, Nanog, Sox-2, and TERT.

being mainly due to decreased oocyte
renewal rather than to an accelerated loss.

Fig. 1 The OSCs discovery milestone. The old opinion about oogenesis was appeared from 1870 and this long standing opinion was maintained
for many years until 2004 that Johnson et al. challenged it and after that many research groups reports their investigations on OSCs. In 2013, the
final important research on isolation and propagation of OSCs was published by Prof. Tilly's group

month of age accelerates the mitotic occurrence in oo-
cytes of the remaining ovary 3 months later and 3) experi-
ments showed that the number of traceable mitotic
divisions in oocytes of aged mice exceeds those in younger
counterparts [12, 13]. The best interpret for this evidence
is that ovarian follicle pool is maintained during repro-
ductive age and oocyte progenitor is contributed to oo-
genesis after birth [12, 14].

The phenomenon of postnatal neo-oogenesis and con-
tribution of oogonial stem cells in reproductive activity
in some species has been proven for many years such as

teleost medaka [15] as well as Drosophila [16, 17], but
there is not yet consensus among scientists regarding
presence of OSCs in postnatal mammalian ovaries
(Table 1).

However, after landmark discovery of presence of
OSCs in postnatal mammalian ovaries started from 2004
by Professor Tilly’s group, different independent labs
worldwide isolated and cultured OSCs by different
methods and protocols which this review has brought
together and summarized currently used protocols for
isolation and propagation of OSCs in vitro. The strategy
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for selection of papers and interpreting results is based
on the first article published and their fabulous findings
in the field and to compare of traits of sorted cells, we
tried to use papers which sorted cells and applied proto-
col for their isolation have been well characterized.

FACS-based method

This method that has been used by Professor Tilly is
based on immunological detection of a putative cell-
surface variant of DEAD box polypeptide 4 (Ddx4) or
so called Mouse vasa homolog (Mvh). Although Ddx4
is widely considered to be a cytoplasmic protein, but
based on results from Ji Wu and colleagues [18],
computer-based mapping of the Ddx4 and Ddx4
transmembrane-spanning domain, OSCs possess an
externally putative extracellular epitope of Ddx4
which contributes to their isolation by Fluorescence-
Activated Cell Sorting (FACS). The superiority of this
method over others, even immunomagnetic sorting
using the Ddx4 COOH antibody, is that only the
FACS approach yields a viable and purified population
of homogenous cells free from contaminating oocytes
and non-germline cell lineages. For obtaining cells
intended for FACS, ovaries from mice between 6 and
8 weeks of age and ovarian cortical tissue of women
in their 20s, 30s, 40s and 50s were minced and enzy-
matically digested and passed through 70 um filter to
remove large tissue clumps and then through a
35 um filter. Here, used antibody for isolation of
OSCs was against the C terminus of Ddx4 and
attained cells from human ovarian cortical tissue and
mice ovaries were in range of 5-8 pum in diameter
and identical in morphology and they had a genetic
signature consistent with primitive germ cells. Also,
after evaluation of teratoma-formation capacity of iso-
lated OSCs, it was revealed that although OSCs ex-
press numerous stem cell and primitive germ cell
markers, these cells have unique identity, distinct
from the other types of pluripotent stem cells. The
percent yield was 1.7 % + 0.6 % (mean *s.e.m.) Ddx4-
positive as compared to the total viable cells sorted in
human and 1.5 %+ 0.2 % in mice and by using value
of genomic DNA content per cell, the incidence of
OSCs per ovary was estimated 0.014 % +0.002 % in
the mice, between 250 to slightly over 1000 viable
Ddx4-positive cells from each young-adult mouse
ovary after FACS of dispersates. Transplantation ex-
periments of GFP-expressing OSCs into ovaries
showed that not only OSCs had a stable integration
into the ovaries and there were numerous follicles
containing GFP-positive oocytes in recipient ovaries,
but also they were able to produce GFP-positive em-
bryo in in vivo study [13, 19, 20].
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In vitro studies indicated that using feeder layer greatly
facilitates the establishment of mouse and human OSCs
in vitro, but is not vital for cell line establishment.
Double positive for Ddx4 and BrdU dividing cell col-
onies were appeared after 10-12 weeks of culture in
mouse (4-8 weeks in human) and results showed that
estimated doubling time was 14 hours with required
passage at confluence every 4—5 days (the proliferation
rate was less in human OSCs which required passage at
confluence every 7 days). 35-50 um in diameter oocyte-
like cells deduced by morphology and gene expression
analyses were generated spontaneously from OSCs with
maximum rate within 24-48 h after each passage in
mice (the peak oocyte formation was at 72 h after each
passage in human OSC cultures). Ultimately, successful
establishment of cryopreserved and thawed human ovar-
ian tissue samples in vitro already in development for fe-
males with cancer show that this method can be used as
a novel approach in infertility treatment. In addition, this
group has shown that bone marrow transplantation re-
stored the oocyte production in wild-type sterilized mice
by chemotherapy, as well as in ataxia telangiectasia mu-
tated gene deficient mice, which are otherwise incapable
of making oocytes, hence, They proposed that OSCs
might be originated from peripheral blood and bone
marrow [21].

In recent years, some publications showed that previ-
ously reported DDX4-positive OSCs that were purified
from adult human and mouse ovaries using the DDX4-
specific antibody are neither specific DDX4-expressing
cells nor are they functional germline stem cells [22],
they showed that polyclonal antibody specific to DDX4
(ab13840; Abcam) is entirely nonspecific and has a high
affinity to attach to other cell types [23]. Therefore,
more detailed studies are needed to fully characterizing
these cells as OSCs.

OSE Scraping method

This method was described for the first time in 2004
by Bukovsky group [24, 25] and then was used by
Virant klun in order to isolation of OSCs from
Ovarian Surface Epithelium (OSE) of the adult human
ovaries with no naturally present oocytes and follicles
[26]. Here, after scraping of OSE of postmenopausal
and POF women, ovarian cells and fragments were
subjected to density gradient centrifugation and then
grown in vitro. In the OSE culture, putative stem
cells proliferated and formed embryoid body-like
structures [27]. Some cells grew intensively and be-
came approximately 20 pm in diameter small and
round oogonium like structures after 5-7 days and in
extended condition (20 days), they reached to 95 pm
diameter OLCs which are comparable to human
oocytes in the in vitro fertilization program. They had
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Table 1 Critical approaches with pros and cons
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Opinion

Cons

Pros

Johnson et al.,, 2004 [6]

Johnson et al,, 2005 [21]

OSCs originate at a site extraneous to the
ovary, namely the bone marrow, and are
transported to the ovary via the circulatory
system

Johnson et al,, 2004 [6]

Bukovsky, 2005 [25]

Johnson et al, 2005 [21]

Zou et al., 2009 [18]

OSCs are present in post natal mammalian
ovary and are actively contributing in
folliculogenesis and neo-oogenesis

Eggan, 2006 [56]

By designing of a parabiotic mouse models
showed that no evidence

For bone marrow cells, or any other
normally circulating cells, contribute to the
formation of mature, ovulated oocytes.

Begum, 2008 [58]

No evidence was found to support the
hypothesis that progenitor cells from extra-
ovarian sources can repopulate the adult
ovary. The findings are consistent with the
conventional view that a limited number of
oocytes are formed before birth and
declines with age.

Bristol-Gould et al., 2006 [60]

By designing of a mathematical model of
the dynamics of follicle progression, they
indicated that no germline stem cells could
be identified by SSEA-1 immunostaining.

Malcolm Faddy, 2009 [62]

Gosden et al,, [63]

They believed that new finding might be
based on spurious results.

Wallace [64]

By mathematical modelling of the ovarian
reserve found no

evidence to support the occurrence of neo-
oogenesis in humans

Byskov et al, [32]

Using some histological and
immunohistochemistry evaluations and
based on previous observations claimed that
the results presented by Johnson et al.
(2004) [6] cannot support the concept of
neo-oogenesis in the postnatal mouse ovary.
Nor does there exist any evidence for neo-
folliculogenesis in the adult mammalian
ovary.

Liu et al. 2007 [74]

They showed that We show that active
meiosis, neo-oogenesis and GSCs are unlikely
to exist in normal, adult, human ovaries. No
early meiotic-specific or oogenesis-associated
mRNAs for SPO11, PRDM9, SCP1, TERT and
NOBOX were detectable in adult human
ovaries using RT-PCR

Zhang et al, 2012 [75]

By producing a multiple fluorescent
Rosa2érbw/+;Ddx4-Cre germline reporter
mouse model for in vivo and in vitro tracing
of the development of female germline cell
lineage, they showed that no mitotically
active female germline progenitors exist in
postnatal mouse ovaries

Lei et al, 2013 [76]

Using sensitive lineage labeling system to
determine whether stem cells are needed in
female adult mice to compensate for
follicular losses and to directly identify active

Tilly et al., 2007 [57]

He believed that Eggan focused solely on
eggs retrieved from the oviducts following
superovulation and did not include the
outcome of evaluating the ovaries of their
recipient mice for donor-derived immature
oocytes.

Lee et al, 2007 [59]

They claimed that bone marrow
transplantation rescued long-term fertility in
CTx-treated females, but all offspring were
derived from the recipient germline.

Parte et al. [33, 37, 38]

Bhartiya et al,, [34-36]

They believed that OSCs are originating
from VSELs.

Tilly et al,, [61]
Tilly et al,, [57]
Confirmed their previous results

Kerr et al, [7]

They found no evidence for ovarian
germline stem cells, their data support the
hypothesis of postnatal follicle renewal in
postnatal and adult ovaries of C57BL/6 mice.

Abban et al, [65]

They not only confirmed zou's experimental
results, but also they predict that FGSC arises
between the border of PGC and oogonia
development and the initiation of germline
cysts.

Others, [14, 19, 26, 44, 48, 50, 66-73]
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Table 1 Critical approaches with pros and cons (Continued)
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Johnson et al.,, 2004 [6]
Positive BrdU Mitotic germ cells in ovarian
epithelium

Bukovsky and Virant Klun [25, 27]

Cultured OSE gives rise to "oocyte-like" cells
Mvh + germ cells located in the OSE
“Oocyte-like” phenotype of cells in OSE
derived cultures

Other observation

White et al,, 2012 [19]

Woods et al. 2013 [20]

Successful isolation of OSCs using DDX4
marker via FACS

germ-line stem cells, they showe that
Female mice lack adult germ-line stem cells
but sustain oogenesis using stable
primordial follicles

Elena Notarianni, 2011 [77]
BrdU-incorporation arose from either
mitochondrial (mt) DNA replication or DNA
repair in oocytes, on the basis that “the
degree of BrdU incorporation observed in
cells due to either of these processes is
several log orders less than that seen during
replication of the nuclear genome during
mitosis.

Elena Notarianni, 2011 [77]

These cells are actually undergoing
apOopPtosis, Necrosis or oncosis.

Oocytes in transit across the OSE during
exfoliation.

Nondescript cells undergoing oncosis
Reinterpretation of results by Notarianni

Hernandez et al, 2015 [23]

Zhang et al, 2015 [78]

They were able to isolated a population of
cells from the human ovarian cell

Park et al, 2014 [73]
Woods et al,, 2015 [22]
Confirmed their previous results

preparation

However, THEY did not detect any DDX4
mMRNA expression by gPCR in these cells.
They believed that the isolated cells bound
tightly to the DDX4-specific antibody in
FACS and became ‘DDX4-positive’ after
culture. So use of the DDX4-specific
antibody in FACS is not suitable for specific-
ally selecting for a certain type of cell that

expresses DDX4.

genetic profile corresponding with oocyte (Oct-4A,
Oct-4B, C-kit, VASA, and ZP2 transcription markers)
and in some occasions, developed a zona pellucida-
like structure around them. However, they did not
expressed SCP3 marker as a meiosis initiation marker.
This group also showed that generated OLCs are able
to be activated and generate parthenogenetic
blastocyst-like structures in vitro [27]. She believed
that expression of C-kit in isolated cells is representa-
tive of their PGC ancestry and used a new term of
embryonic-like stem cells of the adult for obtained
cells by this method. She also believed that obtained
putative OSCs could be compared to the Very Small
Embryonic-Like Stem Cells (VSELs) found in different
human and animal adult tissues and organs (bone
marrow, bronchial epithelium, epidermis, myocar-
dium, pancreas, and testes) as reported by Ratajczak
et al. [28]. These stem cells were with a diameter
from 3 to 5 um, which is very comparable to the
diameter of putative OSCs as well as in pattern of ex-
pression of SSEA-4 and Oct-4 transcription factor.
After histological and Flow-cytometry analysis of
obtained cells, the proportion of putative stem cells was
estimated up to 10 % just after scraping and after 20 days

of culture this proportion increased to 32 %. These cells
were slightly green colored, with a typical bubble-like
structure and had large nuclei, which spread throughout
the whole cell volume with a very small proportion of
cytoplasm around them which in histological analysis
often present among epithelial cells in the epithelial
crypts, which extended into the ovarian cortex.

In addition, Virant klun and her collagenous in 2013,
described two other methods for isolation of putative
stem cells from OSE layer of reproductive-age, postmen-
opausal and POF women [29-31]. These two methods
were FACS and Magnetic Activated Cell Sorting
(MACS), based its on SSEA-4 surface antigen expres-
sion. The SSEA-4 positive cells made up to 1.6 % of the
all cells in FACS method. Specimens from POF women
were obtained by brushing of the ovarian cortex biopsies
and after performing immunological isolation of SSEA-4
expressing stem cells, a similar, relatively homogenous
population of small, SSEA-4-positive cells with diame-
ters of up to 4 um from the suspension of cells was
attained [29]. She cultured putative stem cells for ap-
proximately 6 months in presence of follicular fluid and
then different analysis showed that these cells expressed
the analyzed markers of primordial germ cells (PRDM1,
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PRDM14, and DPPA3), pluripotency (OCT4A, SOX-2,
SSEA-4, SALL4, CDHI, and LEFTY1) and some oocyte-
specific markers (ZP3, SCP3, and c¢-KIT). Furthermore,
microarray and Real-Time quantitative PCR (qPCR) ana-
lysis showed that putative ovarian stem cells and hESCs
strongly expressed all analyzed genes (DPPA3, SALL4,
CDH]1, and LEFTY1) related to pluripotency and ESCs,
while human adult fibroblasts (FBs) only weakly
expressed these genes or did not express them at all and
PGC related genes PRDMI1 (BLIMP1) was highly
expressed in small putative ovarian stem cells.

Antonin Bukovsky believes that functional mouse
oocytes and sperm can be derived in vitro from somatic
cell lines and also he claims that mesenchymal cells in the
tunica albuginea of human and mouse ovary are bipotent
progenitors with a commitment for both primitive granu-
losa and germ cells. He showed that after OSE scraping of
human ovary and cultivation of OSE cells in presence of
phenol red as mild estrogenic stimuli, OSE cells differenti-
ated directly into large (180 pum) cells of the oocyte pheno-
type, while in absence of phenol red, they differentiated
into small (15 um) cells of granulosa phenotype, and
epithelial, neural, and mesenchymal type cells. Further-
more, he indicated that not only primary follicles pool in
adult human ovaries is not in static status, but also in
order to elimination of spontaneous or environmentally
induced genetic alterations of oocytes in resting primary
follicles is in dynamic status [24, 25, 32].

Bhartiya and collagenous are another independent
group who are working vastly on OSCs and evaluating
effects of FSH on proliferation and differentiation poten-
tial of OSCs [33-38]. By scraping OSE method, they cul-
tured OSE scraped cells from adult rabbit, sheep,
monkey, and menopausal human OSE for 3 week period.
Their results showed that there are two distinct popula-
tions of round Putative stem cells (PSCs) with different
size. One population comprised 1-3 um cells (smaller
than RBCs) with DAPI positive and nuclear Oct-4 stain-
ing and SSEA-4 cell surface localization, whereas the
second population was 4-7 pm in diameter with cyto-
plasmic Oct-4 and minimal cytoplasmic SSEA-4 and
compacted heterochromatin [33]. They supposed that
small PSCs are representing of pluripotent VSELs and
bigger PSCs are immediate tissue committed progenitor
stem cells derived from them. Also, epithelial cells in
OSE scraped culture undergo epithelial-mesenchymal
transition and give rise to somatic granulosa-like cells.
They showed that OSCs can spontaneously differentiate
into OLCs with prominent polar body-like protrusions
and surrounded by distinct zona pellucida-like structure,
even in some occasions, blastocyst-like structures with
well-defined trophoectoderm and fluid-filled blastocoel-
like structure with maximum diameter of 100-150 mm
were observed. This group also demonstrated that in
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culture of ovarian scraped cells, FSH (0.5 [U/ml) and
bEGF (100 ng/ml) affect OSCs proliferation and increase
transition of primordial follicles to primary follicles [37].
Their results showed that both Follicle Stimulating
Factor Receptor 1 (FSHR1) and FSHR3 mRNA were
expressed in the OSCs but only FSHR3 mRNA was
actively transcribed and expressed in the cytoplasm of
OSCs after FSH treatment [34].

In recent work published by Bhartiya et al., they showed
that chemotherapy led to complete loss of follicular
reserve and cytoplasmic OCT-4 positive progenitors
(ovarian germ stem cells) but VSELs survived. They
claimed that after 6 days, MVH and GDF9 positive cells
were present in OSE after chemotherapy and probably
arising as a result of differentiation of the surviving VSELs
[39]. They also indicated that after injection of 5-
fluorouracil (5-FU) to mice and creation of stress model
and hematopoiesis depletion in bone marrow, VSELs and
hematopoietic stem cells (HSCs) were activated in re-
sponse to the stress created by 5-FU in bone marrow and
FSH could enhance hematopoietic recovery by at least
72 h. They claimed that both VSELs and HSCs expressed
FSH receptors and FSH treatment enhanced
hematopoietic recovery [40]. Meanwhile, in very recent in-
teresting studies, Mierzejewska and collagenous relieved
that VESLs possess receptors for FSH, LH, prolactin and
androgen and these results support the concept of a
potential developmental link between the germline and
hematopoiesis [41, 42], so that this can be assumed that
OSCs are originated from VSELs.

MACS-based method

For the first time, Zou et al. reported successful isolation
of Female Germline Stem Cells (FGSCs) from adults and
5 days old mice ovary by MACS using MVH marker and
showed that after transfecting FGSCs with GFP and
transplanting into sterile recipients, these cells restored
fertility and recipients produced off normal and fertile
offspring by natural mating with a wild-type C57BL/6
male [18]. After isolation and characterization of FGSCs,
this group performed different assessment in order to
confirmation of their potential and traits. Results of this
study showed that presence of BrdU-MVH double posi-
tive cells in the ovarian surface epithelium, suggesting
that they might be FGSCs. Isolated cells were very simi-
lar to freshly isolated type A Spermatogonial Stem Cells
(SSCs) and they were Large round or ovoid cells with
little cytoplasm, spherical nuclei with slight staining, a
large ratio of nuclear plasma and nuclear diameter of
12-20 pm. Also this is important to notice that they
were able to isolate just 200—300 cells from 9 to 12 neo-
natal mice and 50-100 cells from 6 to 8 adult mice. In
culture, these cells proliferated and formed compact
clusters of cells with blurred cell boundaries during just
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7-8 passages. RT- PCR and immunocytochemical results
showed that these cell express Oct4, MVH, Dazl, Blimp-1,
Fragilis, Stella and Rex-1, whereas they did not
express c-kit, Figla, Sox-2, Nanog, Scpl-3 or ZP3.
Other results also demonstrated that after several
passages, these cells had undifferentiated FGSC phe-
notypes, high telomerase activity, normal karyotype
and positive alkaline phosphatase staining with weaker
intensity in compared with ES cells. Ultimately, Com-
bined Bisulphite Restriction Analysis (COBRA)
showed that isolated cells had female imprinting pat-
tern with partially methylated maternally imprinted
region and demethylated paternally imprinted regions
in FGSCs. Although in this study isolated cells have
similar characteristics as same as SSCs, but there are
some substantial differences between them including
much less number of FGSCs in ovary, much slower
growth of FGSCs during the initial phase of culture,
FGSCs formed compact clusters of cells when they
proliferated, whereas SSCs formed clumps and FGSCs
have a female pattern and SSCs have a complete
androgenic imprinting pattern.

In addition, this group designed a new study for improve-
ment of their results in 2011 [43]. In this study, to optimize
the purification of FGSCs, three different proteins
expressed in germline cells were compared (CD9, Stpb-c
and Fragilis) and their results showed that efficacy of FGSC
purification from ovarian tissue by MACS method using
fragilis marker was remarkably enhanced in compared with
MVH that they had used in their previous study.

There is another study from this group in literature, in
which by using same strategy (MACS with Fragilis
marker) they isolated germline stem cells from post-natal
rat ovary [44, 45]. In this study, just 200-300 cells were
obtained from 20 ovaries and isolated cells were round
with a high nuclear to cytoplasm ratio, and a size and
morphology similar to those of mouse and freshly isolated
type A spermatogonia. Dual immunofluorescence analysis
of BrdU incorporation and Ddx4 expression was
performed to confirmation of isolated fragilis® cells were
rat FGSCs. FGSCs formed spherical or grape-like clusters
consisting of 4-8 cells during 3 weeks. After 10 weeks
proliferation rate became rapid and cells required passa-
ging at confluence every 5-6 days. In this study, after
several passages, analysis showed that cells were positive
for alkaline phosphatase with lower intensity and Oct4,
Ddx4, Dazl, Blimp-1 and Fragilis were expressed in
FGSCs, but no expression of Nanog, c-kit, Sox-2, Figla,
Scpl-3 or Zp3.

In addition, Zhiyong et al. reported that they employed
a new strategy to improve isolation and Identification of
mouse oogonial stem cells [46]. They believed that two-
step preparation including digestion and MACS would
harm cells considering that the harvested cells from
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digested ovaries are in considerably small amount and
purification would likely fail. Therefore, they cultured
cell for 2-3 days directly after digestion which the total
number of cells increased to 0.5—1 x 10° and then, these
cells were used for MACS by antibody of Fragilis. They
showed that using this strategy, efficacy of the gener-
ation and characterization of OSCs significantly im-
proved. They also showed that human umbilical cord
mesenchymal stem cells as feeder will be useful and
improve colony formation rate compared to STO feeder.

APE-Oct4-Gfp transgenic mice-based method

Nowadays, transgenic mice have become a major re-
search resource, and applications of the transgenic ap-
proach have begun to infiltrate the world of
biotechnology. Izadyar et al. in 2008, by using transgenic
mice reported that they were able to isolate and generate
multipotent cell lines from male gonads [47] and then in
2010 they used same strategy, using a transgenic mouse
model in which GFP is expressed under a germ cell spe-
cific Oct-4 promoter, for isolation and derivation of
germline stem cell from postnatal mouse ovary [48].
They isolated intended stem cells using GFP marker by
FACS technique and cultured these isolated germline
stem cells for almost one year. After this period, those
did not lose their stemness characteristics, telomerase
activity and normal karyotype. This group claimed that
there are two distinct GFP-Oct-4 positive populations
with different size and distribution in neonatal and adult
mouse ovary. First population is in OSE region with the
average diameter of 10—15 pm, and second population
with the average diameter of 50-60 pm, located in the
center of the follicles, representing oocytes. They be-
lieved that just 0.05 % all ovarian cells are GFP positive
in adult, whereas in neonatal was 1-2 %, representing
that the number of GFP positive cells reduced with ad-
vancing age. They also analyzed the ploidy of GFP-Oct-4
positive cells using propidium iodide and flow cytometry
and reported that there is a population among GFP posi-
tive cells with germ cell and stem cell characteristics in
which ploidy status was diploid. These cells were desired
germline stem cells.

In this work, formed colonies from isolated cells after
one week were round flat and some with a clear bound-
ary and some appeared as a monolayer without a clear
border. They also were stained positive for germ cell
markers GCNA and c-Kit, pluripotent markers Oct-4,
Nanog and GFR-al, the receptor of GDNE, but they not
formed malignancy after transplantation in recipients.
After several passages, just some cells mainly in center
of colonies became larger (up to 40 um) and found OLC
morphology surrounded by a layer of other cells resem-
bling primordial follicle structures. In addition, they
revealed that in presence of growth factors cocktail,
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OGSC differentiate into multiple lineages, whereas with-
out growth factor, OLCs is formed with diameter of up
to 60 pm. Moreover, different evaluations of in vitro-
derived oocytes using Phalloidin, an actin cytoskeletal
marker, and PNA, a marker for cortical granules showed
that OLCs were surrounded by actin filaments and con-
tained one diffuse nuclear chromatin and numerous of
cortical granules throughout the cytoplasm as well as
expressing early and late oocyte markers including Gdf9
and ZP1 even SCP3 using RT-PCR.

Morphology based selection method

This approach was used for first time for isolation of male
Germ Stem Cells (GSCs) from testis [49], then Abbasi’s
group reported that they were able to isolate GSCs from
ovary of mouse by morphology based selection method
[50]. In this method, after enzymatic and mechanical di-
gestion of ovaries, a pre-plating culture on gelatin coated
dishes was done to eliminate fibroblast and somatic cells
contamination. After 30 min pre-plating culture, buoyant
cell were harvested and cultured on gelatin-coated 60 mm
culture dishes. Embryonic-like colonies after 7-10 days
were selected and mechanically removed using capillary
pipette and transferred onto the inactivated Mouse
Embryonic Fibroblasts (MEF) monolayer. Their molecular
evaluations demonstrated that ovarian stem cell-like
colonies were positive for alkaline phosphatase activity
and expressed pluripotent and germ cell markers, such as
Oct-4, Fragilis, Nanog, C-kit, Mvh, and Dazl and transla-
tion of genes to proteins were evaluated by Immunofluor-
escence of colonies against stem and germ cell specific
markers such as Oct-4, Dazl, Mvh and SSEA1.

In continuation, they induced differentiation of OSCs into
OLC:s by co-culturing OSCs with granulosa cells for 11 days.
Their results of immunofluorescence evaluations and RT-
PCR showed that SCP3 and GDF9 were expressed in col-
onies, but pluripotency related genes were not expressed
and cells did not show any significant growth in size (Parvari
S, Yazdekhasti H, Rajabi Z, Gerayeli Malek V, Rastegar T,
Abbasi M. Differentiation of mouse ovarian stem cells to-
ward oocyte-like structure by co-culture with granulosa
cells. Cell Reprogram. 2016. In press). This insignificant
growth might be result of insufficient time course for differ-
entiation induction or even maybe these cells were in their
early developmental stage and need more time to reach
appreciated size. Meanwhile, various growth factors and cy-
tokines are needed to fully growth and differentiation of
stem cells that due to fail of establishing correct cell to cell
communication between ovarian stem cells and granulosa
cells, these cells did not show any significant growth in size.

Future perspectives
Based on numerous papers that have being published
each year regarding presence of OSCs in postnatal
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mammalian ovary and their capacity to produce oocytes
in vivo and in vitro, so it can be deducted that neo-
oogenesis is gradually accepted by reproductive biology
area. However, some important questions remain elusive
from both basic science and clinical perspectives which
have to be cleared in future investigations before advent
of therapeutic procedures for clinical management of the
ovarian reserve and fertility as well as treatment of infer-
tility. What is the potential role of OSCs in postnatal
ovary? What is origin of OSCs? Where is their exact
localization in ovary (cortex or surface epithelium)?
What is the optimized method for their isolation from
ovary? What is the constitution of OSCs niche and
which kind of factors are secreted in microenvironment?
These are some question that time will tell us presump-
tive answers. The area of mammalian OSCs has been
initiated for less than 17 years, in compared with sperm-
atogonial stem cells stared from 1960s [51, 52], however
researches in this area are ongoing and time will tell us
which method could be optimal for use in clinical prac-
tice to treat infertility in young women.

Conclusion
In this review, we tried to summarize all used protocols
by independent research lab world widely regarding
OSCs isolation from ovary in different species (Table 2).
There are some other reviews in this area [53-55], but
we have tried to bring detailed characterizations of ovar-
ian stem cells. This survey displays that isolated putative
stem cells have different sizes with various characteriza-
tions, in which used markers for their isolation are
different as well. These differences might be originated
from their different nature, origin or potential roles in
ovary. It is even possible that cells are in different
developmental stage or these cells have another identity
(c-KIT has been expressed in some studies [26, 27, 29, 30],
whereas in some others not [18, 43—45]. Each protocol
has own advantages and disadvantages that it is recom-
mended before starting each protocol, aim of isolation and
accessible equipments and materials in lab be considered.
What is certain and undeniable, presence of ovarian
stem cell in postnatal mammalian ovaries, but its contri-
bution in neo-oogenesis phenomenon is under question.
Some believe that in aged ovaries, stem cell niches fail to
support stem cell division and stem cells are in quiescent
state [10] and some others believe that these stem cells
are actively contribute to follicle formation [6, 21],
however, this needs more investigation to be figured out.
Based on results from several approaches, transplant-
ation of ovarian stem cells into recipients could restore
fertility and produce live offspring [18, 19]. This means
that there is a promising cure in near future for infertile
women who their ovaries are without follicle or oocyte.
Although, some believe that OSCs still have not external



Table 2 Summarization of all used protocols for isolation of germline stem cells from different species ovary (NS: Not Stated)

Method Author Species (s) Age Marker OSC traits OLC size  Culture duration Putative OSC's  Colony shape Superiority and  Growth
year & origin and formation limitation factors used
reference duration

FACS White 2012 Human 6-8 weeks COOH-DDX4  5-8 um primitive 35— 18 months Bone Marrow  10-12 weeks in Viable and N-2
[6,19,20]  Mouse mice germ cells genetic 50 um and peripheral mouse purified supplement,

(C57BL/6)  20s, 30s, 40s, signature blood 4-8 weeks in human  population LIF
50s women EGF
bFGF
GDNF
Virant klun  Human Reproductive  SSEA-4 2-4 um and 60 Um 21-23 days an integral approximately 3 Homogenous — Without
2008 ages and bigger cells part of the months population growth
[29, 30] menopause 8 um small, round ovarian factors
and yellow-color surface
epithelium
Dunlop Bovine NS DDX4 NS NS several month NS NS NS NS
2014. [79] Human

OSE Virant klun  Human Reproductive  OSCs Small round 95 um 20 days PGCs and NS Simple and Without

Scraping 2008 ages and separated by cells with a VSELs easy growth
[23, 24] menopause  density bubble-like factors

gradient structure
centrifugation
Bukovsky ~ Human 27-38 years  Whole 10 pum nuclear 180 um  5-6 days mesenchymal NS Simple and Without
2004 women ovarian cells ~ MAPK & PS1 Somatic cells easy growth
[21, 22] were cultured  immunoexpression in the tunica factors
albuginea
Bhartiya Human Menopausal ~ Whole Smaller PSCs: 130 um 3 weeks VSELs origin Day 10 Flat with Simple and Without
2011 [33]  Monkey  women with  ovarian cells ~ 1-3 um a well-defined easy growth
Sheep amean age  were cultured Larger PSCs: margin ES cell-like factors
Rabbit range of 4-7 um colonies
46 years Dark, bubbly, 3-dimensional
shiny appearance dense floating
Large, darkly stained embryoid body-like
nuclei with a thin structures
rim of cytoplasm

MACS Johnson Mouse 6 and SSEA-1 Isolated cells Bone Marrow NS NS NS

2005 [21] 9 weeks were used directly and peripheral
for RT-PCR blood

Zou 2009  Mouse Adult and MVH Large round or NS 15 months and more NS After 7-8 passages Poor LIF

[18] (C57BL/6) 5 day old ovoid cells with for neonatal FGSCs (forming cluster) describing Transferrin

female little cytoplasm 6 months for adults details Insulin

and spherical FGSCs Relatively low  Putrescine
nuclei with slight efficiency EGF
staining, a large GDNF
ratio of nuclear bFGF

plasma and nuclear
diameter of
12-20 pm
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Table 2 Summarization of all used protocols for isolation of germline stem cells from different species ovary (NS: Not Stated) (Continued)

Using APE-
Oct4-Gfp
transgenic
mice

Morphology
based
selection
methods

Zou 2011
[43]

Zhou 2013  Rat
[38, 39]

Bui 2014 Pig
[69]

Pacchiarotti Mouse
2010 [48]
Parvari Mouse
2015 [50]

CD-1 mice

Fragilis

5-day-old

Prepubertal
gilts

2 and 5 days
old or one
adult mouse

5-7 day old

5-day-old
female

Fraqilis

SSEA-4

GFP which is
express
under Oct-4
promoter

0SCs
separated by
colony
selection

NS

Round with a
high nuclear to
cytoplasm ratio

size and morphology

similar to mouse FGSCs

5-7 um Completely
round nuclei that took
up almost the entire
volume of the cell

10-15 um Located in
OSE positive for VASA,
c-Kit, SSEA-10.05 %

GFP positive in adults
and 1-2 % in neonata

2-4 um As same
as VSELs

NS

55-60
um

NS

More than one year

>100 um 6 months

Up to
60 um

Slightly
bigger
than
0SCs

More than one year

11 days

NS

NS

VSELs and
epiblast-
derived PGCs

They are
reserved pool
in the
quiescent
state

VSELs origin

NS

In first 3 weeks:
spherical or
grape-like clusters
consisting of 4-8 cells

Spherical colonies
comprising compact
clusters of small
round after 1 day
Dark and shiny
colonies

One week

4 days after pre-
plating Small colonies
were highly compact
without a clear
border

Improved
Efficiency

Better
efficiency of
gene transfer
for producing
transgenic rat

Better culture
condition for
establishment
and long-term
maintenance
of PSCs

Is not optimal
for several
reasons [20]

Easy
Affordable

LIF
Transferrin
Insulin
Putrescine
EGF

GDNF
bFGF

LIF
EGF
GDNF
bFGF

B27
SCF

Insulin
Transferrin
Selenium
Fibronectin

LIF
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existence, but with respect to their opinion, this requires
many more years of study to fully grasp the importance
of OSCs in reproductive biology.
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