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Abstract
Background  Immunotherapy has emerged as a potent clinical approach for cancer treatment, but only subsets of 
cancer patients can benefit from it. Targeting lactate metabolism (LM) in tumor cells as a method to potentiate anti-
tumor immune responses represents a promising therapeutic strategy.

Methods  Public single-cell RNA-Seq (scRNA-seq) cohorts collected from patients who received immunotherapy 
were systematically gathered and scrutinized to delineate the association between LM and the immunotherapy 
response. A novel LM-related signature (LM.SIG) was formulated through an extensive examination of 40 pan-
cancer scRNA-seq cohorts. Then, multiple machine learning (ML) algorithms were employed to validate the capacity 
of LM.SIG for immunotherapy response prediction and survival prognostication based on 8 immunotherapy 
transcriptomic cohorts and 30 The Cancer Genome Atlas (TCGA) pan-cancer datasets. Moreover, potential targets for 
immunotherapy were identified based on 17 CRISPR datasets and validated via in vivo and in vitro experiments.

Results  The assessment of LM was confirmed to possess a substantial relationship with immunotherapy resistance 
in 2 immunotherapy scRNA-seq cohorts. Based on large-scale pan-cancer data, there exists a notably adverse 
correlation between LM.SIG and anti-tumor immunity as well as imbalance infiltration of immune cells, whereas a 
positive association was observed between LM.SIG and pro-tumorigenic signaling. Utilizing this signature, the ML 
model predicted immunotherapy response and prognosis with an AUC of 0.73/0.80 in validation sets and 0.70/0.87 in 
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Introduction
The advent of immunotherapy marks a transforma-
tive epoch in cancer treatment, yielding unprecedented 
clinical advantages for patients [1]. Nevertheless, limited 
response rates and the inability to predict clinical efficacy 
obstacle their further application, which underscores 
the imperative need for biomarker detection to facilitate 
precise medicine and formulate effective combination 
strategies against immune resistance [2]. Conventional 
biomarker screening is predominantly centered on the 
exploration of omics data derived from patients [3–6]. 
However, this approach solely captures the mean genetic 
expression within a heterogeneous cell population, lead-
ing to limited predictive values of pre-existing immuno-
therapy biomarkers from these studies. The advantage 
of single-cell RNA sequencing (scRNA-Seq) and spatial 
transcriptomics (ST) enabled us to detect expression pro-
files of the transcriptome at a single-cell and spatial reso-
lution which in turn unveils novel targets with superior 
performance [7, 8].

Lactate, an intermediate metabolite of the Warburg 
effect which induces an acidic tumor microenviron-
ment (TME) through the utilization of glucose for gly-
colysis initially proposed by Otto Warburg in the 1920s 
[9]. This phenomenon, commonly referred to as aerobic 
glycolysis, was initially attributed solely to the elevated 
glucose consumption of cancer cells. However, mount-
ing evidence indicates that immune cells also exhibit this 
metabolic behavior [10, 11]. Notably, these cells enhance 
proliferative activity and establish an immunosuppres-
sive phenomenon due to lactate, conferring upon them 
unlimited potential for immune escape [12]. Lactic acid 
has been demonstrated to impede the production of IFN-
γ, granzyme B, and perforin in T cells and NK cells, along 
with inhibiting proliferation, thereby compromising cyto-
toxic responses [13–15]. Although the accumulation of 
intratumoral lactic acid proves detrimental to anti-tumor 
immunity, it is imperative to recognize that evolution-
ary pressures have influenced the adaptive mechanisms 
of immune cells to these elements. Analogous to check-
point molecules like PD-1 and CTLA-4, which ensure 

self-tolerance and mitigate excessive tissue damage 
resulting from hyperactive immune responses, suppres-
sion induced by an acidic, lactate-rich environment can 
be construed as a physiologically relevant metabolic 
checkpoint. Within the context of tumors, targeting these 
maladapted programs holds promise as a therapeutic 
approach [16]. Hence, lactate could serve as a mediator 
connecting metabolic reprogramming to immunosup-
pression [17]. Previous studies have developed biomark-
ers based on lactate metabolism (LM) in predicting 
immunotherapy response in breast cancer [18], lung 
cancer [19] and kidney renal clear cell carcinoma [20], 
but direct research demonstrating the negative relation-
ship between LM and immunotherapy response at both 
pan-cancer levels is lacking. With the assistance of the 
scRNA-seq technique and multiple machine learning 
(ML) algorithms, we can precisely characterize LM and 
determine the LM-related signature at the pan-cancer 
level to unveil the influence of LM in immunotherapy 
response.

Herein, we first illustrated and validated the inverse 
relationship between LM and immunotherapy response 
in two immunotherapy scRNA-seq datasets. Subse-
quently, LM-related signature (LM.SIG) was established 
based on 40 pan-cancer scRNA-seq cohorts containing 
406 patients and 881,332 cells across 17 types of cancer. 
The predictive performance of LM.SIG in immunother-
apy response was further investigated and verified via 7 
ML algorithms based on 8 pan-cancer immunotherapy 
bulk RNA-seq cohorts (including 851 patients). Besides, 
15 survival-specific ML algorithms in the SurvBench-
mark design [21] were applied to characterize the survival 
prognostication of LM.SIG through an integrated analy-
sis of pan-cancer The Cancer Genome Atlas (TCGA) 
RNA-seq cohorts (including 30 types of cancer). Finally, 
we identified the LDHA as the most potential target from 
LM.SIG was based on 17 CRISPR datasets, and validated 
its capacity in pancreatic cancer (PC) via experiments. 
The flowchart of this study is shown in Fig. 1.

testing sets respectively. Notably, LM.SIG exhibited superior predictive performance across various cancers compared 
to published signatures. Subsequently, CRISPR screening identified LDHA as a pan-cancer biomarker for estimating 
immunotherapy response and survival probability which was further validated using immunohistochemistry (IHC) 
and spatial transcriptomics (ST) datasets. Furthermore, experiments demonstrated that LDHA deficiency in pancreatic 
cancer elevated the CD8+ T cell antitumor immunity and improved macrophage antitumoral polarization, which in 
turn enhanced the efficacy of immunotherapy.

Conclusions  We unveiled the tight correlation between LM and resistance to immunotherapy and further 
established the pan-cancer LM.SIG, holds the potential to emerge as a competitive instrument for the selection of 
patients suitable for immunotherapy.

Keywords  Lactate metabolism, Immunotherapy, Survival prognostication, Pan-cancer analysis, scRNA-seq
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Materials and methods
Cell culture and transfection
KPC1199 cell line was cultured in DMEM supplemented 
with 10% FBS (Gbico) and 1% P/S (NCM). Cells were cul-
tured at 37 °C in an atmosphere containing 5% CO2. Len-
tiviruses were sourced from Bioegene (Shanghai, China). 
For stable transfections, the appropriate lentivirus was 
added to the supernatant, and the medium was changed 
after 6 to 8 h. Following expression verification, cells were 
treated with 2 µg/mL puromycin to identify cells express-
ing the resistance gene, which represented stably trans-
fected cell lines.

Patient-derived organoids (PDOs) construction and 
measurement
The samples were obtained from Ruijin Hospital, Shang-
hai Jiao Tong University School of Medicine. The study 
protocol was approved by the Research Ethics Commit-
tee of Ruijin Hospital, School of Medicine, Shanghai Jiao 
Tong University. All enrolled participants consented to 
attend this cohort study and signed written informed 
consent. PC tumor tissues from patients were promptly 
dissected into small pieces in precooled RPMI-1640 and 
digested using the human Tumor Dissociation Kit (Milte-
nyi) at 37 °C for 20 min. Afterward, filtration through the 
Falcon® 40 μm Cell Screen (Corning) was completed, and 
single cells were seeded into Matrigel (Corning), wherein 
they were subsequently cultured in a complete organ-
oid culture medium, OmaStem® Pan-cancer Advanced 
(OmaStem). The relative activity of the organoids was 
measured using the CellTiter-Glo® 3D Cell Viability Assay 

(Promega) according to the manufacturer’s instructions. 
Lactate acid in supernatant was measured through L-lac-
tic acid (L-LA) content test kit (Solarbio) following the 
instructions. A characteristic absorption peak at 570 nm 
was detected to calculate L-LA content, depending on 
the standard curve.

scRNA-seq and ST Immunotherapy datasets
2 immunotherapy scRNA-seq cohorts, GSE115978 (a 
melanoma scRNA-seq cohort, https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi? acc=GSE115978) and GSE123813 
(a basal cell carcinoma scRNA-seq cohort, https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi? acc=GSE123813) 
were screened out to explore the correlation between 
lactate metabolism and immunotherapy response. Addi-
tionally, preprocessed ST data of tumor sections from 2 
patients with hepatocellular carcinoma (HCC) receiving 
anti-PD-1 treatment (non-responders, n = 1; responders, 
n = 1) was extracted from Mendeley Data (skrx2fz79n) 
[22] (Table S1).

Pan-cancer scRNA-seq datasets and processing
To develop a lactate metabolism-specific signature, 40 
pan-cancer scRNA-seq data containing 406 patients and 
881,332 cells were collected (Table S2). These large-scale 
scRNA-seq data included 17 types of cancer, namely 
Basel Cell Carcinoma (BCC), Breast Cancer (BRCA), 
Cholangiocarcinoma (CHOL), Colorectal Cancer (CRC), 
Glioblastoma Multiforme (GBM), Head and Neck Squa-
mous Cell Carcinoma (HNSCC), Liver Hepatocellular 
Carcinoma (LIHC), Medulloblastoma (MB), Merkel Cell 

Fig. 1  The flowchart of this study
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Carcinoma (MCC), Multiple Myeloma (MM), Neuro-
endocrine Tumor (NET), Non-small Cell Lung Cancer 
(NSCLC), Ovarian Cancer (OV), Pancreatic Adenocar-
cinoma (PAAD), Skin Cutaneous Melanoma (SKCM), 
Stomach Adenocarcinoma (STAD) and Uveal melanoma 
(UVM). Raw data of these datasets were extracted from 
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo), The European Genome-phenome Archive 
(EGA, https://ega-archive.org), and Array Express 
(https://www.ebi.ac.uk/arrayexpress). Standard work-
flow for scRNA-seq was implemented via the R pack-
age “Seurat”. Low quality cells (< 500 genes/cell, > 5% 
mitochondrial genes or a log10(UMI per gene) < 3) were 
excluded. The “Seurat” package was applied for nor-
malization and scaling of the expression matrix, using 
default settings. The expression matrix dimensional-
ity was reduced through principal component analysis 
(PCA), focusing on 2,000 highly variable genes. Unsu-
pervised cluster analysis was implemented and visual-
ized via t-distributed Stochastic Neighbor Embedding 
(t-SNE) reduction. Cluster annotations were assigned 
based on canonical marker expression and references 
from the original literature (Table S2). Furthermore, dif-
ferential genes within each cluster were pinpointed using 
the FindAllMarkers function, applying the criteria of 
logFC > 0.25, min.pct > 0.1, and adjusted p-value < 0.05.

Pan-cancer transcriptomic datasets and processing
The pan-cancer cohort of batch effects normalized tran-
scriptomic data of 9,815 patients with complete survival 
information in 30 TCGA cohorts was extracted from the 
UCSC database (https://xenabrowser.net). Three types 
of cancer, diffuse large B cell lymphoma (DLBC), acute 
myeloid leukemia (LAML), and thymoma (THYM) were 
excluded on account of abundant immune cells [23]. The 
total tumor mutation burden (TMB) data for pan-can-
cer analysis from TCGA cohorts was acquired through 
the cBioPortal (https://www.cbioportal.org). Addition-
ally, transcriptomic and clinical data of 4,434 patients in 
10 cohorts was collected as testing sets to evaluate the 
prognostic efficacy of the prognostic model associated 
with LM, including E-MTAB-6134 (pancreatic cancer, 
n = 288), CGGA-693 (glioma, n = 657), CGGA-301 (gli-
oma, n = 285), METABRIC (breast cancer, n = 1935), prad-
su2c-2019 (prostate cancer, n = 71), GSE13507 (bladder 
cancer, n = 165), GSE17538 (colorectal cancer, n = 232), 
GSE30219 (lung cancer, n = 274), GSE72094 (lung can-
cer, n = 398) and GSE138866 (ovarian cancer, n = 129). All 
raw data of the above datasets were downloaded from 
GEO and cBioPortal. The expression matrix underwent 
z-score normalization across all transcriptomic datasets 
to ensure standardization. The details of these cohorts 
are summarized in Table S3.

Bulk RNA-seq immunotherapy datasets
Transcriptomic profile and clinical information of immu-
notherapy-treated samples from 10 immunotherapy bulk 
RNA-Seq datasets were collected to assess the predic-
tive performance of LM.SIG, including 5 SKCM cohorts 
(Liu SKCM [24], Gide SKCM [25], Riaz SKCM [26], Hugo 
SKCM [27] and Van SKCM [28]), 1 Renal Cell Carcinoma 
(RCC) cohort (Bruan RCC [29]), 1 Urothelial Carcinoma 
(UC) cohort (Mariathasan UC [30]), 1 GBM cohort 
(Zhao GBM [31]), 1 Gastric Cancer (GC) cohort (Kim 
GC [32]) and 1 NSCLC cohort (Jung NSCLC [33]). The 
relevant processed data of these datasets were sourced 
from the related published articles (Table S4).

Published signatures for comparison
To evaluate the performance of LM.SIG in predicting 
immunotherapy response, the following 13 published 
immunotherapy response signatures were collected 
for comparison: 6 pan-cancer signatures (Ayers.INFG.
SIG [34], Ayers.T.cell.SIG [34], Topalian.PDL1.SIG 
[35], Dominguez.CAF.SIG [36], Ju.NLRP3.SIG [37] and 
Rooney.Cytotoxic.SIG [38]) and 7 melanoma-specific sig-
natures (Shukla.CRMA.SIG [39], Auslander.IMPRES.SIG 
[6], Hugo.IPRES.SIG [27], Jerby-Arnon.TcellExc.SIG [40], 
Xiong.ImmmunCells.SIG [41], Cui.IMS.SIG [42], and 
Yan.TRS.SIG [43]). Similar algorithms of these signatures 
were applied according to original articles, and the area 
under curve (AUC) value was further conducted to assess 
their fitting capability.

CRISPR datasets processing
Our study incorporated 17 reorganized datasets derived 
from 7 well-established CRISPR/Cas9 libraries, each 
pertaining to the individual impact of gene knockout 
on tumor immunity. These studies, conducted by Free-
man [44], Kearney [45], Manguso [46], Pan [47], Patel 
[48], Vredevoogd [49] and Lawson [50], encompass 
diverse cancer types, namely SKCM, BRCA, CRC, and 
RCC cell lines. We collected the first 6 studies from Fu 
et al. [51], and augmented our dataset with an additional 
CRISPR cohort from Lawson et al. [50]. Based on distinct 
cell lines and treatment conditions, we reorganized this 
study into 17 datasets (Table S5). Our comprehensive 
CRISPR analysis aimed to identify genes with a height-
ened likelihood of modulating anti-tumor cytotoxicity 
and affecting immunotherapy response among diverse 
cohorts. Log-fold changes (logFCs) in small guide RNA 
(sgRNA) reads were computed between with CTLs vs. 
without CTLs or immune-competent vs. immune-defi-
cient subgroups and served as a measuring tool to assess 
the cancer fitness after gene knockout in the presence 
of anti-tumor immunity. logFCs of all CRISPR datasets 
were normalized as z-scores to remove the batch effects 
and facilitate gene comparisons. A more robust immune 

https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://ega-archive.org
https://www.ebi.ac.uk/arrayexpress
https://xenabrowser.net
https://www.cbioportal.org
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response is observed with lower z-scores following gene 
knockout. Specifically, genes ranked at the top based on 
their z-scores are identified as exhibiting resistance to 
immune-related processes.

Pathway analysis and anti‑tumor immunity evaluation
Gene set variation analysis (GSVA) was performed to 
quantify the pathway-specific scores across the pan-
cancer scRNA-seq and bulk RNA-seq datasets via the 
“GSVA” R package. The background gene sets (LM-
related gene set and HALLMARK gene sets) were 
downloaded from the Molecular Signatures Database 
(MSigDB) database (https://www.gsea-msigdb.org/gsea/
msigdb) (Table S6). Pathway enrichment analysis was 
conducted via the R package “clusterProfiler” based on 
the Reactome Knowledgebase (https://reactome.org), 
Gene Ontology (GO) terms and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) database. In pan-cancer 
TCGA cohorts, we conducted a comprehensive assess-
ment of the relationship between LM.SIG and tumor-
infiltrating leukocytes (TILs) as well as immune-related 
genes which were sourced from Thorsson et al [52]. For 
the quantification of immune cell infiltration, the R pack-
age “MCPcounter” was applied.

Generation of a predictive model for immunotherapy 
response
In order to appraise the capacity of LM.SIG in predicting 
the immunotherapy response, 8 immunotherapy cohorts 
mentioned above were obtained. 5 cohorts (Bruan RCC, 
Mariathasan UC, Liu SKCM, Gide SKCM and Riaz 
SKCM) with the most number of patients were merged 
as a meta-cohort (n = 772). The “ComBat” method was 
implemented to remove batch effects based on the R 
package “sva”. Then, we categorized the patients receiving 
immunotherapy into training set (n = 618) and validation 
set (n = 154) with a ratio of 8:2, the other 3 cohorts were 
listed as testing sets (n = 79). 7 ML algorithms, including 
support vector machine (SVM), Naïve Bayes (NB), ran-
dom forest (RF), k-nearest neighbors (KNN), AdaBoost 
Classification Trees (AdaBoost), boosted logistic regres-
sions (LogiBoost), and cancerclass were applied to train 
immunotherapy response classification model based on 
LM.SIG. 5-fold cross-validation was adopted for tuning. 
For each single resampling, 10 iterations were employed 
for robustness. Except for the cancerclass using the R 
package “cancerclass”, other ML algorithms were trained 
and predicted via R package “caret”. The LM.SIG model, 
exhibiting optimal performance in the validation set, was 
selected as the ultimate model for further analysis. The 3 
independent testing sets and 6 published signatures men-
tioned above were collected to examine the predictive 
ability of the final model.

Derivation of LM‑related prognostic model
SurvBenchmark, a benchmarking design for survival 
models, was applied to investigate the prognostic value of 
LM.SIG [21]. This design not only concentrates on classi-
cal approaches but also evaluates state-of-the-art ML sur-
vival models. A total of 9,815 pan-cancer TCGA patients 
were randomly divided into training set (80%, n = 7865) 
and validation set (20%, n = 1950). Besides, 4,434 patients 
of 10 pan-cancer datasets were obtained as a testing set. 
The following 15 algorithms in the SurvBenchmark study 
were implemented: Lasso_Cox, Ridge_Cox, Elastic net 
cox (EN_Cox), Random survival forest (RSF), Multi-task 
logistic regression (MTLR), Deep learning survival model 
(DNNSurv), CoxBoost, Cox model with genetic algo-
rithm as feature selection method (Cox_GA), Multi-task 
logistic regression model with genetic algorithm as fea-
ture selection method (MTLR_GA), Boosting cox model 
with genetic algorithm as feature selection method 
(CoxBoost_GA), Multi-task logistic regression model 
with ranking based method as feature selection method 
(MTLR_DE), Boosting cox model with ranking based 
method as feature selection method (CoxBoost_DE), 
Survival support vector machine (SurvivalSVM), Deep-
Surv, DeepHit. We trained the model on the training 
set and calculated the evaluation metrics using the vali-
dation and testing set with 10 iterations repeated 5-fold 
cross-validation. The final model was identified with 
the best AUC/time-dependent AUC, and concordance 
index (C-index), including Harrell’s C-index [53], Begg’s 
C-index [54], Uno’s C-index [55], and GH C-index [56]. 
More detailed information is listed in Table S7.

Primary immune cells extraction and co-culture
Peripheral blood of patients was stored in anticoagulated 
tubes, diluted with PBS, and lightly spread over Lympho-
cyte Separation Medium (YEASEN). Peripheral Blood 
Mononuclear Cells (PBMCs) were obtained by centrifu-
gation using density gradient centrifugation for 25  min. 
Anti-human CD8 Microbeads (Miltenyi) and anti-human 
CD14 Microbeads (Miltenyi) and MACS® MultiStand 
(Miltenyi) were employed for T cells and Mononuclear 
cells sorting, respectively. T cells were activated by CD3/
CD28, and Mononuclear cells were active by M-CSF. 
Activated T cells and macrophages were co-cultured with 
sh-NC or sh-LDHA PC PDOs.

RNA extraction and real-time quantitative PCR (RT-qPCR)
RNA was extracted from cells using the SteadyPure Uni-
versal RNA Extraction Kit (Accurate Biology) and then 
reverse transcribed to cDNA using the Evo M-MLV 
reverse transcription kit (Accurate Biology). Post-tran-
scription, the concentration and purity of the RNA 
were determined. Relative RNA expression levels were 
detected using the Evo M-MLV One-Step RT-qPCR Kit 

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://reactome.org
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(SYBR) on qTOWER384G (Analytik Jena). The forward 
and reverse primers are listed in Table S8.

Western blotting
Proteins were transferred to polyvinylidene difluoride 
(PVDF) membranes (Merck Millipore, USA) after sepa-
rating cell lysates using 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE). Primary 
antibodies were applied to the membranes overnight at 
4  °C, followed by incubation with secondary antibodies. 
Target proteins were detected using the Imaging Sys-
tem (Tanon, China). The antibodies employed were as 
follows:

β-Actin Rabbit mAb (1:5000, Abclonal, #AC048).
LDHA Rabbit mAb (1:1000, Cell Signaling Technol-
ogy, #3558S).

Flow cytometry and intracellular staining
Cells were harvested, centrifuged, washed, and sus-
pended in 100 µL pre-cooled 1% BSA solution (dissolved 
in PBS). They were then stained with flow antibodies 
conjugated with the indicated fluorescence for half an 
hour by following the recommended concentration in 
the dark. The cytokines and intracellular proteins were 
detected according to the manufacturer’s instructions of 
Cytofix/Cytoperm Fixation and Permeabilization Solu-
tion (BD Bioscience). CytoFLEX S (Beckman) recorded 
corresponding fluorescence signals after unbound 
antibodies were discarded. Various groups, includ-
ing a blank group, a single antibody-stained group, and 
a sample group, were used for voltage adjustment and 
compensation.

Animal studies
6-week-old male C57BL/6 were selected for in vivo study. 
Approximately 2*106 KPC cells (sh-NC and sh-LDHA) 
resuspended in 150ul PBS were injected into the lateral 
abdomen of mice. Three intraperitoneal injections of 
anti-PD1 (10 mg/kg) or anti-IgG (10 mg/kg) were given 
on days 9, 12 and 15, respectively. Tumor volume was 
measured every 4 days starting from day 7. 25 days later, 
the mice were euthanized, and the subcutaneous tumors 
were collected, photographed, weighed, and stained with 
hematoxylin and eosin (H&E) for IHC analysis.

H&E and IHC
Tissues were formalin-fixed, paraffin-embedded, and 
sectioned onto slides. IHC staining was thereupon per-
formed using the standard streptavidin-biotin-peroxi-
dase complex method. Following deparaffinization and 
rehydration, the slides were successively subjected to 
antigen retrieval, inactivation, incubation with primary 

and secondary antibodies, DAB staining, and sealing. 
Finally, representative pictures were captured under a 
microscope.

Statistical analysis
R v4.2.2 was applied to conduct all statistical analyses in 
this study. The Wilcox test was implemented to compare 
the GSVA scores of LM between two different subgroups. 
Spearman correlation analysis was used to investigate 
the relationship between LM.SIG and hallmark path-
ways or immune characteristics. The false discovery rate 
(FDR) was calculated by the Benjamini-Hochberg proce-
dure (B-H). The log-rank test was utilized to assess the 
significance of observed differences in overall survival 
(OS). Statistical significance was determined by a two-
tailed p-value less than 0.05, unless explicitly specified 
otherwise.

Results
Upregulated LM is associated with resistance to 
immunotherapy
To explore the relationship between LM and immuno-
therapy response, 2 immunotherapy scRNA-seq cohorts 
(GSE115978, GSE123813) were collected. We computed 
the LM scores of cells in these cohorts based on the LM-
related genes (Table S6) as previously mentioned via 
GSVA analysis. After excluding patients without malig-
nant cells, 11 non-responders (NR) and 13 treatment-
naïve (TN) SKCM patients in GSE115978 were enrolled. 
Due to the lack of responders (R) in this dataset, TN 
patients (probably including both potential R and NR) 
were acquired for comparison. As shown in Fig.  2A, 
malignant cells with elevated LM levels demonstrated 
a propensity for enrichment within the NR subgroup. 
Subsequent analysis revealed the elevated LM in NR 
patients (Fig.  2B, p < 0.001). Another BCC immunother-
apy scRNA-seq cohort (including 4 NR and 6 R) further 
validated this result (Fig. 2C-D, p < 0.001). Together, these 
results indicate that LM is associated with resistance to 
immunotherapy.

Establishment of LM.SIG using pan‑cancer scRNA-seq 
cohort
As LM is considerably correlated with the resistance to 
anti-tumor immunity, we suggested that an LM.SIG rep-
resenting the LM infiltration of the cancer might facilitate 
the effectiveness of immunotherapy prediction. Hence, 
40 pan-cancer scRNA-seq datasets were screened out to 
establish the LM.SIG (Fig. 2E, Table S2). First, Spearman 
correlation analysis was conducted between GSVA scores 
(based on the LM-related genes) and gene expression for 
malignant cells in pan-cancer scRNA-seq cohorts. We 
have designated the term LMx to denote genes exhib-
iting a positive correlation with GSVA scores (R > 0, 
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Fig. 2 (See legend on next page.)
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FDR < 0.05). Besides, genes significantly upregulated 
in malignant cells were deemed as LMy (logFC ≥ 0.25, 
FDR < 0.05). Then, LMx (Table S9) and LMy (Table S10) 
were intersected into LMn (n = 1–40) (Table S11) for each 
scRNA-seq cohort to obtain up-regulated tumor-specific 
genes that were positively associated with LM. The geo-
metric mean of Spearman’s correlation coefficient (R) 
was computed for individual genes spanning LM1–LM40, 
and genes exhibiting a geometric mean of Spearman’s 
R exceeding 0.25 were filtered into the LM.SIG, which 
contained 84 genes (Table S12). The underlying func-
tional exploration was implemented based on Reactome, 
GO and KEGG analysis. Results illustrated that LM.SIG 
is mainly enriched in lactate metabolism-related and 
tumorigenic pathways, such as Nicotinamide adenine 
dinucleotide(NADH)-related pathways, tricarboxylic 
acid (TCA) cycle-related pathways (Fig. 2F-H) and TP53 
regulation (Fig. 2F). Among those 84 genes, several genes 
have been reported to be related to immune activity, such 
as C1QBP [57], TUFM [58], LDHA [59], LDHB [60] and 
ACAT1 [61].

Immune atlas of LM.SIG based on pan‑cancer TCGA cohort
In TCGA pan-cancer datasets, GSVA analysis was 
applied to calculate the LM.SIG score based on 84 
LM.SIG genes. To further investigate the potential cor-
relation between LM.SIG score and immune suppres-
sion, we carried out a comprehensive analysis based on 
75 immune-related genes [52]. As shown in Fig.  3A, a 
significantly negative correlation was detected between 
LM.SIG score and expression of these genes across pan-
cancer datasets. Meanwhile, the abundance of immune 
cells was appraised via the R package “MCPcounter” [62] 
and tumors with high LM.SIG score earned decreased 
infiltration of anti-tumor immune cells, including NK 
cells and cytotoxic lymphocytes (Fig. 3B). Then, we calcu-
lated the correlation analysis between GSVA scores of the 
hallmark gene set and LM.SIG to dig into whether immu-
nosuppressive pathways were enriched in high LM.SIG 
score tumors. Top-ranked pathways, such as oxidative 
phosphorylation, reactive oxygen species pathway, DNA 
repair and MYC target pathway, were confirmed to be 
upregulated in patients with high LM.SIG score (Fig. 3C).

Moreover, we performed a series of analyses between 
LM.SIG and TMB. Based on the median LM.SIG score 
and TMB across TCGA pan-cancer cohorts, patients 
were divided into 8 subgroups for comparison: High 

LM.SIG (HL), Low LM.SIG (LL), High TMB (HT), Low 
TMB (LT), High LM.SIG / High TMB (HLHT), High 
LM.SIG / Low TMB (HLLT), Low LM.SIG / High TMB 
(LLHT), Low LM.SIG / Low TMB (LLLT). High LM.SIG 
represents a miserable immune response while high 
TMB adopts the converse stance. As anticipated, reduced 
infiltration of cytotoxic lymphocytes was found in the 
HL (p < 0.001) and LT (p < 0.001) subgroups (Fig.  3D). 
Integrated analysis also demonstrated that LLHT was 
enriched in the highest abundance of cytotoxic lympho-
cytes whereas HLLT obtained the lowest (Fig. 3E). Hence, 
the interaction of High LM.SIG and Low TMB (HLLT) 
may lead to a cytotoxic lymphocyte-deficient tumor 
immune microenvironment (TIME). Conversely, abun-
dant cytotoxic lymphocytes were found to be enriched in 
the LLHT subgroup. However, the immunological char-
acteristics of HLHT and LLLT appeared to be more con-
troversial than those of HLLT and LLHT. This tendency 
arose from the presence of both immune-deficient (HL 
or LT) and immune-competent (LL or HT) factors in 
HLHT and LLLT. In summary, the capacity of anti-tumor 
immunity, ranked from top to bottom is as follows: 
LLHT > LLLT > HLHT > HLLT (Fig.  3E). Consequently, 
patients obtained lower LM.SIG tended to acquire bet-
ter anti-tumor immunity compared to higher LM.SIG 
patients.

Immunotherapy response prediction by LM.SIG
Given the tight relationship between LM.SIG and anti-
tumor immunity, we hypothesized that whether LM.SIG 
could predict the response to immunotherapy. Based on 
the established LM.SIG, 8 immunotherapy cohorts with 
complete clinical information were compiled and catego-
rized into training set (n = 618), validation set (n = 154) 
and testing set (n = 79) (Fig.  4A). We first trained the 
model with 7 ML methods and iterated 10 iterations 
repeated 5-fold cross-validation. The AUC values of the 
validation and testing sets were calculated. As shown in 
Fig.  4B-C, Naïve Bayes reached the highest AUC value 
of 0.73 in the validation set and was identified as opti-
mal LM.SIG model. To further examine the robustness 
of the LM.SIG, the same algorithm was performed in the 
testing set and the AUC value was 0.70 (Fig. 4D). Next, 
we classified patients into High-risk (predicted NR) and 
Low-risk (predicted R) subgroups for survival analysis. 
The Kaplan-Meier plot showed that the Low-risk sub-
group obtained favorable OS in the validation and testing 

(See figure on previous page.)
Fig. 2  Development of the LM.SIG. tSNE plot of malignant cells from SKCM (A) and BCC (C). tSNE plots in the right panel revealed the distribution of the 
GSVA score of LM-related gene sets (LM score). Boxplot depicting the distribution of the LM score in NR and R/TN patients from SKCM (B) and BCC (D). (E) 
Circos plot depicting the development of LM.SIG. The outer circle represents the enrolled 40 pan-cancer scRNA-seq datasets. The middle circle represents 
the veen plot depicting the intersection of LMx (blue) and LMy (brown). LMx represents genes positively correlated with LM and LMy represents genes 
upregulated in malignant cells. The inner circle represents LMn. The final LM.SIG was established based on the geometric mean of Spearman’s correlation 
coefficient (R) computed for individual genes spanning LM1–LM40. Pathway enrichment analysis of LM.SIG based on Rectome (F), GO (G) and KEGG (H) 
databases. (ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)



Page 9 of 19Chen et al. Journal of Experimental & Clinical Cancer Research          (2024) 43:125 

sets (Fig. 4E-F). The following subgroup analysis was per-
formed in the 3 testing sets and AUC ranged from 0.65 to 
0.75 across these datasets (Figure S1).

Published articles have revealed numerous predictive 
signatures related to immunotherapy prediction. We 
compared the predictive value of LM.SIG with these sig-
natures (including Ayers.INFG.SIG [34], Ayers.T.cell.SIG 
[34], Topalian.PDL1.SIG [35], Dominguez.CAF.SIG [36], 
Ju.NLRP3.SIG [37], and Rooney.Cytotoxic.SIG [38]). As 
shown in Fig. 4G, LM.SIG achieved the highest AUC of 
0.73 in the validation set while the Rooney.Cytotoxic.SIG 
had an AUC of 0.47. Notably, most published signatures 
achieved higher stability merely in one or two datasets 
but performed far from satisfactory in other external 
cohorts, which may be due to the poor generalisability. 
For instance, the AUC of Ju.NLRP3.SIG achieved 0.74 in 
Zhao GBM and 0.67 in Van SKCM, but it ranged from 
0.46 to 0.60 in other cohorts (Table S13). Conversely, 
LM.SIG performed well in all cohorts related to SKCM, 
GBM, RCC, UC, GC and NSCLC, which further dem-
onstrated its vitality in predicting the immunotherapy 
response in pan-cancer datasets (Fig.  4H, Table S13). 
Among 7 melanoma-specific signatures, LM.SIG also 
maintained its position in the top 3, exhibiting an AUC 
of 0.71 for predicting immunotherapy response in mela-
noma patients (Figure S2).

Survival prognostication by LM.SIG
To tune the LM.SIG for prognostication of pan-cancer 
survival, we utilized LM.SIG to develop a survival model 
based on the SurvBenchmark design [21]. A diverse col-
lection of survival-specific models (including Lasso_Cox, 
Ridge_Cox, EN_Cox, RSF, MTLR, DNNSurv, CoxBoost, 
Cox_GA, MTLR_GA, CoxBoost_GA, MTLR_DE, Cox-
Boost_DE, SurvivalSVM, DeepSurv, DeepHit) were 
evaluated. We divided the TCGA pan-cancer patients 
into training set (80%, n = 7865) and validation set (20%, 
n = 1950), and trained the LM.SIG prognostic model with 
training set. Then, the value of AUC, time-dependent 
AUC and C_index were calculated based on the valida-
tion set. As shown in Fig.  5A, MTLR_GA achieved the 
best performance across the validation set and was 
identified as the optimal model (Table S14). MTLR_GA 
represents a multi-task logistic regression model with 
genetic algorithm as feature selection method. Following 
the default procedure of processing, genetic algorithm 
for feature selection was implemented based on the 
training set via the “GenAlgo” R package. With 20 times 
iterations, the highest fitness of a solution was deemed as 
the optimal individual (Fig.  5B). The top 10 genes were 
finally screened out, including CFH, ECHS1, DNAJC19, 
IRAK1, LDHA, DGUOK, MRPS28, NDUFB3, NDUFA12 
and C1QBP. Based on these 10 hub genes, we trained the 
training set with the MTLR algorithm using the “MTLR” 

R package, and the risk score was subsequently calcu-
lated for each patient. Meanwhile, the performance of 
the final model was assessed by the AUC of the valida-
tion and testing sets (n = 4434). Results illustrated that 
this LM.SIG related prognostic model achieved excel-
lent performance in validation and testing sets (Fig. 5C). 
Furthermore, we found that patients with higher risk 
scores in all enrolled cohorts were associated with worse 
OS (all p < 0.05, Fig. 5D), the same as each dataset in the 
TCGA pan-cancer cohort (Figure S3). These results led 
us to conclude that the LM.SIG related prognostic model 
may stress its potential as a predictive tool in pan-cancer 
datasets.

Potential therapeutic targets generated from LM.SIG using 
CRISPR studies
To facilitate the clinical application of LM.SIG, it’s urgent 
to identify potential targets in pan-cancer patients. 
Based on this, 17 CRISPR datasets were split from 7 
CRISPR studies with immune response information of 
knockout genes according to their types of cell lines and 
treatment conditions. The z-scores of enrolled 22,505 
CRISPR genes were ordered and the top-ranked genes 
were regarded as immune-resistant genes (Fig. 6A, Table 
S15). In other words, genes ranked top may elevate the 
capacity of anti-tumor immunity after knockout, whereas 
those bottom-ranked genes may restrain anti-tumor 
immunity after knockout. Then, we compared the per-
centage of top-ranked genes in LM.SIG and those in pub-
lished immune-resistant signatures (including TcellExc.
SIG [40], ImmuneCells.Sig [36], IMS.SIG [42], CAF.SIG 
[36], and CRMA.SIG [39]). As shown in Fig. 6B, LM.SIG 
accounted for the highest proportion of top-ranked genes 
than other signatures. Interestingly, the top 5% of genes 
(n = 19) were over-represented in LM.SIG (Fisher’s exact 
test, p = 0.04). These genes were further validated in mul-
tiple independent CRISPR datasets and served as poten-
tial targets with immunotherapy (Fig. 6C, Table S16).

To further investigate the targets with both immu-
notherapy prediction and survival prognostication, we 
intersected the 19 genes selected in CRISPR datasets and 
10 genes enrolled in LM.SIG related prognostic model 
(LMP genes). Ultimately, LDHA, the top-ranked gene of 
LM.SIG in multiple CRISPR datasets, was identified as 
the hub gene (Fig. 6D). As shown in Fig. 6E, among 17/22 
(77.27%) TCGA pan-cancer datasets, the expression of 
LDHA was upregulated in tumor samples compared to 
normal samples. The IHC in Human Protein Atlas (HPA) 
datasets also revealed the elevated protein expression 
level of LDHA in cervical cancer, kidney cancer, lung can-
cer and pancreatic cancer (Fig. 6F). Besides, two immu-
notherapy scRNA-seq cohorts (GSE115978, GSE123813) 
and one ST immunotherapy cohort revealed that upreg-
ulated LDHA mainly enriched in NR compared to R or 
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Fig. 3  Immune atlas of LM.SIG. (A) Circos plot illustrating the correlation between LM.SIG and the expression levels of immune-related genes across di-
verse cancer types. (B) Heatmap illustrating the correlation between LM.SIG and the infiltration of immune cells across diverse cancer types. (C) Heatmap 
illustrating the correlation between LM.SIG and the top 10 hallmark pathways across diverse cancer types. (D, E) Boxplots depicting the correlation of 
immune cell infiltration with LM.SIG and TMB. (ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)
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TN patients at both single-cell (Figure S4) and spatial 
levels (Fig. 6G). In conclusion, LDHA from derived from 
LM.SIG might serve as a prognostic pan-cancer bio-
marker that also predicts immunotherapy response.

LDHA deficiency enhanced the anti-tumor immunity and 
immunotherapy response in pancreatic cancer
To further validate the role of LDHA in cancer immu-
notherapy, we conducted the following experiments in 
the realm of PC. Firstly, we found that the knockdown of 
LDHA significantly suppressed lactate levels of PC PDOs 

(Figure S5A-C). Then, CD8+ T cells and CD14+ mono-
nuclear macrophages were isolated from human periph-
eral blood, activated in vitro and co-cultured with PC 
PDOs (Fig. 7A). Microscopic observation and CTG assay 
showed that knockdown of LDHA significantly slowed 
the growth rate of PDOs (Fig.  7B). Lower expression 
of Ki-67 was also observed in sh-LDHA PDOs by IHC 
staining (Fig.  7C). Meanwhile, CD8+ T cells and mac-
rophages in the co-culture system were analyzed. The 
results of RT-qPCR showed that the expression of killer 
genes and immune checkpoint genes of T cells (IFNG, 

Fig. 4  Immunotherapy response prediction of LM.SIG. (A) Flow chart of training, validating, and testing the LM.SIG model constructed via ML algorithms. 
(B) Comparison of multiple ROC plots depicting the performance of different ML algorithms in the validation set. ROC plot depicting the performance 
of the LM.SIG model in validation (C) and testing (D) cohort. Kaplan‑Meier curves comparing OS between High‑risk and Low‑risk patients in validation 
(E) and testing set (F). NR and R predicted by the LM.SIG model was defined as High‑risk and Low‑risk patients respectively. (G) Circos plot depicting the 
performance of other pan‑cancer signatures in the testing set. (H) Heatmap comparing the predictive value of LM.SIG and other pan‑cancer signatures
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Fig. 5  Survival prognostication of LM.SIG. (A) Comparison of C-index plots depicting the performance of 15 ML algorithms in the validation set. (B) Line 
Graph illustrating the distribution of model fitness in the MTLR_GA method. (C) Comparison of C-index plots depicting the performance of the LM.SIG 
prognostic model in the validation and testing sets. (D) Kaplan‑Meier curves comparing OS between High‑risk and Low‑risk patients in the training, 
validation and testing sets
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Fig. 6  Identification of the potential targets from LM.SIG. (A) Ranking of genes based on their knockout effects on anti‑tumor immunity across 17 CRISPR 
datasets. (B) Radar plot comparing the percentage of top‑ranked genes for LM.SIG and other predictive signatures. (C) Heatmap depicting z-scores of 
19 LM.SIG genes in the 5% top‑ranked genes across different CRISPR datasets. (D) Veen plot depicting the intersection of LM.SIG genes ranked in CRISPR 
datasets and LM prognostic model (LMP gene). (E) The expression of LDHA across diverse cancers. (F) The representative image of IHC depicted the 
upregulated protein expression of LDHA in tumor samples of the cervix, kidney, lung and pancreas. (G) The expression of LDHA in immunotherapy ST 
dataset of HCC. (ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)
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Fig. 7  Validation of the role of LDHA in pancreatic cancer. (A) Workflow displaying the immune cells co-cultured with PDOs. (B) Microscopic observation 
(left panel) and CTG assay (right panel) demonstrated the knockdown of LDHA significantly slowed the growth rate of PDOs. (C) IHC staining showing 
the expression of LDHA and Ki-67 in sh-NC and sh-LDHA groups. (D) RT-qPCR revealed the expression of candidate markers in sh-NC and sh-LDHA 
PDOs. Representative plots and percentages of CD8+GZMB+ (E), CD8+IFNG+ (F) and CD8+Ki-67+ (G) cells from sh-NC and sh-LDHA groups. Representa-
tive histograms and percentages of CD86+ (H), CD80+ (I), CD163+ (J) and CD206+ (K) cells from sh-NC and sh-LDHA groups. (L) Workflow of the in vivo 
experiments. (M) Representative images of subcutaneous PC tumors from mice treated with sh-NC + anti-IgG, sh-NC + anti-PD1, sh-LDHA + anti-IgG and 
sh-LDHA + anti-PD1. (N) The growth rate (left panel) and weight (right panel) of tumors in response to the treatment of sh-NC + anti-IgG, sh-NC + anti-PD1, 
sh-LDHA + anti-IgG and sh-LDHA + anti-PD1. (O) IHC staining showing the expression of LDHA, CD8, CD163 and Ki-67 among sh-NC + anti-IgG, sh-NC + an-
ti-PD1, sh-LDHA + anti-IgG and sh-LDHA + anti-PD1 groups (scale bar: 100 μm). (ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)
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GZMB, PDCD1 and CTLA4) was significantly elevated 
when co-cultured with PDOs with sh-LDHA, while 
the expression of M2-related markers of macrophages 
(CD206, CD163, TGFB and ARG1) was decreased and 
the expression of M1-related markers (IL1A, IL1B and 
CD80) was increased (Fig. 7D). These results indicated a 
switch from protumoral to antitumoral macrophages in 
sh-LDHA PDOs. Furthermore, flow cytometry analysis 
showed that CD8+ T cells in the sh-LDHA groups had 
a stronger capacity for anti-tumor activity and prolifera-
tion (Fig.  7E-G), and macrophages were more inclined 
to antitumoral M1 polarization (Fig.  7H-K) than those 
in the sh-NC group. Next, we generated the KPC sub-
cutaneous tumors in C57 mice and injected anti-IgG or 
anti-PD1 on days 9,12 and 15 intraperitoneally (Fig. 7L). 
Compared with the sh-NC group, the effect of anti-PD1 
treatment in the sh-LDHA group was more significant, 
and the tumor reduction was more obvious (Fig.  7M, 
N). IHC results also demonstrated that tumors with sh-
LDHA had abundant immune cell infiltration and slower 
tumor proliferation (Fig.  7O, Figure S6). In conclusion, 
our experimental results suggested that LDHA affected 
the state of immune cells in TIME and low expression of 
LDHA increased their efficacy in immunotherapy of PC.

Discussion
Accumulating data have revealed that LM is a vital part of 
aberrant cancer metabolism and contributes to immuno-
suppression in the TME [17, 63, 64], but direct evidence 
concerning the connection between LM and the response 
to immunotherapy is absent. In this study, we employed 
the GSVA method to assess the LM of malignant cells 
and demonstrated the negative relationship between LM 
and immunotherapy response based on two immuno-
therapy scRNA-seq cohorts of SKCM and BCC. These 
results inspired us to further hypothesize that there exists 
a negative relationship between LM and immunotherapy 
response across pan-cancer cohorts. Then, an extensive 
in-depth analysis was conducted to screen out upregu-
lated genes in malignant cells that related to elevated LM 
in 40 scRNA-seq cohorts. These genes represent a pan-
caner LM-related signature and were named LM.SIG. In 
addition, rigorous validation of LM.SIG revealed its supe-
rior predictive performance for immunotherapy response 
compared to previous signatures across multiple inde-
pendent immunotherapy bulk RNA-Seq cohorts. Our 
study stands as the inaugural report demonstrating the 
robust link between LM and immunotherapy outcomes 
via a meticulous analysis of extensive datasets.

We noticed that LM.SIG genes were mainly enriched in 
NADH-related and TCA cycle-related pathways. Quinn 
et al. elucidated that lactate exerts an acidity-indepen-
dent suppressive influence on the T cells immunotherapy 
via a transition from NAD+ to NADH which is known as 

lactate-induced reductive stress [16]. TCA cycle, a criti-
cal metabolic pathway underlying tumor cell metabo-
lism for energy production to the cell, is reported to be a 
novel immune checkpoint blockade as inhibiting it could 
improve the anti-PD-1 immunotherapy efficacy in mela-
noma cells via ATF3-mediated PD-L1 expression and 
glycolysis [65]. Our findings aligned with prior research 
and indicated that LM.SIG incorporates genes exhibiting 
robust and specific correlations with immunotherapy.

The following transcriptomic analysis in 30 types of 
cancer obtained from TCGA datasets illustrated the 
decreased expression of immune-related genes and abun-
dance of immune cells in samples with high LM.SIG. 
With regards to these immune cells, elevated lactate lev-
els hinder the antitumor efficacy of T cells by promot-
ing H+ accumulation and sustaining a low pH within the 
TME and acidic TME can enhance the suppression of 
antitumor immunity, thereby reducing the effectiveness 
of immunotherapy [66]. Under the circumstance of lactic 
acidosis, monocytes could differentiate into either den-
dritic cells with an immunosuppressive phenotype [67] or 
macrophages with an inflammatory protumor phenotype 
[68]. Subsequent analysis revealed immune-suppressive 
pathways positively correlated with LM.SIG across pan-
cancer datasets, including metabolism, DNA repair, and 
MYC signaling. Jaiswal AR et al. revealed that melanoma 
can evade T-cell checkpoint blockade immunotherapy by 
adapting a hypermetabolic phenotype [69]. DNA repair 
was confirmed to be a predictor for anti-PD-1/PD-L1 
immunotherapy efficacy in tumor [70]. Besides, the 
activated MYC pathway inhibited the immunotherapy 
response by upregulating the expression of PD-L1 and 
CD47 [71]. Also, we divided pan-cancer patients into 4 
subgroups (HLHT, HLLT, LLHT and LLLT) according to 
the level of TMB and LM.SIG. TMB is widely acknowl-
edged as an immunotherapy response biomarker, higher 
TMB indicates better immunotherapy response. Our 
stratified analysis also revealed the LLHT subgroup pos-
sessed the strongest capacity of anti-tumor immunity. All 
these results demonstrated the immunosuppressive char-
acteristic of high LM.SIG levels, implying the predictive 
value of LM.SIG.

With the assistance of the optimal NB algorithm, 
LM.SIG was identified as a novel signature that is profi-
cient in predicting immunotherapy response across vari-
ous cancer types, including RCC, UC, SKCM and GBM. 
To substantiate its efficacy, LM.SIG was systematically 
compared with other leading-edge signatures (6 pan-can-
cer signatures). LM.SIG demonstrated superior perfor-
mance, surpassing pan-cancer signatures with enhanced 
generalization and exhibiting consistently favorable out-
comes across diverse cohorts spanning multiple can-
cer types. To further enhance the prognostic efficacy of 
the LM.SIG, MTLR_GA in SurvBenchmark design was 
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applied on TCGA pan-cancer datasets. Our findings 
revealed that patients with higher risk scores tended to 
obtain miserable OS. Together, we demonstrated that the 
LM.SIG performed excellently in immunotherapy pre-
diction and survival prognostication across pan-cancer 
patients.

Owing to the distinguished performance of LM.SIG in 
predicting immunotherapy outcomes, there is an urgent 
need to identify potential targets from LM.SIG. Hence, 
CRISPR datasets were utilized and we ranked the genes 
based on their logFCs of sgRNA reads in immune-com-
petent or -deficient conditions. After intersecting top-
ranked genes in CRISPR datasets and top genes selected 
in LM.SIG related prognostic model, we identified LDHA 
as the hub gene for further analysis. LDHA catalyzes the 
conversion of pyruvate to lactate, concurrently oxidiz-
ing NADH to NAD+ [72]. Previous studies revealed that 
LDHA plays a vital role in tumor biology, including ini-
tiation, development, progression, invasion, metastasis, 
angiogenesis, and immune evasion [73], and targeting 
LDHA is considered a safe therapeutic strategy. In addi-
tion, we validated the mRNA and protein expression of 
LDHA in TCGA datasets and HPA datasets, respectively. 
The immunotherapy cohorts of scRNA-seq and ST data 
were also collected to indicate the negative correlation 
between the expression of LDHA and immunotherapy 
response. Furthermore, we illustrated that the downregu-
lation of LDHA in pancreatic cancer heightened the anti-
tumor immune response of CD8+ T cells and enhanced 
the antitumoral polarization of macrophages. Conse-
quently, this augmentation resulted in an improved effec-
tiveness of immunotherapy. In summary, LDHA emerges 
as a plausible therapeutic target across diverse cancer 
types, and the other top-ranked genes are imperative for 
advancing the development of a comprehensive immuno-
therapeutic strategy.

Several limitations should be mentioned in our study. 
First, there were only TN and NR patients in GSE115978. 
Given the recognized average response rate of melanoma 
at 30–40%, a notable proportion of TN patients might 
not respond to immunotherapy. Theoretically, the dis-
parity between TN and NR subgroups is expected to be 
less pronounced than that between R and NR subgroups, 
as TN comprises a mixture of NR and R. However, our 
study revealed a substantial difference in LM levels 
between NR and TN, suggesting a more significant gap 
between NR and R. This observation was further vali-
dated through the analysis of another scRNA-seq cohort, 
GSE123813. Additionally, the predictive performance of 
LM.SIG and LDHA at the pan-cancer level should be fur-
ther investigated via more experiments.

Conclusions
In conclusion, our investigations yield innovative insights 
into diverse molecular and metabolic processes linked 
to LM in the immunotherapy response prediction and 
survival prognostication. Through a comprehensive 
pan-cancer analysis of single-cell and bulk transcrip-
tomic data, we formulated an LM.SIG and validated its 
competence to predict immunotherapy and prognostic 
outcomes across diverse cohorts. Subsequent investiga-
tion into LM.SIG identified the LDHA as the most poten-
tial therapeutic target in pancreatic cancer. Our study 
suggested a new direction for improving the effective-
ness of tumor immunotherapy by targeting metabolic 
reprogramming.
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