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HER3 in cancer: from the bench 
to the bedside
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Abstract 

The HER3 protein, that belongs to the ErbB/HER receptor tyrosine kinase (RTK) family, is expressed in several types of 
tumors. That fact, together with the role of HER3 in promoting cell proliferation, implicate that targeting HER3 may 
have therapeutic relevance. Furthermore, expression and activation of HER3 has been linked to resistance to drugs 
that target other HER receptors such as agents that act on EGFR or HER2. In addition, HER3 has been associated to 
resistance to some chemotherapeutic drugs. Because of those circumstances, efforts to develop and test agents 
targeting HER3 have been carried out. Two types of agents targeting HER3 have been developed. The most abun‑
dant are antibodies or engineered antibody derivatives that specifically recognize the extracellular region of HER3. In 
addition, the use of aptamers specifically interacting with HER3, vaccines or HER3-targeting siRNAs have also been 
developed. Here we discuss the state of the art of the preclinical and clinical development of drugs aimed at targeting 
HER3 with therapeutic purposes.
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Background
The ErbB/HER receptor tyrosine kinases (RTK) play 
critical roles in animal development, and their altered 
function may contribute to the pathophysiological devel-
opment of certain types of tumors [1, 2]. In mammals, 
four ErbB/HER receptors have been described: the epi-
dermal growth factor receptor (EGFR/HER1), HER2/
ErbB2/neu, HER3/ErbB3, and HER4/ErbB4 [3]. These 
receptors are physiologically expressed in epithelial, mes-
enchymal, cardiac, and neuronal tissues.

Overexpression of HER2 in a subgroup of breast 
tumors [4], together with preclinical evidence of an 
oncogenic role of this transmembrane protein [5], 
encouraged the development of agents targeting such 
receptor. These efforts led to the arrival to the clinic of 
agents, such as the humanized monoclonal antibody 

trastuzumab, that by targeting HER2 offered clinical 
benefit [6]. The clinical success of this strategy led later 
to the development of agents that targeted the cognate 
receptor EGFR [7]. The clinical development of agents 
targeting other ErbB receptors is on the rise due to 
their suspected role in tumorigenesis or therapy resist-
ance. Thus, expression or overexpression of HER3 has 
been reported in many cancers, such as breast, ovarian, 
lung, colorectal, melanoma, head and neck, cervical and 
prostate cancers [8–12]. Moreover, several studies have 
pointed to HER3 as a major determinant in resistance 
to certain therapies, some of them targeting other ErbB 
receptors [13]. The expression of HER3 in tumors opens 
the possibility of its targeting with therapeutic purposes. 
In this review we will discuss the biological bases behind 
the design of anti-HER3 therapies as well as the clinical 
status of agents that target this receptor.

HER3: structure, activation, and physiological role
HER3, identified by Kraus et  al. [14], is encoded by the 
ERBB3 gene and maps to the human chromosome 
12q13. HER3 is widely expressed in human adult tissues, 
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including cells of the gastrointestinal, urinary, respira-
tory, reproductive tracts, skin, endocrine and nerv-
ous systems [15]. HER3 consists of a large extracellular 
domain (ECD), a single hydrophobic transmembrane 
segment, and an intracellular domain that includes a 
juxtamembrane region, a tyrosine kinase segment, and 
a tyrosine-rich carboxyterminal tail (Fig.  1) [16, 17]. 
The extracellular domain consists of four subdomains, 
referred to as subdomains I-IV [3].

Physiological activation of HER3 can be triggered by 
its interaction with the neuregulins (NRGs), a group of 
polypeptides that belong to the EGF family of ligands 
[18, 19]. In the absence of ligand, a direct intramolecular 
interaction between subdomains II and IV keeps HER3 
in an inactive (closed or tethered) conformation [20]. 
Ligand binding to subdomains I and III provokes a struc-
tural change of the extracellular region of the receptor, 
which acquires an open conformation [21]. Such con-
formational change results in exposure of the dimeriza-
tion arm, located in subdomain II. The dimerization arm 
then allows intermolecular interaction with another ErbB 
RTK monomer to form dimeric complexes (Fig. 1). Ligand 
binding also results in changes in the intracellular disposi-
tion of the ErbB receptors. Thus, the two kinase domains 
interact in an asymmetric “head to tail” conformation in 
which one kinase allosterically activates the other [22, 23].

A debated aspect of HER3 relates to its kinase activity. 
Initially, it was reported that HER3 lacked kinase activity 

due to the absence of critical residues necessary for that 
activity. Later, several reports indicated that HER3 had in 
fact some tyrosine kinase activity [24]. Although HER3 
homodimers have been reported [25–28], HER3 prefer-
entially dimerizes with other ErbB family members, espe-
cially HER2. Indeed, ligand-independent HER2-HER3 
heterodimers have also been reported in HER2-ampli-
fied (HER2 +) cells [29]. However, such interactions are 
expected to be weaker and shorter lasting, if compared to 
ligand-induced dimerization. In fact, studies on the inter-
action of HER3 and HER2 in breast cancer cells showed 
that both receptors could only form stable dimers when 
the HER3 ligand NRG was present [30]. That circum-
stance opens the relevant question as to how HER3 is 
constitutively tyrosine phosphorylated in HER2 overex-
pressing cells. Perhaps, that could be explained by a short 
but frequent kiss-and-run interaction between HER2 and 
HER3.

HER3 expression in tumors and clinical outcomes
HER3 expression or overexpression has been described 
in multiple types of tumors, including breast [31], ovar-
ian [32, 33], lung [11], colon [34], pancreatic [10], mel-
anoma [35], gastric [9, 36], head and neck [37] and 
prostate cancers [12]. Analysis of the TCGA dataset 
using the cBioportal online tool (accessed June 2022) 
shows that melanomas represent the tumor type with the 
highest HER3 expression at the mRNA level, followed by 

Fig. 1  Schematic representation of the structural changes and activation of ErbB/HER receptors. This family is compromised by four members. 
Each member is composed of an extracellular region, a transmembrane region, and an intracellular region. The extracellular region, in turn, is 
composed of four subdomains (I-IV). The intracellular region contains the juxtamembrane domain, the tyrosine kinase domain, and the C-terminal 
tail with phosphorylatable residues. When the ligand binds to subdomains I and III, a conformational change is induced in the extracellular 
domain, leaving the dimerization arm exposed. Thanks to this, the receptor can dimerize with another member of the family in open conformation 
(heterodimerization) or another identical receptor (homodimerization)
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cholangiocarcinomas and invasive breast tumors. Mela-
noma metastases commonly have greater HER3 expres-
sion than primary tumors [35]. HER3 overexpression has 
also been found in pilocytic astrocytoma, a childhood 
glioma, [38] and in rhabdomyosarcoma, a pediatric sar-
coma [39].

Ocaña et al. performed a meta-analysis evaluating the 
association of HER3 expression and patient outcome 
in solid tumors using published information [8]. It was 
observed that HER3 was overexpressed in 42% of the 
tumors and in some of them, including melanoma, cer-
vical, or ovarian cancers, HER3 was highly expressed 
in more than 50% of the cases. In addition, HER3 was 
associated with worse overall survival in several tumors, 
especially in HER2-overexpressing cancers. HER3 is 
overexpressed in human papillomavirus positive (HPV +) 
models of human tumors and is a prognostic factor for 
poor outcome in pharyngeal cancer [40]. HER3 is also 
overexpressed in some prostate cancers [41, 42] and is 
associated with poor prognosis [12]. Additional studies 
reported that HER3 overexpression is related with poor 
prognosis in non-small cell lung cancers (NSCLC) and 
decreased survival in early-stages [11, 43, 44].

Overexpression of HER3 is often associated with over-
expression of HER2 and/or EGFR, playing an important 
role as co-receptor in HER2 + breast cancer and in a 
subset of EGFR-positive lung tumors [45–48]. Further-
more, breast cancers often show co-expression and posi-
tive correlation between HER2 and HER3 [49, 50]. This 
co-expression leads to decreased patient survival [51]. 
In addition, HER3 is significantly expressed in estrogen 
receptor positive (ER +) or luminal breast cancer, being 
essential for cell survival in the luminal but not basal 
breast epithelium [52, 53].

Finally, little data is reported regarding the presence of 
oncogenic mutations of ERBB3. These mutations have 
been mostly reported in gastric and colon adenocarcino-
mas, and less frequently in NSCLC. Mutant ERBB3 onco-
genic forms appear to be ligand-independent and require 
HER2 [54]. Currently, ERBB3 mutations are on study due 
to potential therapeutic implications [55–58].

Biological role of HER3 in therapeutic resistance
HER3 has been implicated in resistance to therapies tar-
geting other HER receptors as well as in resistance to 
chemotherapies.

When a certain ErbB receptor is blocked, other RTKs 
may compensate the signaling lost by the blocked recep-
tor. For example, when EGFR is targeted with small 
molecule tyrosine kinase inhibitors (TKIs) and resist-
ance develops, the signaling blockade can be overcome 
by an increase in HER3 expression [59] or amplification 
of another receptor kinase like MET [46]. Resistance to 

the anti-EGFR antibody cetuximab in lung cancer is also 
associated with deregulation of EGFR internalization/
degradation and may be associated to activation of HER3 
[60]. Also, HER3 signaling has been linked to resistance 
to TKIs targeting the EGFR in head and neck squamous 
cell carcinoma (HNSCC) [61]. Huang et al. found that the 
heterotrimeric HER2-HER3/IGF1R leads to trastuzumab 
resistance triggering PI3K/AKT and Src kinase signaling 
[62]. Upregulation of HER3 expression or signaling have 
also been associated with resistance to lapatinib or tras-
tuzumab in HER2 + breast cancer [63–67].

The expression of the HER3 ligands has been 
reported to facilitate activation of HER3 leading to 
resistance to agents targeting other HER receptors. 
Thus, increased expression and activation of HER3 
accompanied by expression of NRG have been reported 
in HER2 + breast cancer cells resistant to the anti-
body–drug conjugate (ADC) trastuzumab-emtansine 
(T-DM1) [68]. This increase in the expression/signaling 
of HER3 has also been associated with resistance to the 
insulin-like growth factor 1 receptor (IGF1R) inhibitors 
in hepatocarcinoma [69]. In this line, high expression of 
NRG has been reported to be a possible mechanism of 
resistance to cetuximab in colorectal cancer [70]. Inter-
estingly, in a subset of ovarian cancers, autochtonous 
production of NRG has been discovered to stimulate 
proliferation via an autocrine loop involving NRG and 
HER3 [71].

As mentioned above, besides its role in resistance to 
targeted therapies, HER3 may also play a role in resist-
ance to chemotherapy. In HER2 + breast cancer, elevated 
HER3 expression results in resistance to paclitaxel via 
upregulation of survivin [72]. Moreover, co-expression of 
HER2 and HER3 in breast cancer cell lines was associated 
with resistance to a broad-spectrum of chemotherapeutic 
agents, likely through up-regulation of PI3K/AKT sign-
aling [73]. HER3 signaling and expression may also play 
a role in the development of chemoresistance in ovar-
ian cancer [74, 75]. In prostate cancer, HER3/PI3K/AKT 
signaling has been implicated in the development of hor-
mone resistance and progression to docetaxel resistance 
[76]. HER3 has also been reported to play a significant 
role in anti-estrogen (fulvestrant, tamoxifen) resistance 
in ER + breast cancer [77–80]. In addition, upregulation 
of HER3 expression has been reported to be related to 
resistance to RAF and MEK inhibitors in melanoma and 
thyroid carcinomas [81, 82].

Current anti‑HER3 therapies
In the following section we will describe current strate-
gies to target HER3, which are essentially based on the 
use of antibodies that recognize the extracellular region 
of HER3. Figure  2 shows a schematic representation of 



Page 4 of 26Gandullo‑Sánchez et al. J Exp Clin Cancer Res          (2022) 41:310 

the therapies described below and Fig.  3 the tumors in 
which have been reported promising clinical activity.

Monoclonal antibodies
Under clinical development
All clinical trials of monoclonal antibodies (mAbs) in 
clinical evaluation are summarized in Table 1.

Lumretuzumab (RG7116, RO5479599, 
GE‑huMab‑HER3)  Lumretuzumab is a humanized 
glycoengineered IgG1 directed to subdomain I of the 
HER3-extracellular domain [115]. The antibody prevents 
NRG binding and therefore receptor heterodimerization 
and activation. It also induces HER3 downregulation. In 
various tumor xenograft models, lumretuzumab alone or 
in combination with other anti-HER therapies, caused 
substantial tumor growth inhibition, including some 
complete remissions. Lumretuzumab binds to human 
FcγRIIIa on immune effector cells with more affinity 
than standard non-glycoengineered antibodies, provok-
ing enhanced antibody-mediated cell-dependent cyto-
toxicity (ADCC). In xenograft models of ER + /HER3 + /
HER2-low human breast cancers, a lumretuzumab and 
pertuzumab combination was potent and induced long-
lasting tumor regression [116]. Indeed, an increase in 
efficacy was observed if fulvestrant was added. A patient 
with ER + /HER3 + /HER2-low breast cancer had a 
prolonged clinical response when she was treated with 
lumretuzumab + pertuzumab + paclitaxel. Recently, 
it has been reported that two patients benefited from 

lumretuzumab plus erlotinib treatment in lung cancer 
[85].

ISU104  ISU104 is a fully human anti-HER3 antibody 
that binds to subdomain III and is in early clinical devel-
opment [87, 88]. This antibody downregulates HER3, 
inhibits NRG binding, blocks dimerization with other 
HER partners and inactivates the downstream signal-
ing from HER3. In vivo, ISU104 showed more than 70% 
tumor growth inhibition in HNSCC, NSCLC, colon, 
pancreatic, breast and skin xenograft cancer models 
[117, 118]. ISU104 has also showed anti-tumor effects 
in acquired cetuximab-resistant xenografts either alone 
or in combination with cetuximab [119]. Recently, Hong 
et  al. have reported anti-tumor efficacy of ISU104 in 
models with high NRG1 expression or harboring genetic 
alterations such as NRG1-fusion or oncogenic ERBB3 
mutations [120].

CDX‑3379 (KTN3379)  CDX-3379 is a human mon-
oclonal antibody (IgG1λ) that binds with very high 
affinity to a unique epitope in the boundary between 
domains II and III and locks HER3 in its inactive state 
[121, 122]. For this reason, this antibody inhibited both 
ligand dependent and ligand independent HER3 activa-
tion. Its Fc region contains 3 amino acid substitutions, 
that are referred to as YTE, which increase IgG affinity 
for human FcRn [123]. CDX-3379 has shown its efficacy 
in NRG-driven tumors, HER2-amplified breast xeno-
graft models and HPV + models [40, 122]. Preclinically, 

Fig. 2  Therapies against HER3 under clinical development. Monoclonals antibodies (mAbs), bispecific antibodies (bAbs), antibody–drug conjugate 
(ADC) and other therapies such as HER3 vaccine
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CDX-3379 in combination with cetuximab or BYL719 (a 
PI3Kα-selective inhibitor) enhanced growth inhibition 
in HNSCC xenograft models [124, 125]. In clinical trials, 
CDX-3379 alone or in combination with cetuximab was 
well tolerated and caused tumor regression in HNSCC 
[90, 91]. Other clinical trials have confirmed the safety 
profile of CDX-3379 combined with other HER therapies 
or vemurafenib [89, 92].

AV‑203 (CAN017)  AV-203 is a humanized IgG1 mAb 
against HER3 that inhibits NRG binding [126–128]. 
AV-203 inhibits both ligand-dependent and ligand-
independent HER3 signaling and downregulates HER3. 
This mAb has been reported to inhibit tumour growth in 
xenograft models derived from human NSCLC, breast, 
pancreatic, kidney, head and neck and esophageal cancer 

models. In a phase I clinical trial AV-203 demonstrated 
to be safe in metastatic or advanced solid tumors [93].

GSK2849330  GSK2849330 is a chimeric IgG1/IgG3, 
glycoengineered humanized mAb against subdomain III 
of HER3 [129]. Due to these modifications, this antibody 
has high binding affinity to FcγRIIIa and to human com-
plement protein C1q, leading to enhanced ADCC and 
complement dependent cytotoxicity (CDC). This mAb 
blocks NRG binding and therefore receptor dimerization 
and activation. In vivo, GSK2849330 significantly reduces 
tumour growth in several xenograft models, includ-
ing models with NRG alterations (fusion or overexpres-
sion) [94, 129, 130]. At present, it has been tested in two 
phase I clinical trials. In NCT01966445, GSK2849330 
achieved a durable response in a unique responder with 

Fig. 3  Cancers in which have been reported clinical efficacy of anti-HER3 drugs under clinical development
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an oncogenic driver CD74-NRG1-rearranged molecular 
alteration present in a NSCLC tumor [94, 131].

Seribantumab (MM‑121, SAR256212)  Seribantumab is 
a human IgG2 mAb that competes with NRG for bind-
ing to HER3. It blocks dimerization and induces HER3 
internalization and degradation. MM-121 decreases 
tumour growth in pancreatic, ovarian (including cisplatin 
resistant models), prostate, kidney and NRG1-rearranged 
cancer models [71, 132–136]. In addition, multiple com-
binations of MM-121 with other anti-HER therapies have 
been analysed. The combination of MM-121 and tras-
tuzumab inhibited cell growth in HER2 + breast cancer, 
including trastuzumab resistant models [137]. MM-121 
also enhanced the antitumoral activity of chemotherapy 
in HER2 + breast cancer models resistant to paclitaxel 
and trastuzumab [138], and in cisplatin resistant ovar-
ian cancer xenografts [135]. The combination of MM-121 
plus erlotinib inhibited the proliferation of pancreatic 
cancer cells [132]. MM-121 in combination with letrozole 
resensitized to the latter drug in ER + breast cancer xen-
ografts [139]. Finally, the combination of MM-121 and 
cetuximab inhibited growth in HNSCC models, includ-
ing cetuximab resistant models [140, 141] and in engi-
neered mouse models of lung cancers driven by EGFR 
T790M-L858R [134]. Seribantumab was generally well 
tolerated and combined safely with several drugs, but did 
not produce clinical benefit [97–100, 102, 103].

Patritumab (AMG‑888, U3‑1287)  Patritumab is a fully 
human IgG1 mAb that inhibits ligand binding to HER3 
and induces receptor internalization and degradation 
[142]. Patritumab, alone or in combination with an anti-
EGFR mAb, reduced NSCLC xenografts growth, includ-
ing an EGFR TKI-resistant model [142, 143]. In addition, 
the combination of patritumab plus erlotinib overcame 
erlotinib resistance induced by NRG in NSCLC models 
[144]. Patritumab has also shown its potential as single 
agent and in combination with panitumumab in HNSCC 
cells and xenografts [145]. The combination of patritu-
mab and radiation treatment enhanced radiation sensi-
tivity in HNSCC and NSCLC [146]. This antibody was 
also effective against cetuximab resistance mediated by 
NRG in colorectal cancer [147]. In addition, patritumab 
in combination with trastuzumab and lapatinib potenti-
ated tumor growth inhibition in HER2 + breast cancer 
models, including models resistant to trastuzumab [148]. 
Patritumab has shown capability to potentiate the antitu-
mor activity of vincristine and cyclophosphamide in ES-4 
Ewing’s sarcoma xenografts [149]. This mAb is currently 
being tested in phase I-III clinical trials with encouraging 
results [106, 107, 109, 150].

Elgemtumab (LJM716)  Elgemtumab or LJM716 is a 
fully human IgG1 mAb that binds to an epitope located 
between domains II and IV of the ECD of HER3, blocking 
the receptor in a closed conformation and preventing its 
activation [151]. This antibody inhibits tumor growth in 
both NRG-expressing and HER2 + cancer models, being 
more efficient in combination with other anti-HER thera-
pies, such as cetuximab and trastuzumab. The combina-
tion of elgemtumab with trastuzumab and lapatinib sig-
nificantly improved survival of mice with HER2 + breast 
cancer xenografts. When elgemtumab was given in 
combination with BYL719/alpelisib (PI3K inhibitor), 
they synergistically inhibited growth in HER2 + mod-
els, including trastuzumab-resistant HER2 + /PIK3CA 
mutant MDA-MB-453 xenografts [152]. In patients, 
LJM716 in combination with alpelisib and trastuzumab 
had antitumor activity but gastrointestinal toxicity [153]. 
However, this antibody demonstrated clinical activity and 
safety [110–113].

REGN1400  REGN1400 is a fully human IgG mAb that 
inhibits NRG binding and growth of epidermoid car-
cinoma, breast cancer and HNSCC cell lines and xeno-
grafts. REGN1400 in combination with anti-EGFR or 
anti-HER2 antibodies inhibits tumor growth more 
potently [154, 155]. REGN1400 in combination with erlo-
tinib or cetuximab has been tested in a phase I trial and 
was well tolerated [114].

Sym013  Sym013 (Pan-HER) is a mixture of 6 mAbs, 
comprising 3 pairs of mAbs, each targeting EGFR, 
HER2 and HER3 [156]. This mixture promotes degrada-
tion of receptors, induces ADCC and CDC, has effect 
in the presence of ligands and inhibits activation of the 
PI3K and ERK pathways. Sym013 was tested in vivo and 
in vitro against an extensive panel of more than 100 can-
cer cell lines and in most cases was effective [156]. It is 
worth mentioning that Sym013 effectively inhibited 
growth of models resistant to chemotherapy and HER-
targeted therapies (e.g., cetuximab, trastuzumab and 
T-DM1) [156–160]. The combination of Sym013 with 
single or fractionated radiation in NSCLC and HNSCC 
xenografts, including cetuximab resistant models, 
showed a potent antitumor effect and delayed regrowth 
[158]. Sym013 was under clinical development, but the 
clinical trial was terminated due to the inadequate safety 
profile [161].

In preclinical phase
A3 and A4 are humanized IgG1 mAbs targeting two dif-
ferent HER3 epitopes. These antibodies inhibit NRG 
binding, phosphorylation of HER3 and promote HER3 
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downregulation blocking its recycling [162, 163]. A3 and 
A4 are active in melanoma and pancreatic models, inter-
fering with cell proliferation and migration [164, 165]. 
In addition, the combination of A3 and A4 with BRAF/
MEK inhibitors potently inhibited cell growth and tumor 
relapse in a xenograft model [165]. Furthermore, combi-
nation of A3 with EGFR TKIs synergistically affected cell 
proliferation and inhibited tumor growth in lung cancer 
xenografts, including gefitinib-resistant models [166]. In 
addition, A3 has shown synergistic antitumor effect in 
combination with an HDAC inhibitor in NSCLC primary 
tumor cultures [167].

The anti-HER3 mouse mAb MP-RM-1 and its human-
ized version EV20 inhibit ligand-dependent and inde-
pendent activation of HER3, promote its degradation, 
and inhibit HER2-HER3 dimerization. They have potent 
anti-tumor effects in breast, pancreatic, ovarian, mela-
noma and prostate cancer models [168, 169].

SGP1 is a mAb against HER3 and competes with 
NRG for binding HER3 [170]. This antibody reduces cell 
growth stimulated by NRG and increases growth inhi-
bition in combination with trastuzumab in breast can-
cer cells [171]. SGP1, alone or combined with lapatinib, 
inhibited proliferation in parental and lapatinib-resistant 
HER2 + breast cancer cells [172].

The mouse monoclonal 9F7-F11 (non-ligand competi-
tive) and the fully human IgG1 H4B-121 (NRG-compet-
itive) antibodies recognize domain I and III of HER3 
respectively, blocked HER2-HER3 dimerization and pro-
mote HER3 downregulation [173–175]. These antibod-
ies, alone or in combination with anti-HER2 therapies, 
reduced tumor growth in epidermoid, pancreatic, lung, 
triple-negative breast cancer (TNBC) and HER2-low 
cancer cell xenografts.

Okita et al. have recently generated several anti-HER3 
rat mAbs (Ab1-Ab7) which induce strong internaliza-
tion of HER3, inhibition of NRG binding, HER3 phos-
phorylation and cell growth in several cancer cell lines. 
Ab4 shows effect in combination with erlotinib in 
HER2 + breast cancer and colorectal xenografts [176].

Anti-HER3ECD [177] antagonizes NRG binding to HER3, 
increases its internalization, prevents HER2-HER3 dimeri-
zation and therefore cell proliferation and migration in 
invasive breast cancer cell lines [178]. Yosef Yarden’ lab gen-
erated mouse mAbs against the ECD of HER3 [179] that 
accelerate HER3 degradation and inhibit growth in  vitro 
and in tumor-bearing animals, specially NG33 alone or in 
combination with other anti-HER3 Abs. This antibody is 
active in erlotinib-resistant models and prevents osimerti-
nib resistance when given in combination with osimertinib 
and cetuximab in lung cancer models [180]. A mixture of 
three antibodies (called 3xmAbs) against EGFR, HER2 and 
HER3 was reported to be effective in lung cancer models 

resistant to second- and third-generation EGFR inhibitors, 
expressing mutant forms of EGFR. The triple mAbs com-
bination triggered the degradation of receptors, inhibited 
cell proliferation, reduced tumor growth and sensitized 
these resistant cells to cisplatin and other TKIs. Combining 
3xmAbs with a low dose osimertinib improved anti-tumor 
efficacy [181, 182].

1A5 antibody prevents ligand-independent activation 
of HER3 by binding to the HER3-ECD and 3D4 prevents 
ligand-dependent activation by blocking NRG binding. 
Both antibodies have modest antiproliferative activity 
but act synergistically with trastuzumab in HER2 + gas-
tric models [183]. LMAb3 is an anti-HER3 mAb IgG1 
that inhibits growth in an acquired trastuzumab-resistant 
ovarian cancer model [184].

Turowec et  al. produced IgG 95, a synthetic antibody 
against open form of HER3 that blocks ligand binding 
and promotes HER3 ubiquitination, internalization, and 
downregulation. This antibody has anti-proliferative 
activity in HER2-amplified breast cancer cells and inhib-
its tumor growth in pancreatic xenografts [185].

Three mouse antibodies against HER3, HER3-
3, HER3-8 and HER3-10, have been reported to be 
extremely potent in inhibiting basal proliferation and 
ligand-induced growth in breast cancer cell lines. 
HER3-8 and HER3-10 antibodies inhibited HER2-HER3 
dimerization. For this reason, HER3-8 was selected to be 
humanized, and was termed huHER3-8 [186]. HuHER3-8 
in combination with a BRAF inhibitor reduced tumor 
growth and increased durable response in mutant BRAF 
models of melanoma [187]. In addition, huHER3-8 
reduced growth and signaling in wild-type BRAF/NRAS 
cutaneous melanomas [188].

IgG 3–43 is a HER3-targeting human antibody that 
recognizes an epitope between subdomains III and IV of 
HER3. It competes with NRG for binding to HER3, effi-
ciently inhibits ligand dependent and independent HER3 
activation and induces receptor internalization and deg-
radation. IgG 3–43 showed efficacy in gastric, colorectal, 
lung, breast and HNSCC models [189, 190].

H3Mab‑17 is an IgG2a, kappa mAb generated by 
immunizing mice with HER3‑overexpressing cells. This 
antibody has ADCC and CDC properties and decreases 
growth in colon cancer models [191].

Hassani et  al. generated several mouse mAbs against 
different HER3 extracellular subdomains with anti-prolif-
erative effect on HER3-expressing cancer cells and some 
of them with synergistic effects in combination with tras-
tuzumab [192].

Eliseev et al. developed single-domain antibodies that tar-
get the ECD of HER3 obtained originally from immunized 
llamas and which present anti-proliferative properties [193].



Page 12 of 26Gandullo‑Sánchez et al. J Exp Clin Cancer Res          (2022) 41:310 

Limitations of mAbs targeting HER3
Although most of the mAbs have reported moderate 
clinical activity with toxicity manageable, clinical devel-
opment for most of them has been discontinued. On the 
one hand, none of them reported clinically meaningful 
benefit. On the other hand, combination strategies have 
been limited either by toxicity [84], or by lack of efficacy 
[83, 97–100, 102, 105]. Bispecific antibodies (bAbs) and 
ADCs are expected to improve the clinical efficacy of 
anti-HER3 therapies.

Bispecific antibodies
Bispecific antibodies target two different protein epitopes, 
either on the same protein or in different proteins. The lat-
ter may result in increased specificity of the antibody if the 
two epitopes are located on different proteins expressed 
or overexpressed in the tumoral tissue. In addition, if the 
antigen is located on immune cells, the bAb can facili-
tate the infiltration of immune system cells in the tumor. 
Table 2 summarizes clinical trials of bAbs against HER3.

Under clinical development

Zenocutuzumab (Zeno, MCLA‑128)  Zenocutuzumab 
is a bAb IgG1 targeting HER2 (domain I) and HER3 
(domain III) [205]. Zenocutuzumab has a ‘dock and block’ 
mechanism: docks to HER2 and blocks ligand binding 
to HER3 and therefore inhibits oncogenic signaling via 
HER2-HER3 heterodimers. The mechanism of action of 
this bAb includes enhanced ADCC activity due to the 
glycoengineered modification of the IgG1. This bAb has 
shown efficacy in breast, gastric and pancreatic cancer 
models, including models resistant to HER2-directed 
therapies (trastuzumab and T-DM1) and in the presence 
of high concentrations of NRG. Zenocutuzumab inhib-
ited growth of NRG1 fusion-positive cancer models, also 
demonstrating efficacy in patients with chemotherapy-
resistant NRG1 fusion-positive metastatic cancer [206]. 
Zenocutuzumab is currently being tested in phase I/II 
clinical trials, which reported well tolerated safety profile 
as well as anti-tumor activity [194, 195].

SI‑B001  SI-B001 is an IgG-(scFv)2 bAb that targets EGFR 
and HER3. This bispecific tetravalent antibody is based in 
the model of an IgG-(scFv)2 structure that consists of a 
complete IgG with two heavy and two light chains, and two 
scFv components connected to either C or N terminals of 
the heavy or light chains [207]. SI-B001 has recently dem-
onstrated its efficacy in colon, HNSCC and esophageal can-
cer xenograft models, achieving almost complete inhibition 

of the growth in the last two models [208]. SI-B001 is now 
being tested in phase I and II clinical trials.

MM‑111  MM-111 is a bAb directed to HER2 and 
HER3 in which the anti-HER2 arm localizes the bAb 
in HER2 + tumor cells and the anti-HER3 arm blocks 
NRG binding [209, 210]. This bAb is synthesized as sin-
gle polypeptide fusion protein of two human scFv bind-
ing arms, targeting HER2 and HER3, linked to modified 
human serum albumin. In preclinical studies, this bAb 
decreased growth in HER2 + gastric, breast, ovarian, 
and lung cancer models and demonstrated an increased 
antitumor activity combined with trastuzumab or lapat-
inib in HER2 + breast cancer. In a clinical trial, this bAb 
reported to be safe also in combination with standard 
of care HER2-targeting drugs and chemotherapy [196]. 
However, the phase II clinical trial NCT01774851 in 
HER2 expressing gastroesophageal cancers was termi-
nated early due to lack of effect of MM-111 plus pacli-
taxel and trastuzumab [197]. Because of this disappoint-
ing result, all further studies investigating MM-111 were 
revoked.

Istiratumab (MM‑141)  Istiratumab is a tetravalent bAb 
holding 4 high-affinity binding sites, two are specific for 
IGF1R and two for HER3 [211–213]. Structurally, istira-
tumab contains an IgG1 mAb against IGF1R that was 
engineered to contain two single-chain Fv fragments tar-
geting HER3 fused at the C terminus of the heavy chain. 
Notably, istiratumab blocks ligand binding (NRG and 
IGF-1/2), downregulates receptor levels and suppresses 
downstream signaling. Istiratumab demonstrated its 
potential inhibition of growth in multiple models includ-
ing pancreatic, sarcoma, renal, ovarian, melanoma and 
prostate cancer. This bAb potentiated the anti-tumoral 
effects of chemotherapy and of the mTOR inhibitor 
everolimus in models of pancreatic and ovarian cancer 
[211, 212, 214]. Istiratumab has been evaluated in clinical 
trials with disappointing results [199].

Duligotuzumab (MEHD7945A, RG7597)  Duligotu-
zumab is a humanized bAb IgG1 targeting EGFR and 
HER3 that blocks ligand binding, inhibits signaling path-
ways and potentiates ADCC [215, 216]. Duligotuzumab 
contains two identical Fabs that can bind EGFR or HER3. 
Duligotuzumab strongly inhibited tumor growth in sev-
eral preclinical models, including human epidermoid 
carcinoma, pancreatic, breast, colorectal, HNSCC and 
lung cancer, especially in combination with chemother-
apy. Duligotuzumab demonstrated its efficacy in resistant 
models to erlotinib and cetuximab derived from HNSCC 
and NSCLC in monotherapy [217] or in combination 
with cisplatin [218]. Its action has also been reported in 
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combination with AKT and PI3K inhibitors in TNBC 
[219]. In addition, duligotuzumab enhanced the anti-
tumor effect of trastuzumab in HER2 + gastric models 
[220]. Recently, it has been reported that duligotuzumab 
increased ionizing radiation response in cervical cancer 
models [221]. Several clinical trials (phases I/II) are test-
ing duligotuzumab and in general reported limited activ-
ity [200–204].

In preclinical phase
Tab6 or TA is a tetravalent and bAb against HER2 and 
HER3 that consists in the anti-HER2 antibody trastu-
zumab fused with HER3-specific scFvs derived from 
a seribantumab biosimilar called Ab6 in its both CH3 
domains [222]. Surprisingly, treatment with TAb6 
increased the proliferation of HER2 + breast cancer cell 
lines. However, in the presence of NRG, TAb6 in combi-
nation with lapatinib significantly reduced proliferation. 
In addition, Tab6 restored sensitivity to the PI3K inhibi-
tor GDC-0941 in prostate cancer cells resistant to that 
inhibitor [223].

A5/F4 is an oligoclonal mixture of two IgGs based on 
scFv against domains I (F4) and III (A5) of HER3. A5/
F4 inhibits ligand-dependent HER3 signaling, cell prolif-
eration and enhances the activity of HER-targeted agents 
in vitro and in vivo [224].

Bispecific molecules called dual variable domain 
immunoglobulin (DVD-Ig) proteins against EGFR and 
HER3 have also been developed [225]. These molecules 
consist of a human IgG1 heavy chain and Igκ light chain 
constant domains linked with an additional variable 
domain (VH and VL sequences) at the N terminus of 
both Fab arms. The HER3-targeting variable domains of 
the DVD-Igs are derived from seribantumab. In  vitro, 
anti-EGFR/HER3 DVD-Ig proteins were superior inhibit-
ing growth in comparison to parental mAbs combination 
or a conventional bAb.

Recently, Rau et  al. have generated a tetravalent and 
bAb called scDb hu225 × 3–43-Fc targeting both EGFR 
and HER3 [226]. This antibody is composed of a bispe-
cific single-chain diabody (scDb) generated by the anti-
gen-binding site of the humanized version of cetuximab 
(IgG hu225) and the IgG 3–43 (described above) fused 
to the hinge region of a human Fcγ1 chain (scDb-Fc). Its 
efficacy blocking proliferation, inhibiting HER phospho-
rylation, downstream signaling and inducing receptor 
internalization and degradation has been demonstrated 
in HNSCC and TNBC models. Indeed, this bAb in com-
bination with trastuzumab is also effective in colorectal 
cancer models, bypassing NRG-induced resistance to 
anti-EGFR therapies [227]. The same lab had also gen-
erated Dab-Fc 2 × 3 molecule, an innovative bivalent 

and bispecific molecule (Dab-Fc) that targets HER2 and 
HER3 with anti-tumoral activity in  vitro and in  vivo 
[228]. Dab-Fc comprises the variable domains of trastu-
zumab (anti-HER2 Ab) and IgG 3–43 (anti-HER3 Ab) 
assembled into a diabody-like construction stabilized by 
CH1 and CL domains and fused to a human γ1 Fc region. 
Recently, IgG 3–43 was used to generate novel and effec-
tive scDb‑based trivalent bispecific antibodies directed 
against HER3 and CD3 that target T‑cells to HER3-
expressing cancer cells [229, 230].

1G5D2 is a native bispecific hybridoma mAb with dual 
specificity for HER3 and HER2 ECDs that strongly inhib-
ited cell proliferation alone or in combination with tras-
tuzumab [231].

Antibody–drug conjugates
ADCs are a new class of antitumoral agents designed to 
merge the selectivity of mAbs with the cell killing proper-
ties of a cytotoxic drug (payload) attached by a linker to 
the mAb. That linker may be cleavable or non-cleavable 
[232, 233].

Under clinical development

U3‑1402 (Patritumab deruxtecan, HER3‑DXd)  U3-
1402 also called patritumab deruxtecan or HER3-DXd is 
an ADC composed by patritumab covalently conjugated 
to a drug-linker containing deruxtecan, a topoisomer-
ase I inhibitor [234]. U3-1402 was efficiently internalized, 
induced HER3 degradation and showed growth inhibition 
activity in HER3 + breast, gastric and colorectal cancer 
[234, 235]. U3-1402 is also effective alone or in combination 
with an EGFR-TKI in EGFR-TKI-resistant NSCLC models, 
in which EGFR inhibition with osimertinib pretreatment 
increased U3-1402 efficacy [236–238]. Recently, it has been 
demonstrated that U3-1402 sensitized HER3 + tumors to 
programmed cell death-1 (PD-1) blockade [239]. Patritu-
mab deruxtecan has demonstrated its clinical efficacy in 
metastatic EGFR-mutated NSCLC, after disease progres-
sion on EGFR TKI therapy [240]. U3-1402 is currently 
under clinical evaluation (Table  3) and has demonstrated 
antitumor activity and manageable safety profile in breast 
cancer and EGFR-mutant NSCLC [240–245].

In preclinical phase
Gianluca Sala’s group has generated several ADC ver-
sions derived from the anti-HER3 antibody EV20: 
(1)  EV20-Sap obtained by coupling the plant toxin 
saporin, (2)  EV20/MMAF, and (3)  EV20‑sss‑vc/MMAF, 
by coupling the cytotoxic drug monomethyl aurista-
tin F with non-cleavable or cleavable linker respectively 
and (4) EV20/NMS-P945 by coupling EV20 with a DNA 
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minor groove alkylating agent (thienoindole NMS-P528) 
through a cleavable linker. EV20-Sap has cytotoxic activ-
ity in melanoma cells and reduces pulmonary metastases 
in a murine metastatic model of melanoma [246]. EV20/
MMAF demonstrated HER3-dependent cell killing activ-
ity in melanoma and in HER2 + breast cancer cell lines 
and xenografts, including several models of cells resist-
ant to anti-HER2 therapies [247, 248]. EV20/MMAF in 
combination with PLX4720 in BRAF mutated melanoma, 
and EV20/MMAF alone or plus vemurafenib resulted in 
an effective anti-metastatic activity in vivo. EV20‑sss‑vc/
MMAF demonstrated its efficacy in HER3 + liver can-
cer [249]. Recently, EV20/NMS-P945 showed cytotoxic 
activity on prostate, HNSCC, pancreatic, melanoma, gas-
tric and ovarian cancer [250].

The anti-HER3 antibody 9F7–F11 had been conju-
gated with monomethyl auristatin E to generate a novel 
ADC, MMAE–9F7–F11. This ADC increased arrest in 
G2/M, which is the most radiosensitive phase of the cell 
cycle and promoted cell death of HER3 + pancreatic can-
cer cells [251]. In vivo, MMAE–9F7–F11 in combination 
with radiation therapy increased the overall survival in a 
pancreatic cancer mouse model.

Antibody‑Derived molecules in preclinical phase
Hu et al. developed tetraspecific antibodies called FL518 
and CRTB6 that recognize EGFR, HER2, HER3 and 

VEGF [252]. CRTB6 was generated by combining the 
variable regions of cetuximab, trastuzumab, lumretu-
zumab and bevacizumab into a DVD-Ig–like antibody 
and FL518 by combining the two bispecific antibodies 
duligotuzumab (against HER3 and EGFR) and bH1-44 
(against HER2 and VEGF). These tetraspecific antibod-
ies were more effective inhibiting signaling and growth 
than bispecific antibodies in colorectal, breast, pancre-
atic, lung or gastric cancer models, including anti-HER-
resistant cancer cells.

TsAb2v2 and TsAb3v1 are tetraspecific, tetravalent 
Fc-containing antibodies targeting EGFR, HER3, cMet 
and IGF1R generated by the combination of N-termi-
nal single-chain Fabs and C-terminal single-chain Fvs 
in an IgG1 antibody format [253]. The binding arms 
are derived from imgatuzumab (EGFR), lumretuzumab 
(HER3), onartuzumab (cMet) and R1507 (IGF1R). These 
antibodies bind and inhibit all targets at the same time 
and show higher apoptosis induction and tumor growth 
inhibition over mAbs or bAbs in pancreatic, breast and 
lung tumor models.

Trispecific ErbB-cMet-IGF1R antibodies which target 
EGFR, IGF1R and cMet or EGFR, IGF1R and HER3 have 
been reported to inhibit receptor activation and cellular 
growth [254].

Alternative anti-HER3 antibody-derived formats 
that provide a similar binding capacity but with 

Table 3  Antibody Drug-Conjugates against HER3 under clinical development

Study population Clinical Trial, phase Adverse events Status, conclusion (references)

U3-1402 (Patritumab deruxtecan, HER3-DXd)
  Advanced or metastatic CRC​ NCT04479436, phase II Terminated (Study was terminated early 

given the Interim Analysis for Part 1 (sig‑
nal finding) did not meet pre-specified 
criteria and will not proceed to Part 2. 
Sponsor will proceed closing the study). 
No results posted

  Naïve patients with HR + /HER2- 
early BC

NCT04610528, phase I Recruiting

  Metastatic or unresectable NSCLC NCT03260491, phase I Nausea, vomiting, fatigue, decreased 
appetite and alopecia

Recruiting
U3-1402 has antitumor activity and man‑
ageable safety profile [240, 241, 244]

  HER3 + metastatic BC NCT02980341, phase I + II Nausea, vomiting and decreased 
appetite

Active, not recruiting
In a preliminary analysis, U3-1402 
demonstrated antitumor activity and 
manageable safety profile [242, 245]

  Metastatic or locally advanced EGFR-
mutated NSCLC

NCT04619004, phase II Recruiting

  Locally advanced or metastatic 
EGFR-mutated NSCLC

NCT04676477, phase I Recruiting

  Metastatic BC NCT04699630, phase II Recruiting

  Advanced BC NCT04965766, phase II Recruiting

  Metastatic or locally advanced EGFR-
mutated NSCLC after failure of EGFR 
TKI therapy

NCT05338970, phase III Recruiting
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improved properties, such as a small size and higher 
tissue penetration and extravasation have been devel-
oped [255]. Among these several novel molecules 
derived from antibody structures are surrobodies. 
They are comprised of a diversified immunoglobulin 
heavy chain and an invariant surrogate light chain 
that together confer specific high-affinity binding 
to their targets. Two of these surrobodies, SL-175 
and SL-176, reduced growth of several tumor mod-
els in  vitro and in  vivo, and were even more potent 
in combination with trastuzumab and lapatinib in 
HER2 + cell lines [256]. Affibodies are three-helix 
bundle Z-domain based on such domain of staphy-
lococcal protein A that have short plasma half-life 
time and rapid clearance with low production cost 
[257]. Recently, several anti-HER3 affibody mole-
cules have been reported with activity in pancreatic 
and ovarian cancer models [258, 259]. ICG-ZHer3 is a 
dimeric HER3-specific affibody coupled to a photo-
sensitizer (indocyanine green) that mediated photo-
thermal therapy (transform light into heat energy to 
kill cancer cells) and had antitumoral properties in 
HER3 + cancers [260]. Bispecific affibodies against 
HER3 and HER2 in which two affibodies were linked 
by an albumin‐binding domain have also been gener-
ated [261]. A novel platform developed diabody-Ig 
and generated active tetravalent bAbs against EGFR 
and HER3 [262]. The antigen-binding site of these 
molecules is composed of a diabody in the VH-VL 
orientation stabilized by fusion to antibody-derived 
homo- or heterodimerization domains, further fused 
to an Fc region.

Pan‑HER tyrosine kinase inhibitors (pan‑TKIs) under clinical 
development
Due to the reported low activity of the HER3 kinase 
domain and the requirement of heterodimerization 
with other HER receptors for its activation, blocking the 
receptor partners leads to the suppression of HER3 activ-
ity. This means that pan-TKIs, which inhibit catalytic 
activity of HER members, indirectly act as HER3 inhibi-
tors as well [263, 264]. In this review we will not focus on 
this family of agents.

Other anti‑HER3 strategies for cancer therapy
Under clinical development

HER3 vaccine  At present, there are two clinical tri-
als using HER3 vaccines. NCT03832855 is a phase I 
clinical trial that uses an investigational cancer vaccine 
called pING-hHER3FL. pING-hHER3FL is a circular 

piece of DNA that produces the full length human 
HER3 protein. On the other hand, NCT04348747 is a 
phase II trial study that uses a dendritic cell vaccine 
against HER2-HER3, in combination with other drugs 
that may boost the immune system to recognize and 
destroy cancer cells.

In preclinical phase
In preclinical studies, a vaccine generated with an adeno-
virus encoding the full length human HER3 receptor (Ad-
HER3 or Ad-HER3-FL) has been evaluated preclinically 
[265, 266]. Ad-HER3 induced strong T-cell anti-tumor 
responses and anti-HER3 antibodies that have effective-
ness against breast cancer, including models of acquired 
resistance to HER2-targeted therapies. High efficacy of 
Ad-HER3-FL in combination with dual PD-1/PD-L1 and 
CTLA4 blockade treatments has also been reported.

Miller et al. evaluated four HER3 peptides of the HER3-
ECD as putative B-cell epitopes to activate the immune 
system and produce highly specific HER3 antibodies 
[267]. They reported enhanced anti-tumor effects of 
these HER3 vaccine antibodies in breast and pancreatic 
cancer preclinical models. They also reported enhanced 
response and higher levels of ADCC when the HER3 
vaccine antibodies are combined with HER2, HER1 and 
IGF1R vaccine antibodies.

RB200 is a bispecific ligand trap which binds to HER3 
ligand NRG and EGFR ligands [268]. This molecule was 
generated combining the EGFR and HER3 ligand binding 
domains with an Fc fragment of human IgG1. RB200 pre-
vents ligand-dependent receptor activation and inhibits 
proliferation in vitro and in xenograft models.

Several antisense oligonucleotides or microRNAs 
have been described to be able to downregulate HER3 
and inhibit proliferation. EZN-3920 is a HER3 antisense 
oligonucleotide which has anti-tumor activity alone or 
combined with TKIs in  vitro and in xenograft tumor 
models, including models of resistance to anti-HER ther-
apies [269]. Several miRNAs such miR-125a, miR-125b, 
miR-205 and miR-450b-3p suppress HER3 expression 
by directly targeting 3′ UTR of HER3 mRNA and inhibit 
proliferation of breast cancer cells [270–272].

HER3 siRNAs decrease cell proliferation and sensitize 
cells to anti-HER therapies [79, 273]. In addition, sev-
eral authors had developed carriers to direct siRNAs or 
drugs to cancer cells. For example, HER3 aptamers, arti-
ficial single-stranded DNA or RNA oligonucleotides that 
bind HER3, have been used to target HER3 + tumoral 
cells. Yu et al. reported the antitumoral action of a three-
in-one nucleic acid aptamer-siRNA chimera that tar-
gets EGFR-HER2-HER3 in HER2 + breast cancer [274]. 
Recently, Shu et  al. demonstrated the antiproliferative 
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activity of carbon dots/HER3 siRNA, alone or in combi-
nation with trastuzumab in HER2 + breast cancer cells 
[275]. HER3 aptamer-protamine-siRNA (against onco-
genes or CDKs) nanoparticles have anticancer effect in 
HER3 + breast cancer models [276]. In addition, a HER3 
aptamer-functionalized liposome encapsulating doxo-
rubicin has been developed to deliver it in HER3 + mod-
els [277]. Sorafenib encapsulated in microparticles with 
anti-HER3 aptamers in the surface diminish the toxic-
ity of sorafenib [278]. An RNA aptamer against HER3-
ECD, A30, inhibited NRG signaling and therefore cell 
growth in breast cancer cells [279]. A30 was also used to 
deliver a set of cytotoxic siRNAs and inhibit growth in 
HER3 + breast cancer cells [280]. Recently, a novel RNA 
aptamer called HBR has been reported to inhibit HER3/
NRG interaction [281].

Xie et  al. reported ATP-competitive small molecule 
inhibitors targeting the pseudokinase of HER3 that can 
perturb the biological function of HER3 [282, 283]. TX1-
85–1 interacts with Cys721 in the ATP-binding pocket of 
HER3 but has a poor effect in proliferation and HER3-
dependent functions in vitro. However, a derivate of TXI-
85–1 with a hydrophobic adamantane moiety, TX-121–1, 
produces covalent modification of HER3, causes par-
tial degradation of HER3, interferes the dimerization of 
HER3 with c-Met and HER2 and perturbs HER3-depend-
ent signaling and growth.

Sims et al. synthesized a polypeptide called HerPBK10 
or HPK which had a minimal receptor binding domain 
constructed from the structure of NRG1 [284]. It spe-
cifically binds to HER3. HPK is inert and it was used 
to deliver a variety of therapeutic payloads, generat-
ing HPK-nanobiologics that mimic the natural ligand-
receptor interaction on HER3 but resulting in delivery 
of a tumor-toxic molecule. For instance, they used dox-
orubicin to generate H3-D and a sulfonated corrole 
generating H3-G. These HPK-nanobiologics are effec-
tive against trastuzumab-resistant models in a HER3-
dependent manner.

Targeting HER3 ligand NRG could be an approach 
to block this receptor. For example, 7E3 is an antibody 
directed to NRG1 IgG-like domain that blocks NRG1-
dependent growth in pancreatic cancer models [285]. 
This antibody decreases ligand-induced activation and 
expression level of HER3 and induces ADCC. There are 
other anti-NRG antibodies in preclinical stage, such as 
YW538.24.71 and YW526.90.28 [286].

Conclusions
In this review it has been summarized several therapies 
against HER3, most of them in preclinical development. 
However, nowadays no treatment specifically targeting 
HER3 has been approved for clinical use. The therapeutic 

efficacy of an anti-HER3 regimen could be enhance by 
its combination with other anti-HER therapy, chemo-, 
immuno-, or radio-therapy. This fact has also been 
observed with anti-HER2 therapies, because for optimal 
inhibition of HER2 function in HER2 + breast cancer cells, 
treatment with at least two anti-HER2 drugs is required. 
It is hoped that anti-HER3 ADC approach would over-
come the shortcomings of mAb-based HER3 therapy, with 
potent delivery of therapeutics payload to HER3 expressing 
cancer cells. Indeed, the generation of molecules derived 
from antibodies with low production cost, short plasma 
half-life time and rapid clearance have emerged in the field. 
However, the development of potent prognostic and pre-
dictive biomarkers for anti-HER3 targeted therapeutics is 
also required.
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