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Abstract 

As our understanding of the mechanisms of cancer treatment has increased, a growing number of studies demon-
strate pathways through which DNA damage repair (DDR) affects the immune system. At the same time, the varied 
response of patients to immune checkpoint blockade (ICB) therapy has prompted the discovery of various predictive 
biomarkers and the study of combination therapy. Here, our investigation explores the interactions involved in combi-
nation therapy, accompanied by a review that summarizes currently identified and promising predictors of response 
to immune checkpoint inhibitors (ICIs) that are useful for classifying oncology patients. In addition, this work, which 
discusses immunogenicity and several components of the tumor immune microenvironment, serves to illustrate the 
mechanism by which higher response rates and improved efficacy of DDR inhibitors (DDRi) in combination with ICIs 
are achieved.
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Background
Since its development, immunotherapy has played an 
important role in the treatment of melanoma [1–3], 
breast cancer [4], prostate cancer [5], small cell lung 
cancer [6], and many other types of malignancies [7, 
8]. However, the application of an immune checkpoint 
blockade (ICB) is only provided to a few patients due to 
its limited efficacy [9–13]. At present, the effect of ICB 
for cancer patients is primarily predicted by the meas-
urements of programmed cell death 1 ligand 1 (PD-L1) 

expression levels [14], microsatellite instability (MSI) or 
mismatch repair-deficient (dMMR) [15], and the tumor 
mutational burden (TMB) [16–19], to name a few. Apart 
from the disadvantages associated with the heterogeneity 
of expression and the uniformities of test platforms [20], 
evidence has shown that patients may present insensi-
tivity to immunotherapy when PD-L1 expression is high 
[14, 21, 22]. In addition, although microsatellite insta-
bility-high (MSI-H)/dMMR is an acceptable prognostic 
measure [23, 24], the incidence of dMMR is very low 
in certain cancers [25–27]. Moreover, the use of TMB 
values as prognostic markers requires improvement 
through the continued refinement of subcategories and 
standard values. Hence, given the shortcomings of cur-
rent intervention approaches, it is necessary to identify 
more markers to accurately diagnose and stratify cancer 
patients of all types.
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DNA damage repair (DDR) is a response of cells to 
DNA damage. Based on the different types of DNA dam-
age, DDR initiates the repair process via different path-
ways, including mismatch repair (MMR), base excision 
repair (BER), nucleotide excision repair (NER), homolo-
gous recombination repair (HRR), and non-homologous 
end joining (NHEJ) [28–30]. The high frequency of the 
DDR gene and pathway alterations exhibited in the sam-
ples in the Cancer Genome Atlas (TCGA) PanCanAtlas 
identifies opportunities to improve cancer therapy [31].

Several studies have recognized a correlation between 
DDR and ICB [10, 32–34]. The underlying mechanism 
pertaining to the DDR pathway that affects immune 
infiltration has also garnered increasing attention. An 
increase in neoantigen accumulation and induction of 
the anti-tumor immune response, initiated through 
the enlargement of somatic mutations and intracellu-
lar DNA fragment accumulation, have been recognized 
to play an active role in DDR dysfunction [35]. In addi-
tion to enhancing immunogenicity, the DDR pathways 
related to tumor cells affects both immune surveillance 
and the immune response. These can be assessed through 
both the DNA damage signaling pathway and the accu-
mulation of cytoplasmic DNA subsequently activating 
the interferon pathway, which is related to the change of 
T cell infiltration and programmed cell death protein 1 
(PD-1)/PD-L1 expression [9, 36]. The negative regulation 
of DDR inhibition on Treg cells also promotes T cell infil-
tration [37, 38]. Meanwhile, the role of the DDR path-
way in immunotherapy is being evidenced in increasing 
tumor types [39]. At present, although several reviews 
have demonstrated the influence of DDR on ICB and 
immune infiltration [16, 40–44], we illustrate this rela-
tionship using specific tumor microenvironment (TME) 
components. Hence, this work aims to identify, sum-
marize and explore the existing mechanisms and effects 
of DDR on ICB, so as to facilitate an improved under-
standing of these specific interactions and the efficacy of 
related therapies.

The effect of altered DDR pathway interactions 
on ICIs
The predictive effect of altered DDR pathways in ICIs
Change in the tumor DDR pathway is significantly corre-
lated with the response to immune checkpoint inhibitors 
(ICIs) [24, 45–47] and serves to directly affect patient 
survival [35, 39, 47]. Among the patients treated with 
ICB, those with homologous recombination deficiency 
(HRD) or DDR mutation exhibited better response [13, 
47]. For patients with gastrointestinal cancer, advanced 
urothelial cancer, and metastatic prostate cancer treated 
with anti-PD-(L)1, DDR changes can lead to the pro-
longation of overall survival (OS) and progression-free 

survival (PFS) [47, 48]. Furthermore, as the number 
of DDR changes increases, the objective response rate 
(ORR) and the durable clinical benefit (DCB) increased 
significantly [47, 49]. Therefore, DDR changes can be 
used as a reliable biomarker in ICI clinical applications 
[50].

Specific DDR changes can be used to predict differ-
ent effects. For one, MSI-H/dMMR, which is listed as 
a predictive biomarker [51, 52], is directly related to 
greater benefits observed in ICB patients [24, 27, 38, 53]. 
A well-established close positive relationship between 
MMR defects and MSI exists [54, 55]. Interestingly, 
DDR mutations have also been identified in microsatel-
lite stable (MSS) patients [56, 57]. These findings reflect 
the potential predictive value of DDR mutation as a tool 
capable of identifying the responder group [56]. In some 
cases, patients with the homologous recombination 
(HR) pathway defect have received increased benefits 
from ICIs [38]. Patients with BAP1 mutant malignant 
mesothelioma exhibit a significant increase in tumor-
infiltrating lymphocytes (TILs) and high expression of 
immune checkpoint receptors [58]. However, clinical 
observation of the BRCA1/2 mutation has revealed con-
tradictory results [59, 60]. In an analysis of whole exome 
sequences recorded in 38 patients diagnosed with mela-
noma and previously treated with PD-1 inhibitors, the 
ICB responders expressed augmented states in BRCA2 
mutations [61]. However, a large phase 1b study investi-
gating patients with recurrent or refractory ovarian can-
cer demonstrated that BRCA status was not associated 
with response to anti-PD-L1 treatment [62]. Cancer pre-
senting with a defective BER pathway may increase the 
response to ICB. XRCC1 gene expression can be used to 
divide PD-L1+ and PD-1+ breast cancer patients into 
groups with different prognoses [63]. POLD1/POLE 
mutation is applicable to multi-tumor states and is a 
promising target for achieving accurate stratification [59, 
64, 65]. Further evidence can be obtained from a related 
Phase II clinical trial (NCT03810339) [66]. Lastly, ataxia-
telangiectasia mutated (ATM) protein kinase is known to 
improve the ORR of patients, although it may be related 
to a shorter OS [22, 49], and combined mutation of TP53 
and ATM also constitutes a potential biomarker [67]. The 
relevant DDR mutations and DDR deficiencies involved 
in the predication of ICI efficacy are listed in Tables 1 and 
2 below, respectively.

However, the use of individual DDR pathway changes 
in guiding ICIs treatment remains to be explored [20, 47, 
69]. Researchers have established reliable DDR scoring 
models and effectively analyzed the predictive effect of 
co-mutation, the DDR gene models of various research-
ers can effectively predict specific response to ICIs treat-
ment [69–72]. In one case, Yi-Ru Pan et  al. selected 18 
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DDR genes as the defined gene panel and achieved a 
predicted response rate of about 60% in patients with 
DDR mutations [73]. Among 102 melanoma patients, 
34 patients (33.3%) were classified as the mutated group, 
and 22 of 34 (64.7%) patients responded to ICIs [73]. The 
mutant group had significantly longer PFS and OS than 
the wild-type group [73].

Patients with a co-mutation in multiple DDR path-
ways demonstrate a good response to ICIs [59, 74]. 
HRR-MMR, or co-mutation in the HRR-BER pathway, 
is regarded as a potential biomarker [74–76]. In a study 
on pembrolizumab, 11 of 34 non-small cell lung cancer 
(NSCLC) patients were assigned to the co-mutation posi-
tive (co-mut+) group [74], in which ORR was 63.6% com-
pared with 21.7% of the co-mutation negative (co-mut-) 
group. There was also significant PFS improvement in 
the co-mut + group (median, 4.1 months vs. not reached 
(NR), P = 0.006) [74]. Accordingly, 429 NSCLC patients 
were treated with atezolizumab, in whom the proportion 
of DCB in co-mut + patients was twice as high as that in 
co-mut- patients (56.7% vs. 28.8%), while the ORR was 
11.9% higher (26.7% vs. 14.8%) [20]. In addition, even 
for patients with low PD-L1 expression, co-mut + sta-
tus improved the overall results [20]. One hundred 
seventy-four patients presenting with metastatic mela-
noma and treated with the CTLA-4 antibody exhibited 

a significantly longer OS in the co-mut + group (median, 
32.4 months vs. 10.8 months, P = 0.04) [74]. However, no 
significant difference was observed in the tumor response 
rate (43.8% vs. 29.5%, P = 0.15) [74].

In addition, simultaneous changes in the NOTCH 
signaling pathway and at least two DDR pathways 
[77], as well as the combination of TMB and an HR-
DDR-positive status [78] may also represent effective 
biomarkers. Given this, DDR mutations should be con-
sidered a useful biomarker for patients receiving ICI 
treatment.

With regard to the activation level of the DDR path-
way, in an analysis of 348 patients with metastatic 
urothelial carcinoma (UC) who received ICI treatment, 
the DSSH (DDR ssGSEA enrichment score-high) group 
was associated with longer OS (hazard ratio = 0.67), 
whereby a high activation level of the DDR pathway was 
identified as effective in improving the outcome and 
prognosis of patients that received ICI treatment [34]. 
Other studies have also revealed that high expression of 
the DDR pathway can predict an improved ICI response 
in patients with gastric cancer (GC) and advanced UC 
[79, 80]. In addition, the characteristics used to divide 
patients with hepatocellular carcinoma (HCC) into the 
DDR activation or inhibition subgroup can effectively 
help distinguish the clinical and molecular features of 

Table 1  Effectiveness of DDR mutations in predicting ICI efficacy in solid tumors

Abbreviations: ORR Objective response rate, PFS Progression-free survival, OS Overall survival, NR Not reached

Clinical 
endpoint

DDR mutation ICI Cancer type Wild type Mutation type Refs

ORR BRCA1/2 Pembrolizumab Melanoma 5.0% 12.0% [58]

PRKDC Anti-CTLA-4 antibody+anti-PD-1 antibody NSCLC 32.3% 66.7% [68]

PRKDC Anti-CTLA-4 antibody Metastatic melanoma 14.6% 33.3% [68]

DDR mutation Anti-PD-1/PD-L1 antibodies Urothelial cancer 18.8% 67.9% [45]

PFS PRKDC Anti-CTLA-4 antibody+anti-PD-1 antibody NSCLC 6.8 m NR [68]

OS POLE/POLD1 ICI Solid tumors 18.0 m 34.0 m [66]

TP53 + ATM ICI NSCLC 2.8 m–22.0 m 22.1 m-NR [67]

Table 2  Effectiveness of DDR deficiencies in predicting ICI efficacy in solid tumors

Abbreviations: ORR Objective response rate, PFS Progression-free survival, OS Overall survival, NR Not reached

Clinical 
endpoint

DDR deficiency ICI Cancer type Proficiency type Deficiency type Refs

ORR HR Nivolumab+ipilimumab Prostate cancer 22.6% 50.0% [13]

DDR positive Nivolumab+ipilimumab Prostate cancer 23.1% 36.4% [13]

DDR positive ICI Prostate cancer 20.0% 40.0% [48]

MMR Pembrolizumab Colorectal cancer 0.0% 40.0% [24]

PFS MMR Pembrolizumab Colorectal cancer 2.2 m NR [24]

OS MMR Pembrolizumab Colorectal cancer 5.0 m NR [24]

HR Nivolumab+ipilimumab Prostate cancer 19.0 m NR [13]
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HCC, and predict different immunotherapy responses 
and prognoses [71, 72].

Indeed, even when compared to existing predictive 
markers such as TMB and PD-L1 expression, DDR muta-
tion demonstrates an excellent prognostic effect [20, 22, 
47, 48]. In addition, DDR status predicts different clinical 
outcomes between immunotherapy and non-immuno-
therapy [20, 72].

The combination of DDRi with ICIs in clinical trials
Although a limited number of clinical trials implement-
ing combination therapy have been completed, many 
researchers have recognized the promising potential of 
combining DDR inhibitors (DDRi) and ICIs. As a result, 
a number of trials are currently recruiting, with a major-
ity of them using anti-PD-(L)1 antibodies including dur-
valumab, pembrolizumab, dostarlimab, and nivolumab, 
with poly (ADP-ribose) polymerase (PARP) inhibitors 
(Table  3). In addition, the use of combination therapy 
seems quite promising for many cancer types. Combina-
tion therapy trials for solid tumors have most commonly 
been conducted on gynecologic tumors, breast cancer, 
and lung cancer (Table  3), while several clinical trials 
have also been conducted on gastrointestinal cancers, 
melanoma, urologic tumors, nasopharyngeal cancer, and 
osteosarcoma (Table 3).

PARP inhibitors (PARPi) are primarily used in the 
treatment of HRD tumors [38, 115, 116]. The synthetic 
lethality strategy entails a simultaneous inactivation of 
two functional genes leading to cell death. It is generally 
understood that PARPi functions by blocking the BER 
pathway, or other repair factors, through its inhibition 
of the core DNA damage sensors and signal transducers, 
PARP1/2 enzymes [84, 116]. As a result, cells are unable 
to repair single-stranded DNA damage. After the trans-
formation of single-strand damage into double-strand 
damage, unlike normal cells, HR-deficient cells cannot 
be repaired through the HR pathway [117, 118]. Moreo-
ver, PARP activity inhibition can cause the NHEJ repair 
process to be more error prone [119]. Now, PARPi can 
be used in patients with BRCAness beyond germline 
BRCA1/2 mutations [116, 120]. In addition, some PARPi 
have been found to trap PARP1 on DNA-PARP com-
plexes, which stalls the DNA replication fork and inter-
feres with the DNA replication process [84]. Indeed, the 
trapping potency of many PARPi is roughly comparable 
to their related cytotoxic effects [118, 120].

PARPi can enhance anti-tumor immunity induced by 
anti-PD-L1 therapy, and its non-model specificity has 
been scientifically proven [9, 121–123]. The overall tol-
erance of 35 patients diagnosed with metastatic castra-
tion-resistant prostate cancer after combined treatment 
with olaparib and durvalumab was good, with a reported 

overall response rate of 14% and a disease control rate 
(PR + SD) of 71% [124]. A similar type of PARPi named 
niraparib combined with pembrolizumab, was observed 
in the treatment of triple-negative breast cancer (TNBC) 
and ovarian cancer, which also proved efficient with 
regard to anti-tumor activity in Phase I and Phase II tri-
als [125]. Moreover, the ORR of patients with a BRCA1/2 
mutation is significantly higher [125]. Further, the 1a/b 
Phase trial of oral PARPis, pamiparib and tislelizumab, 
demonstrated good tolerance [126]. Therefore, when 
compared individually with PARPi or a PD-(L)1 mono-
clonal antibody, the combination of the two can enhance 
tumor control. In another study, Konstantinopoulos et al. 
showed that, for patients who lack a BRCA mutation and 
have platinum-resistant ovarian carcinoma, the com-
bination of an anti-PD-1 antibody and niraparib (ORR, 
19%) appears to improve efficacy when compared with a 
single-agent PARP inhibitor (ORR, about 5%) or an anti-
PD-1 antibody (ORR, 4–10%) [125].

Also, targeting cytotoxic T-lymphocyte-associated pro-
tein 4 (CTLA-4), PARPi combined with anti-CTLA-4 
antibodies has demonstrated similar effects [127, 128]. 
Apart from immune checkpoint blockade therapy, chi-
meric antigen receptor T cell (CAR-T) immunotherapy 
has not been applied to solid tumors. However, olaparib 
has been shown to enhance CAR-T in the treatment of 
renal cancer and breast cancer models [129, 130].

At present, several other DDR inhibitors are also being 
actively implemented in clinical trials (Table  3). It has 
been shown that the combination of checkpoint kinase 
(CHK) inhibition and ICB is effective in the treatment of 
various cancers [9, 113, 131]. The WEE1 inhibitor, when 
combined with both radiation and a PD-1 blockade, can 
enhance the cytotoxic activity mediated by CD8 + T cells 
[132]. In addition, to further aggravate DNA damage and 
other mechanisms affiliated with the killing of tumor 
cells, some clinical trials have investigated triple therapy 
of two DDR inhibitors combined with ICIs, which have 
also yielded positive results [112, 133].

The mechanism of altered DDR pathway affecting 
the efficacy of ICIs
The success of immunotherapy is based on the charac-
teristics of tumor cells and the ability to initiate an anti-
tumor immune response and, likewise, the efficacy of 
ICIs is directly related to the functions of the immune 
microenvironment [134, 135]. The altered DDR path-
way in tumors, which results from DDR gene defects or 
DDRi, directly affects the efficacy of ICIs by affecting 
immunogenicity (Fig. 1), immune cell infiltration, and the 
related regulating molecules (Fig. 2) [34, 38, 51, 136].

DDR pathway dysfunction in tumors is capable of acti-
vating an immune response, reshaping the immune 
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Table 3  Ongoing and completed clinical trials exploring the efficacy of combination DNA targeting and immunotherapy agents

Clinical trial 
ID

Cancer type DDR-
targeted 
inhibitor

ICI Targets Phase Clinical  
endpoint

Status Refs

NCT04334941 SCLC Talazoparib Atezolizumab PARP+PD-L1 Phase 2 PFS, OS Recruiting [81]

NCT04068831 Renal Cell 
Carcinoma

Talazoparib Avelumab PARP+PD-L1 Phase 2 ORR, PFS Recruiting [16]

NCT03964532 Advanced 
Breast Cancer

Talazoparib Avelumab PARP+PD-L1 Phase 1 Phase 2 AEs, ORR, PFS, OS Recruiting [16]

NCT04678362 Urothelial 
Carcinoma

Talazoparib Avelumab PARP+PD-L1 Phase 2 PFS, OS, DOR Recruiting [82]

NCT04173507 Lung Non-
Squamous 
Non-Small 
Cell Carci-
noma

Talazoparib Avelumab PARP+PD-L1 Phase 2 ORR, DCR, Toxicity, 
PFS, OS, DOR, 

Active, not 
recruiting

[16]

NCT03565991 BRCA or 
ATM Mutant 
Solid Tumors

Talazoparib Avelumab PARP+PD-L1 Phase 2 OR, TTR, PFS, OS, 
DOR

Active, not 
recruiting

[83]

NCT02912572 Metastatic 
Endometrial 
Cancer

Talazoparib Avelumab PARP+PD-L1 Phase 2 PFS, ORR, DOR, 
irPFS

Recruiting [16]

NCT04052204 Advanced or 
Metastatic 
Solid Tumors

Talazoparib Avelumab PARP+PD-L1 Phase 1
Phase 2

DLT, DOR, TTR, 
PFS, OS

Terminated [38]

NCT03330405 Solid Tumors Talazoparib Avelumab PARP+PD-L1 Phase 2 DLT, OR, TTR, PFS, 
OS, DOR

Active, not 
recruiting

[83]

NCT03637491 Solid tumors Talazoparib Avelumab PARP+PD-L1 Phase1   Phase 2 DLTs, OR, AEs Terminated
Has  Results

[83]

NCT04187833 Melanoma Talazoparib Nivolumab PARP+PD-1 Phase 2 BOR, PFS, irOR, 
irPFS, OS, AEs

Recruiting [75]

NCT04158336 Solid Tumors Talazoparib Pembrolizumab PARP+PD-1 Phase 1 Phase 2 Safety and Toler-
ability, MTD, RP2D

Recruiting [75]

NCT03101280 Advanced 
Gynecologic 
Cancers and 
TNBC

Rucaparib Atezolizumab PARP+PD-L1 Phase 1 DLTs, OS, DOR, PFS Completed [83]

NCT04276376 Solid Tumors Rucaparib Atezolizumab PARP+PD-L1 Phase 2 ORR Recruiting [75]

NCT03824704 Solid Tumors Rucaparib Nivolumab PARP+PD-1 Phase 2 ORR, PFS, DOR Terminated
Has  Results

[84]

NCT04624178 Leiomyosar-
coma

Rucaparib Nivolumab PARP+PD-1 Phase 2 ORR, PFS Recruiting [85]

NCT03338790 mCRPC Rucaparib Nivolumab PARP+PD-1 Phase 2 ORR, RR-PSA, PFS Active, not 
recruiting
Has  Results

[83]

NCT03639935 Biliary Tract 
Cancer

Rucaparib Nivolumab PARP+PD-1 Phase 2 PFS, OS Recruiting [84]

NCT03572478 Prostate 
Cancer or 
Endometrial 
Cancer

Rucaparib Nivolumab PARP+PD-1 Phase 1 Phase 2 DLTs Terminated
Has  Results

[83]

NCT02873962 Relapsed 
Ovarian, Fal-
lopian Tube 
or Peritoneal 
Cancer

Rucaparib Nivolumab PARP+PD-1 Phase 2 ORR, Safety and 
Tolerability, PFS, 
DOR

Recruiting [84]

NCT03958045 SCLC Rucaparib Nivolumab PARP+PD-1 Phase 2 PFS, DCR, OS, ORR Recruiting [16]

NCT03522246 Ovarian 
Cancer

Rucaparib Nivolumab PARP+PD-1 Phase 3 PFS, OS, ORR,  
DOR, Safety and 
Tolerability

Active, not 
recruiting

[83]
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Table 3  (continued)

Clinical trial 
ID

Cancer type DDR-
targeted 
inhibitor

ICI Targets Phase Clinical  
endpoint

Status Refs

NCT02935634 Advanced 
Gastric Cancer

Rucaparib Nivolumab  
Ipilimumab

PARP+PD-1 +  
CTLA-4

Phase 2 ORR, DOR, AEs Active, not 
recruiting

[16]

NCT03869190 Urothelial 
Cancer

Niraparib Atezolizumab PARP+PD-L1 Phase 1 Phase 2 ORR, pCR, PFS, OS Recruiting [16]

NCT04313504 Head and 
Neck Cancer

Niraparib Dostarlimab PARP+PD-1 Phase 2 ORR, AEs, PFS, OS Recruiting [86]

NCT03955471 Ovarian 
Cancer

Niraparib Dostarlimab PARP+PD-1 Phase 2 ORR, DOR, PFS, 
OS, DCR

Terminated [87]

NCT04068753 Cervix Cancer Niraparib Dostarlimab PARP+PD-1 Phase 2 Toxicity, DOR, PFS, 
OS

Recruiting [38]

NCT04544995 Neuroblas-
toma and 
Osteosarcoma

Niraparib Dostarlimab PARP+PD-1 Phase 1 DLTs, PFS, ORR Recruiting [88]

NCT04673448 Pancreatic, 
Ovarian or 
Fallopian Tube 
Cancer

Niraparib Dostarlimab PARP+PD-1 Phase 1 bOR, PFS, DOR, OS, 
DC, AEs

Recruiting [89]

NCT04701307 Lung Small 
Cell Carci-
noma and 
Neuroendo-
crine Tumor

Niraparib Dostarlimab PARP+PD-1 Phase 2 PFS, ORR, DCR, OS Recruiting [90]

NCT04493060 Pancreatic 
Cancer

Niraparib Dostarlimab PARP+PD-1 Phase 2 DCR, ORR, TTNT, OS Recruiting [89]

NCT05126342 Ovarian, 
Peritoneal or 
Fallopian Tube 
Cancer

Niraparib Dostarlimab PARP+PD-1 Phase 2 ORR, PFS, DCR,  
OS, TFST

Not yet 
recruiting

[91]

NCT03016338 Endometrial 
Cancer

Niraparib Dostarlimab PARP+PD-1 Phase 2 CBR, ORR, DOR, PFS Active, not 
recruiting

[92]

NCT03307785 Advanced or 
Metastatic 
Solid Cancer

Niraparib Dostarlimab PARP+PD-1 Phase 1 DLTs, ORR, DOR, 
DCR

Active, not 
recruiting
Has  Results

[83]

NCT04584255 Breast Cancer Niraparib Dostarlimab PARP+PD-1 Phase 2 TILs, pCR Recruiting [93]

NCT04940637 Lung Cancer 
or Mesothe-
lioma

Niraparib Dostarlimab PARP+PD-1 Phase 2 PFS, ORR, DCR, 
DOR, OS

Recruiting [94]

NCT03651206 Ovarian 
Cancer and 
Endometrial 
Cancer

Niraparib Dostarlimab PARP+PD-1 Phase 2 Phase 3 RR, OS, PFS, TTST Recruiting [84]

NCT04779151 Solid Tumors Niraparib Dostarlimab PARP+PD-1 Phase 2 ORR Not yet 
recruiting

[96]

NCT03602859 Ovarian 
cancer

Niraparib Dostarlimab PARP+PD-1 Phase 3 PFS, OS Active, not 
recruiting

[83]

NCT03308942 NSCLC Niraparib Dostarlimab  
Pembrolizumab

PARP+PD-1 Phase 2 ORR, PFS, OS Completed
Has  Results

[83]

NCT04508803 Breast Cancer Niraparib HX008(Pucotenlimab) PARP+PD-1 Phase 2 ORR, PFS, OS, CBR, 
DOR

Recruiting [86]

NCT03404960 Pancreatic 
Cancer

Niraparib Nivolumab  
Ipilimumab

PARP+PD-1 +  
CTLA-4

Phase 1 Phase 2 PFS, Safety and 
Tolerability, DOR, 
ORR

Active, not 
recruiting

[51]
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Table 3  (continued)

Clinical trial 
ID

Cancer type DDR-
targeted 
inhibitor

ICI Targets Phase Clinical  
endpoint

Status Refs

NCT04178460 Gastric 
Cancer, 
TNBC, Biliary 
Tract Carci-
noma and 
Endometrial 
Carcinoma

Niraparib MGD013(Tebotelimab) PARP+ 
PD-1 + LAG-3

Phase 1 Safety and Validity 
profiles

Terminated [97]

NCT02657889 TNBC or Ovar-
ian Cancer

Niraparib Pembrolizumab PARP+PD-1 Phase 1 Phase 2 DLTs, ORR, Safety 
and Tolerability, 
DOR

Completed
Has  Results

[83]

NCT04475939 NSCLC Niraparib Pembrolizumab PARP+PD-1 Phase 3 PFS, OS, TTP Recruiting [98]

NCT04885413 Endometrial 
Cancer

Niraparib Sintilimab PARP+PD-1 Phase 2 ORR, DOR, PFS, DCR Recruiting [99]

NCT05162872 Nasopharyn-
geal Carci-
noma

Niraparib Sintilimab PARP+PD-1 Phase 2 ORR, DOR, PFS, 
DCR, OS

Recruiting [91]

NCT02734004 Advanced 
Ovarian, 
Breast, Lung, 
and Gastric 
Cancers

Olaparib Durvalumab PARP+PD-L1 Phase1   Phase 2 DCR, ORR, Safety 
and Tolerability

Active, not 
recruiting

[83]

NCT03334617 NSCLC Olaparib Durvalumab PARP+PD-L1 Phase 2 ORR, DOR, PFS, 
DCR, OS

Recruiting [83]

NCT02484404 Recurrent 
Ovarian, TNBC, 
Lung, Prostate, 
and Colon 
Cancers

Olaparib Durvalumab PARP+PD-L1 Phase 1 Phase 2 ORR, RP2D, AEs Recruiting [30, 
49, 80, 
84]

NCT04644289 Epithelial 
Ovarian 
Cancer

Olaparib Durvalumab PARP+PD-L1 Phase 2 Safety, Feasibility Recruiting [100]

NCT03923270 Small-cell 
Lung Cancer

Olaparib Durvalumab PARP+PD-L1 Phase 1 AEs, PFS, OS Recruiting [51]

NCT03851614 MMR profi-
cient Colo-
rectal Cancer, 
Pancreatic 
Cancer, and 
Leiomyosar-
coma

Olaparib Durvalumab PARP+PD-L1 Phase 2 ORR, CBR, PFS Active, not 
recruiting

[84]

NCT03534492 Bladder 
Cancer

Olaparib Durvalumab PARP+PD-L1 Phase 2 pCRR, Toxicity Completed [101]

NCT03167619 TNBC Olaparib Durvalumab PARP+PD-L1 Phase 2 PFS, OS, ORR Active, not 
recruiting

[83]

NCT05222971 Biliary Tract 
Cancer

Olaparib Durvalumab PARP+PD-L1 Phase 2 PFS, OS, Toxicity Recruiting [91]

NCT03594396 Advanced or 
mTNBC

Olaparib Durvalumab PARP+PD-L1 Phase 1 Phase 2  pCR, RR Active, not 
recruiting

[75]

NCT03544125 TNBC Olaparib Durvalumab PARP+PD-L1 Phase 1 AEs, ORR, DOR, 
PFS, OS

Completed [16]

NCT03801369 mTNBC Olaparib Durvalumab PARP+PD-L1 Phase 2 ORR, OS Recruiting [16]

NCT03737643 Ovarian 
cancer

Olaparib Durvalumab PARP+PD-L1 Phase 3 PFS, pCR, ORR Recruiting [16]

NCT03459846 Bladder Can-
cer

Olaparib Durvalumab PARP+PD-L1 Phase 2 PFS, OS, DOR,  
ORR

Active, not 
recruiting

[83]

NCT03991832 Solid Tumors Olaparib Durvalumab PARP+PD-L1 Phase 2 ORR, PFS, OS Recruiting [102]
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Table 3  (continued)

Clinical trial 
ID

Cancer type DDR-
targeted 
inhibitor

ICI Targets Phase Clinical  
endpoint

Status Refs

NCT02882308 Head and 
Neck Squa-
mous Cell 
Carcinoma

Olaparib Durvalumab PARP+PD-L1 Phase 2 ORR, pCR Completed [84]

NCT03772561 Advanced 
Solid Tumors

Olaparib Durvalumab PARP+PD-L1 Phase 1 ORR Recruiting [84]

NCT03775486 Lung Cancer Olaparib Durvalumab PARP+PD-L1 Phase 2 PFS, OS, DOR,  
ORR

Active, not 
recruiting

[16]

NCT05209529 TNBC Olaparib Durvalumab PARP+PD-L1 Phase 2 OS, pCR Not yet 
recruiting

[91]

NCT04538378 Lung Cancer Olaparib Durvalumab PARP+PD-L1 Phase 2 ORR, PFS, Safety 
and Tolerability,  
OS

Recruiting [103]

NCT04336943 Prostate 
Cancer

Olaparib Durvalumab PARP+PD-L1 Phase 2 Undetectable  
PSA, AEs

Recruiting [104]

NCT03951415 Endometrial 
Cancer

Olaparib Durvalumab PARP+PD-L1 Phase 2 PFS, ORR, OS Active, not 
recruiting

[44]

NCT04169841 Solid Tumors Olaparib Durvalumab, Tremeli-
mumab

PARP+PD-
L1 + CTLA-4

Phase 2 PFS Recruiting [16]

NCT02953457 Recurrent or 
Refractory 
Ovarian, Fal-
lopian Tube or 
Primary Peri-
toneal Cancer 
with BRCA 
Mutation

Olaparib Durvalumab Tremeli-
mumab

PARP+PD-
L1 + CTLA-4

Phase 2 DLTs, PFS, OS Active, not 
recruiting

[84]

NCT03699449 Recurrent 
Ovarian 
Cancer

Olaparib Durvalumab PARP+PD-L1 Phase 2 ORR, OS, PFS Recruiting [16]

NCT04306367 Bile Duct 
Cancer

Olaparib Pembrolizumab PARP+PD-1 Phase 2 RR, DOR, PFS, OS, 
Safety and Toler-
ability

Recruiting [105]

NCT03810105 Prostate 
Cancer

Olaparib Durvalumab PARP+PD-L1 Phase 2 PSA detection Recruiting [16]

NCT02546661 Bladder 
Cancer

Olaparib Durvalumab PARP+PD-L1 Phase 1 Safety and 
Tolerability, ORR, 
DCR, PFS, DOR,  
OS

Active, not 
recruiting

[83]

NCT04269200 Endometrial 
Cancer

Olaparib Durvalumab PARP+PD-L1 Phase 3 PFS, OS, ORR,  
DOR, TFST

Recruiting [16]

NCT03741426 Renal Cancer Olaparib Durvalumab PARP+PD-L1 Phase 2 Proof-of-Mecha-
nism, AEs

Recruiting [16]

NCT04641728 Cervical 
Cancer

Olaparib Pembrolizumab PARP+PD-1 Phase 2 ORR, DOR, DRR, PFS Active, not 
recruiting

[106]

NCT04380636 NSCLC Olaparib Pembrolizumab PARP+PD-1 Phase 3 PFS, OS, ORR,  
DOR, AEs

Recruiting [44]

NCT04483544 Cervical 
Cancer

Olaparib Pembrolizumab PARP+PD-1 Phase 2 irORR, PFS, TEAEs, 
DOR

Recruiting [44]

NCT02861573 mCRPC Olaparib Pembrolizumab PARP+PD-1 Phase 1  Phase2 AEs, ORR, DCR,  
OS, DOR, PFS

Recruiting [83]

NCT04191135 Advanced 
TNBC

Olaparib Pembrolizumab PARP+PD-1 Phase 2 PFS, OS Active, not 
recruiting

[93]

NCT04123366 Solid Tumors Olaparib Pembrolizumab PARP+PD-1 Phase 2 ORR, DOR, PFS,  
OS, AEs

Recruiting [16]

NCT04548752 Pancreatic 
Cancer

Olaparib Pembrolizumab PARP+PD-1 Phase 2 PFS, OS, ORR, AEs Recruiting [89]
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Table 3  (continued)

Clinical trial 
ID

Cancer type DDR-
targeted 
inhibitor

ICI Targets Phase Clinical  
endpoint

Status Refs

NCT03834519 Prostate 
Cancer

Olaparib Pembrolizumab PARP+PD-1 Phase 3 OS, rPFS Active, not 
recruiting

[107]

NCT04666740 Metastatic 
Pancreatic 
Ductal Adeno-
carcinoma

Olaparib Pembrolizumab PARP+PD-1 Phase 2 PFS, OS Recruiting [108]

NCT05033756 Breast Cancer Olaparib Pembrolizumab PARP+PD-1 Phase 2 ORR, DOR, PFS,  
OS, Safety and 
Toxicity

Not yet 
recruiting

[91]

NCT03976362 Squamous 
NSCLC

Olaparib Pembrolizumab PARP+PD-1 Phase 3 PFS, OS, AEs Active, not 
recruiting

[51]

NCT04633902 Metastatic 
Melanoma

Olaparib Pembrolizumab PARP+PD-1 Phase 2 ORR, PFS, OS,  
Safety and  
Toxicity

Recruiting [90]

NCT05201612 Metastatic 
Colorectal 
Cancer

Olaparib Pembrolizumab PARP+PD-1 Phase 2 ORR, PFS, OS,  
DCR, DOR

Not yet 
recruiting

[91]

NCT05093231 Pancreatic 
Cancer

Olaparib Pembrolizumab PARP+PD-1 Phase 2 ORR, Safety and 
Toxicity, PFS, DOR, 
OS

Not yet 
recruiting

[109]

NCT03740165 Ovarian 
Cancer

Olaparib Pembrolizumab PARP+PD-1 Phase 3 PFS, OS Active, not 
recruiting

[16]

NCT05203445 Breast Cancer Olaparib Pembrolizumab PARP+PD-1 Phase 2 MRGB Recruiting [91]

NCT05156268 Endometrial 
Carcinosar-
coma

Olaparib Pembrolizumab PARP+PD-1 Phase 2 ORR Recruiting [91]

NCT03025035 Breast Cancer Olaparib Pembrolizumab PARP+PD-1 Phase 2 ORR, PFS, OS, CBR, 
DOR

Recruiting [93]

NCT04417192 Ovarian 
Cancer

Olaparib Pembrolizumab PARP+PD-1 Phase 2 ORR, CRS, OS, PFS Recruiting [100]

NCT02485990 Epithelial 
Ovarian, Fal-
lopian Tube 
or Primary 
Peritoneal 
Cancer

Olaparib Tremelimumab PARP+CTLA-4 Phase 1 AEs, MTD, PFS, OS, 
ORR, DCR, DOR

Terminated [16]

NCT04034927 Recurrent 
Ovarian, Fal-
lopian Tube 
or Peritoneal 
Cancer

Olaparib Tremelimumab PARP+CTLA-4 Phase 2 PFS, DLT, OS, AEs Active, not 
recruiting

[16]

NCT02571725 BRCA mutant 
Ovarian 
Cancer

Olaparib Tremelimumab PARP+CTLA-4 Phase 1
Phase 2

RP2D, ORR, PFS Active, not 
recruiting

[75]

NCT02660034 Solid Tumors Pamiparib Tislelizumab PARP+PD-1 Phase 1 AEs, DLT, ORR,  
DOR, PFS, OS,  
DCR, CBR

Completed 
Has  Results

[83]

NCT03061188 Solid tumors Veliparib Nivolumab PARP+PD-1 Phase 1 MTD, AEs, ORR,  
CBR, PFS

Active, not 
recruiting
Has  Results

[75]

NCT04216316 Advanced 
Squamous 
Cell NSCLC

Berzosertib Pembrolizumab ATR + PD-1 Phase 1
Phase 2

RP2D, PFS, OS Recruiting [110]

NCT04266912 Solid Tumors Berzosertib Avelumab ATR + PD-L1 Phase 1
Phase 2

AEs, DLTs, MTD, 
CBR, RR, PFS, OS

Recruiting [75]

NCT05061134 Melanoma Ceralasertib Durvalumab ATR + PD-L1 Phase 2 ORR, DOR, TTR, PFS Recruiting [111]
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environment, and is ultimately beneficial to the effective-
ness of ICIs. The primary mechanisms involved can be 
described as follows: (1) increasing the level of neoanti-
gen and tumor immunogenicity, which is beneficial to the 
immune recognition process in antigen presentation; (2) 
the activated cyclic GMP-AMP synthase (cGAS) stimulator 
of interferon genes (STING) pathway triggers innate immu-
nity and enhances the recruitment and tumor infiltration 
of T cells; (3) ATM/ataxia telangiectasia and Rad3-related 
protein (ATR)/Chk1 signals cascade to regulate the tumor 
microenvironment (TME), such as up-regulating PD-L1; 
and (4) other ways to enhance immunogenic cell death that 
help activate adaptive immunity [51, 76, 136, 137].

Alteration of the DDR pathway affects immunogenicity
The fidelity of DNA repair affects the generation of 
genome mutation [76]. DDR defects in tumor cells, or 
DDR inhibitors, can aggravate DNA damage and genomic 
instability (Fig.  1), leading to an increase in MSI, TMB, 
and neoantigen load (NAL) [38, 138–140]. Previous 
research has described the ability of DDR alterations in 
predicting high TMB and high MSI [64, 73, 76, 141–144]. 

In a NSCLC and melanoma cohort, a high TMB was 
the result of a DDR mutation accumulation [74]. Com-
pared to HR wild-type tumors, the average TMB of HR-
mutated tumors is higher in subtypes, MSI-H/dMMR is 
most common, and the result of a higher TMB is inde-
pendent of microsatellite status [145]. Moreover, tumor 
samples presenting with different altered DDR path-
ways are also observed alongside an increase of NAL 
[47]. Notably, dMMR tumors have displayed the ability 
to enahnce the expression of mutation-related neoan-
tigens [146]. In the other study, tumor samples with any 
mutation in NHEJ, HR, or DNA damage signaling genes 
have shown high NAL expression [76, 147]. Further-
more, combined mutation of multiple pathways indicates 
a higher level of NAL, which may be related to impaired 
availability of alternative repair pathways [76]. Tumors 
with POLE/POLD mutation have shown higher TMB 
and NAL, alongside improved responses to ICIs [59, 148, 
149], while the DDR pathway characteristics established 
by Lou et al. are positively correlated with both the TMB 
and NAL [80]. Meanwhile, in addition to dMMR tumors, 
tumors with low BER/single-strand break repair (SSBR) 

Table 3  (continued)

Clinical trial 
ID

Cancer type DDR-
targeted 
inhibitor

ICI Targets Phase Clinical  
endpoint

Status Refs

NCT03334617 NSCLC Ceralasertib Durvalumab ATR + PD-L1 Phase 2 ORR, DCR, DOR, 
PFS, OS

Recruiting [75]

NCT04298008 Biliary Tract 
Cancer

Ceralasertib Durvalumab ATR + PD-L1 Phase 2 DCR, ORR, PFS,  
OS, DOR

Recruiting [112]

NCT03780608 Gastric Ade-
nocarcinoma 
and Malignant 
Melanoma

Ceralasertib Durvalumab ATR + PD-L1 Phase 2 ORR Active, not 
recruiting

[16]

NCT03833440 NSCLC Ceralasertib Durvalumab ATR + PD-L1 Phase 2 DCR, ORR, PFS,  
OS, DOR

Recruiting [16]

NCT02664935 NSCLC Ceralasertib Durvalumab ATR + PD-L1 Phase 2 OR, PFS, DCB Active, not 
recruiting

[44]

NCT02264678 Solid Tumors Ceralasertib Durvalumab ATR + PD-L1 Phase 1
Phase 2

Safety and  
Tolerability, Cmax,  
Tmax

Recruiting [75]

NCT04095273 Solid Tumors Elimusertib Pembrolizumab ATR + PD-1 Phase 1 TEAEs, DLTs, RP2D Recruiting [110]

NCT03495323 Advanced 
Solid Tumors

Prexasertib LY3300054 CHK1 + PD-L1 Phase 1 Toxicity Completed [113]

NCT02546661 Bladder 
Cancer

Adavosertib Durvalumab WEE1 + PD-L1 Phase 1 AEs, ORR, DCR,  
PFS, OS, DOR

Active, not 
recruiting

[114]

NCT02617277 Solid Tumors Adavosertib Durvalumab WEE1 + PD-L1 Phase 1 DLTs, TEAEs, ORR, 
PFS

Active, not 
recruiting

[51]

AE Adverse event, bOR Best objective response, BOR Best overall response, CBR Clinical benefit rate (CBR = CR + PR + SD), Cmax Maximum observed plasma 
concentration, CRS Chemotherapy response score, DC Disease control, DCB Durable clinical benefit, DCR Disease control rate, DLT Dose limiting toxicity, DOR Duration 
of response, DRR Durable response rate, irOR Immune-related overall response, irORR Immune-related overall response rate, irPFS Immune-related progression free 
survival, mCRPC Metastatic castration-resistant prostate cancer, MMR Mismatch repair, MRGB MRI-guided biopsy, MTD Maximum tolerated dose, mTNBC Metastatic 
triple-negative breast cancer, NSCLC Non-small cell lung cancer, OR Objective response, ORR Overall response rate, OS Overall survival, pCR Pathologic complete 
response, pCRR​ Pathological complete response rate, PFS Progression-free survival, PSA Prostate-specific antigen, rPFS Radiographic progression-free survival, RP2D 
Recommended phase II dose, RR Response rate, RR-PSA Prostate-specific antigen response rate, SCLC Small cell lung cancer, TEAEs Treatment emergent adverse 
events, TFST Time to initiation of the first subsequent anticancer therapy, TILs Tumor-infiltrating lymphocytes, Tmax Time to observed Cmax, TNBC Triple-negative 
breast cancer, TTNT Time to next treatment, TTP Time to progression, TTR​ Time to tumor response, TTST Time to subsequent treatment
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gene expression have shown high MSI and neoantigen 
production [76, 150].

A high TMB can predict MSI-H and vice versa [64, 69, 
151]. It should be noted that although MSI-H/dMMR is 
associated with TMB-H, DDR genes are still associated 
with a high TMB after MSI-H/dMMR is excluded [69]. 
As for the relationship between NAL and TMB, previous 
studies have proven that high TMB can cause an increase 
in neoantigens [137].

The elevation of MSI, TMB, and NAL are all benefi-
cial to therapeutic immune recognition, and thus affect 
the response of the tumor to ICIs (Fig.  1). DDR inhibi-
tors, such as PARPi, may increase both the mutation load 
and the number of neoepitopes, thereby increasing the 
response rate to ICIs [152]. The underlying mechanism 
of action is that a high TMB can increase the expression 
of immunogenic peptides [69, 73, 118, 153–156]. Specifi-
cally, an increased mutation load enhances CD8 + T cell 
infiltration (Fig.  1) [69, 101, 144], and the intracellular 

accumulation of DNA fragments furthers induces innate 
and adaptive immune activation [78]. An increase of NAL 
can also lead to active immune stimulation of the TME. 
For example, NAL can actively stimulate TILs to release 
IFN-γ (Fig. 1) [52]. dMMR tumors are highly sensitive to 
ICIs, and the objective response rate in CRC is recorded 
to be between 30 and 50% [24, 157, 158]. In examining 
tumor tissue, the effective rate of ICB was found to be 
higher in the TMB-H and MSI-H state than in the TMB-
low or MSI-low/MSS state [56, 154].

However, certain cancer cells can also escape immune 
surveillance [84, 159]. This evasive ability may be attrib-
uted to the fact that mutation accumulation caused by 
DDR defects can also increase the level of PD-L 1[160, 
161]. A dMMR/MSI-H tumor or HR-mutated tumor 
exhibits a strong expression of immune checkpoint ligand 
[15, 145, 146]. Much like the mechanism behind neoanti-
gen production, the PD-L1 upregulation in tumor cells is 
related to both the TMB and the MSI. In addition, DDR 

Fig. 1  DDR pathway disorders contribute to immune recognition and tumor killing by increasing tumor immunogenicity. DDR mutation/
inhibition impedes damaged DNA repair, enlarges chromosomal variation, and thus increases the levels of the tumor mutational burden (TMB) 
and neoantigen load (NAL). This subsequently activates CTLs and NK cells to exert anti-tumor activity via upregulating MHC-I and the antigen 
presentation process of APCs. This includes DCs and TAMs. At the same time, more tumor infiltrating lymphocytes (TILs) are recruited. (APC: 
Antigen-presenting cell; CTL: Cytotoxic T lymphocyte; DC: Dendritic cell; DDR: DNA damage repair; DSB: DNA double strand break; GZMA: Granzyme 
A; IL-2: Interleukin-2; NK cells: Natural killer cells; PRF1: Perforin 1; SSB: DNA single strand break; TAM: Tumor-associated macrophage)
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Fig. 2  The mechanism by which DDR affects PD-L1 expression and TME in tumors. In tumors, the defectiveness or inhibition of the DDR can lead 
to the accumulation of DNA damage, whereby double-stranded DNA and single-stranded DNA both accumulate in cytoplasm. Cytoplasmic DNA 
activates the cGAS/STING and RIG-I/MAVS pathways and eventually the type I interferon (IFN) pathway, ultimately recruiting both chemokines 
and immune cells (such as T cells, NK cells, and DCs). Specifically, STING promotes the phosphorylation and nuclear translocation of type I IFN 
transcriptional regulatory factors TBK1 and IFN regulator 3 (IRF3), while also activating the NF-κB pathway that interacts with IRF3. RIG-I can be 
considered an important participant in the immune activation of cancers presenting with genomic instability, as it can be activated via DNA, and 
combined with the adapter molecule MAV, which then activates IKK and/or TBK1 when stimulated, and finally activates the type I IFN pathway 
through downstream transcription factors. The activated TIL releases IFNγ, which acts on tumor cells and mediates STAT1/3-dependent PD-L1 
upregulation. The ATM/ATR/Chk1 pathway can also induce PD-L1 expression. ATM can directly activate and participate in STING-mediated 
downstream pathways, and PARPi can promote PD-L1 expression by downregulating GSK3β. The release of the HMGB1 protein from dying tumor 
cells can bind TLR-4 on the surface of both DCs and macrophages in order to induce INF-β (TRIF) signal transduction, which subsequently activates 
IRF3 and NF-κB pathways. In addition, TLR4 recruits MyD88 and activates the NF-κB pathway to promote the transcription and secretion of various 
pro-inflammatory factors. Following this sequence of events, these factors serve to promote DC activation and trigger an immune response. HMGB1 
can also upregulate PD-L1 expression in adjacent surviving tumor cells via TLR4/MyD88/TRIF signaling. In addition, ATM inhibitors can inhibit the 
induction of Tregs by tumor cell-derived small extracellular vesicles (sEV). (ATM: Ataxia telangiectasia mutated protein; ATR: Ataxia telangiectasia 
and Rad3-related protein; CCL5: C-C motif chemokine ligand 5; cGAMP: Cyclic GMP-AMP; cGAS: Cyclic GMP-AMP synthase; CHK1: Checkpoint kinase 
1; CTL: Cytotoxic CD8+ T cell; CXCL10: C-X-C motif chemokine ligand 10; DDR: DNA damage response; DNAM-1: DNAX accessory molecule 1; 
DSB: Double-strand break; GSK-3β: Glycogen synthase kinase-3β; HMGB1: High mobility group box 1; IFNγ: Interferon-γ; IFNGR: Interferon gamma 
receptor; IKK: IκB kinase; IRF1: Interferon regulatory factor 1; IRF3: Interferon regulatory factor 3; MAVS: Mitochondrial antiviral signaling protein; 
MyD88: Myeloid differentiation factor 88; NF-κB: Nuclear factor kappa-B; NKG2D: Natural-killer group 2, member D; NKG2DL: NKG2D ligand; PARP: 
Poly-ADP-ribose polymerase; PD-1: Programmed cell death protein 1; PD-L1: Programmed death-ligand 1; RIG-I: Retinoic acid-inducible gene I; sEV: 
Small extracellular vesicles; SSB: Single-strand break; STAT1/3: Signal transducer and activator of transcription 1/3; STING: Stimulator of interferon 
genes; T1IFN: Type I interferon; TBK1: TANK binding kinase-1; TLR4: Toll-like receptor 4; TNFα: Tumor-necrosis factorα; Tregs: Regulatory T cells; TRIF: 
TIR-domain-containing adaptor inducing interferon-β)
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deficiency upregulates the release of interferons (IFN) by 
neoantigen-activated T cells, which also promotes the 
expression of PD-L1 in the tumor environment [162].

DDR mutation can also affect the response to ICIs in 
ways that are independent of the TMB and MSI [47, 56]. 
For instance, the increase of the TMB is only one of the 
ways in which DDR defects lead to genomic instability. 
The genome of small cell lung cancer (SCLC), specifically 
characterized by the joint deletion of RB1 and TP53, is 
known to potentially cause inherent genomic instabil-
ity, which is independent of the mutation burden [121]. 
In breast cancer, BRCA1 inactivation is accompanied by 
an increase of T cells [4, 147, 152, 163]. However, defects 
observed in TILs were detected in BRCA2-mutated 
breast cancers [163, 164]. Furthermore, in addition to the 
above regarded antigenicity, the adjuvanticity of immu-
nogenic cell death (ICD) induction remains an important 
feature [165]. In this regard, before tumor-specific anti-
gens elicit adaptive immunity, specific microorganism-
associated molecular patterns (MAMPs) already activate 
pattern recognition receptors (PRRs) and initiate the can-
cer killing effect of the innate immune system. Such sig-
nals can be delivered to PRRs via the damage-associated 
molecular patterns (DAMPs) of dead cells [165, 166].

Alteration of the DDR pathway and immune infiltration
The poor response of some patients to ICIs is directly 
related to insufficient production and activity of anti-
tumor CD8 + T cells. The aggravation of tumor hypoxia 
is recognized as another major obstacle in improving 
the efficacy of ICIs, which is related to the regulation of 
the TME via immunosuppressive microenvironment-
related macrophages, regulatory T cells (Tregs), and so 
on [75, 93, 167–169]. Therefore, the effect of DDR on 
immune cell infiltration is likely to facilitate effective ICI 
treatments.

The effect of the DDR pathway activation level on 
immune infiltration is complex. The increased immune 
cell infiltration of gastric cancer is unexpectedly cor-
related with a low DDR characteristic score. However, 
insight into the relative abundances of immune cell sub-
populations suggests that TILs are positively correlated 
with DDR pathway signature scores. Therefore, patients 
with a high score demonstrate a higher proportion of 
TIL, which corresponds to a better prognosis [80]. In 
HCC, the proportion of activated immune cells increases 
significantly in patients with a high expression of DDR-
related genes (DDR2) [71, 72]. The subtype of activated 
DDR has demonstrated significantly increased expression 
of the immune checkpoint, and its immune score was 
significantly higher than that of the low expression group 
[72]. In addition, it is important to note that mutations or 

defects in the DDR signaling pathway genes are associ-
ated with altered immune cell infiltration.

T cell
DDR inhibitors, such as PARPi and CHK1 inhibitor 
(CHK1i) enhance T-cell infiltration [113]. Olaparib alone 
has been shown to increase the number of intratumoral 
effector CD4+ and CD8+ T cells, it can also decrease the 
expression of PD-1/Tim-3 and PD-1/Lag-3 co-inhibitory 
receptors on CD8+ T cells [170]. ICIs alone do not sig-
nificantly alter the abundance and function of effector/
memory T cells within BRCA1-deficient models [128]. 
When PARPi was used in combination with CTLA-4 
mabs (but not with PD-1 mabs), CD4+ and CD8+ T 
cells, in addition to IFN-γ levels, were all significantly 
elevated [128]. However, another study demonstrated no 
significant change in CD8+ CTL infiltration with olapa-
rib alone, while the combination of olaparib and PD-L1 
blockade increased CTL infiltration [9].

Moreover, mutations in the DDR signaling pathway 
are associated with an increase of T cell infiltration in 
the TME [56], although the infiltration components are 
heterogeneous in different tumors [22, 61, 63, 143, 147, 
152, 153, 171–174]. To name a few, gastrointestinal can-
cer patients with more than 2 DDR mutations display a 
greater infiltration of CD4+/CD8+ T cells [47], while 
DDR gene somatic mutations in ovarian cancer patients 
are related to higher levels of Th1 cell infiltration [143].

Alterations of the DDR pathway in tumors promote 
effector T cell and other cell infiltration in the TME 
through activating the IFN pathway. DNA damage exac-
erbated by altered DDR pathways can activate cGAS/
STING, ATR/SRC/TBK1, ATM/ATR/Chk1, and other 
pathways, all of which then activate the downstream IFN 
pathway (Fig.  2) [33, 171]. In tumor cells, STAT1 and/
or STAT3 can initiate typical IFN1 signals. This pro-
motes systemic immune responses and regulates vari-
ous anti-tumor immune components including T cells, 
NK cells, and DC, as well as effector molecules (Fig.  2) 
[38, 44, 84, 171]. The downstream target TIL then col-
lects chemokine genes CXCL9, CXCL10, CXCL11, and 
CD8 + T cell activation markers (Fig. 2) [171], all of which 
contribute to a successful anti-tumor immune response. 
Thus, aside from its beneficial effect on adaptive immu-
nity, IFN1 demonstrates an important functional role 
in driving the adjuvanticity of immunogenic cell death 
[165]. PARPi treatment has also been shown to increase 
the level of chemokines through the cGAS/STING path-
way, induce the activation and function of both CD4 + T 
cells and CD8 + T cells, and increase the level of tumor 
necrosis factor α (TNF-α) in the TME (Fig.  2) [38, 124, 
170, 175].
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However, IFN-γ produced by activated TIL often 
acts as a double-edged sword in anti-tumor immune 
response. On the one hand, IFN-γ displays the positive 
anti-tumor immune effect of up-regulating the MHC, 
which in turn contributes to antigen presentation [52]. 
On the other hand, IFN-γ exposure increases PD-L1 
expression through the JAK-STAT pathway, thus induc-
ing negative feedback and adaptive resistance [52, 176]. 
IRF1 combined with the PD-L1 promoter enhances 
PD-L1 transcription through IFN-γ induction (Fig.  2) 
[162].

CD8+ T cell  DDR inhibition enhances CTL function. 
For example, in one study, PARP/CHK1 inhibition in 
SCLC patients increased CTL infiltration [131]. While 
augmented production of IFN-γ and TNF-α by CD8+ 
T cells was observed in patients after olaparib treatment 
[170]. Moreover, the active inhibition of ATM prevented 
Treg-induced CD8+ T cell senescence [177].

A non-neoantigen-dependent increase in CTL infiltra-
tion may be associated with the activation of the ATM 
gene [178]. Phosphorylated ATM was identified as a 
driving factor of cytokine production that can increase 
tumor cell-derived levels of CCL5, CXCL9, CXCL10, and 
IL16, leading to increased CD8+ CTL infiltration [178]. 
Moreover, in various cancer types, positive CTL score 
correlation with ATM protein, and neoantigens levels 
have been identified as being largely mutually exclusive 
[178]. Ciriello et al. appropriately classified cancers into 
either class C clusters or class M clusters [179]. Class 
M tumor profiles exhibit neoantigen-dependent CTL, 
whereas class C tumor profiles often indicate depend-
ence on ATM [178].

CD4+ T cell  DDR inhibitors promote Th1 infiltration. 
In tumors, continuous low-level DNA stimulation incites 
the infiltration of inhibitory immune cells [38]. This 
transformation promotes chronic inflammation, immu-
nosuppression, and tumor progression [180, 181]. Nota-
bly, a PARP inhibitor may turn this chronic, low-level 
DNA stimulation into a more significant Th1 immune 
response [38, 182].

DDR inhibition may create a more sensitive TME by 
inhibiting Tregs. ATM activation is vitally important 
for tumor cell-derived small extracellular vesicles (sEV) 
to effectively induce Tregs (Fig.  2) [37]. ATM inhibitor 
KU-60019 treatment can reverse the phosphorylation of 
ATM and reduce the Treg ratio during sEVs stimulation 
[37]. However, olaparib administered in TNBC increases 
the level of Tregs, thus causing the CD4+/CD8+ ratio to 
increase [183]. However, cases have been reported where 

no significant change in Treg expression was observed 
when administering olaparib and a PD-1 antibody [170].

Innate immune cell
In addition to the aforementioned IFN pathway increas-
ing NK cell and DC infiltration, several other mecha-
nisms can also affect intrinsic cell infiltration. These 
processes involve changes on the surface of and within 
the immune cells.

In addition to NK cells that kill cancer cells [184, 185], 
innate immunity is inextricably involved in the antitumor 
effects associated with adaptive immunity. The upregula-
tion of innate immunity promotes neoantigen presenta-
tion and enhances immune stimulation [185, 186]. From 
another perspective, intrinsic immune cells contribute to 
the adjuvanticity (as related to the antigenicity) of ICD 
and help form an activated immune microenvironment. 
Therefore, it is essential to consider the role of innate 
immune cell presentation in ICI responses.

NK cell  DDR inhibition affects NK and CD8 + T cell 
functions by regulating NKG2D/NKG2DL. The NKG2D 
receptor, which exists on NK cells and CD8+ CTL, com-
bined with NKG2DL, can help drive innate immunity 
and support adaptive immunity (Fig.  2) [17]. NKG2D-
CAR-T cell therapy targeting NKG2D ligands is at an 
early clinical stage [187]. The DNA damage observed 
leads to the up-regulation of the ligands of the NKG2D 
and DNAM-1 receptors. This damage also promotes 
the increase of IFN-γ secretion and stimulates both NK 
cells and CD8 + CTL [17, 44]. ATM inhibition prevents 
the expression of stress molecules on tumor cells [188]. 
Moreover, DDRi can delay NK cell failure and benefit 
NK cell proliferation, survival, and function [188]. The 
expression of NKG2DL in tumor cells may be the result 
of cGAS/STING pathway-induced IFN-1 expression 
(Fig. 2) [115].

Aging-related secretory phenotypes function to recruit 
innate immune cells, including NK cells and mac-
rophages, as well as CD8 + T cells [127]. Instability of 
aneuploid accumulation after chromosome separa-
tion into the micronucleus can directly up-regulate 
senescence-associated secretory phenotypes (SASP) 
[189–191]. Since a large subset of SASP cytokines are 
dependent on DDR signaling for their production, SASP 
is considered to be the extracellular extension of DDR 
which affects the microenvironment via the paracrine 
signal [192–194]. Notably, IL-6 plays an important role 
in the promotion of cancer cell invasion by SASP [193]. 
Moreover, chronic signaling of cGAS/STING seems to 
promote the aging phenotype [192, 195–198].
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Dendritic cell  DDR dysfunction-activated STING/IFN 
regulator 3 (IRF3) can lead to elevated DC levels [17, 44, 
84, 199]. Type I interferon promotes the cross-presenta-
tion capability of DCs [84, 133]. In addition, compared 
with patients exhibiting < 2 DDR gene mutations, patients 
diagnosed with gastrointestinal cancer and ≥ 2 DDR gene 
mutations have been shown to express increased levels 
of effective immune cells, including activated dendritic 
cells, and decreased levels of immunosuppressive cells 
observed in tumor infiltration [47].

In a study of BRCA1-deficient ovarian cancer, dendritic 
cells expressed upregulated levels of CD80, CD86, and 
MHC II expression after olaparib treatment in compari-
son to the study’s vehicle control and the PD-1 antibody 
[170]. Moreover, an increase in CD103 + DC in the tumor 
tissue was observed, which reportedly stimulated effector 
T cell trafficking and T cell immune initiation [200].

HMGB1 is regarded as a relevant factor in ICD, and its 
effective role appears to be dependent on Toll-like recep-
tor 4 (TLR-4) involvement (Fig.  2) [165]. The HMGB1 
protein secreted by damaged apoptotic tumor cells can 
promote transcription of type I interferons (e.g., INF-
β), as well as instigate DC maturation (Fig. 2) [201, 202]. 
DCs express IL-12, which allows Th1 cells to differenti-
ate into Th1 effector cells and ultimately facilitates T-cell 
immunity [203].

Macrophage  In melanoma, ATR mutation is related 
to inhibitory TME features such as increased inhibitory 
macrophages. In addition, ATR inhibitors are beneficial 
to the response and effect of ICIs. Compared to the ATR 
wild-type subjects, the number of macrophages and B 
cells increased noticeably, and the number of CD3+ T 
cells decreased in the immune infiltration of ATR mutant 
melanomas [204]. Macrophages, which have been previ-
ously detected in genetically heterogeneous tumors, can 
promote melanoma invasion and metastasis [204]. In a 
Phase I trial of ceralasertib combined with paclitaxel, 11 
out of 33 patients with melanoma experienced a reversal 
of the drug resistance to PD-1 therapy [205].

Myeloid‑derived suppressor cell  The DDRi olaparib can 
successfully inhibit the recruitment of myeloid-derived 
suppressor cells (MDSCs) through the SDF1α/CXCR4 
axis to improve the anti-tumor effect of CAR-T in mouse 
breast cancer [130]. Olaparib reduces the expression of 
SDF1α released by cancer-associated fibroblasts, thereby 
reducing CXCR4-regulated MDSC migration and effec-
tively promoting CAR-T cell infiltration [130]. In addi-
tion, olaparib treatment in BRCA1-deficient ovarian can-
cer results in a decrease in granulocyte MDSCs [170].

Innate immune cell  One TCGA cohort analysis of cer-
vical cancer proved that somatic DDR alterations were 
positively correlated with the characteristics and scores 
of hypoxia. And the high hypoxia scores were positively 
correlated with the abundance of resting mast cells, while 
the abundance of activated mast cells were low [142]. In 
HCC, the subtype of inhibitory DDR showed that mast 
cells and neutrophils related to ICB drug resistance were 
significantly enriched [71].

Alteration of the DDR pathway affects immune regulatory 
molecules
The correlation between DDR changes, immune gene 
expression, and immune cycle steps has been verified in 
previous studies [56, 143, 171]. The level of DDR muta-
tion and activation is related to enrichment of various 
immune features [34, 56]. These includes chemokines, 
lysis markers, MHC class II molecules, immune stimu-
lators, and immune inhibitors [56]. High scores in DDR 
pathway activation were associated with both higher 
immune activation cell patterns and immune-related 
gene expression levels [34]. Interestingly, in muscle-inva-
sive urothelial cancer, Thiago et al. analyzed the immune 
profiles of tumors harboring either biallelic, monoallelic, 
or wild-type mutations in the DDR genes. The expression 
of DDR genes and immunoregulatory genes were nega-
tively correlated [171].

Pathway with cGAS/STING as the core
The cGAS/STING/IFNs pathway regulates innate and 
adaptive immunity. In tumors, defectiveness or inhibi-
tion of the DDR can lead to the accumulation of cytoplas-
mic DNA (Fig. 2) [44, 206, 207]. The sensing of cGAS to 
tumor-derived double-stranded DNA activates STING 
by generating cyclic GMP-AMP (cGAMP) (Fig.  2) [44, 
208]. STING then induces a type I interferon reaction 
and consequently regulates the level of other immune 
and inflammatory factors (Fig.  2) [38, 44, 75, 208, 209]. 
PARPi, WEE1 inhibitor, ATM deficiency, and BRCA2 
deficiency observed in tumors can promote both the 
recruitment of T cells, as well as the secretion of IFN-γ 
and TNFα in the TME through the cGAS/STING path-
way (Fig. 2) [44, 114, 115, 124, 210–213]. This interferon-
dependent pathway can activate both innate immunity 
and adaptive immunity, thus benefiting the remodeling of 
inhibitory TME [44, 212, 214]. In addition, the expression 
of PD-L1 is up-regulated at the transcription level [209], 
which is regarded as beneficial to ICIs.

There are several factors that can eliminate cytoplas-
mic nucleic acids in cancer cells. DDR factors, like RPA/
RAD51, SAMHD1, and TREX1, can prevent excessive 
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accumulation of cytoplasmic DNA [44, 76, 208, 215], 
while MRE11 can promote or inhibit the production of 
cytoplasmic DNA in different situations [44].

In this regard, STING is considered to be the focal 
point of the pathway. For example, PARPi promotes 
CAR-T infiltration in the TME via the cGAS-STING 
pathway. Specifically, PARPi promotes the upregula-
tion of both IFN-β expression and chemokines via the 
STING-TBK1-IRF3 pathway, leading to CD8+ CAR-T 
cell recruitment and the secretion of large amounts of 
granzyme B [129]. This process ultimately allows low-
dose CAR-T cell treatment to induce effective tumor 
regression in mice with kidney cancer [129]. DDR pro-
teins ATM (Fig. 2), PARP1, DNA sensor (or DNA bind-
ing protein) IFI16, and Tp53 can also activate the STING 
pathway signal [76, 208, 216]. Moreover, MUS81 may 
help activate STING [44, 213].

Recently, researchers have found that the retinoic acid-
inducible gene I (RIG-I)/mitochondrial antiviral signal-
ing protein (MAVS) pathway has notable similarities to 
the cGAS/STING pathway (Fig. 2) [217, 218]. The inter-
action between the two pathways has been described in 
research [217].

ATM/ATR/Chk1 pathway
The ATM/ATR/Chk1 pathway regulates the cell cycle 
and can be activated by DNA damage signals [219–226], 
such as HR and NHEJ pathways, which are involved in 
DSB activation (Fig. 2) [209, 221].

ATM defective tumors can result in an increase in 
interferon signal transduction, innate immunity, and 
PD-L1 expression, all of which promote sensitivity to 
the PD-(L)1 blockade [227]. Specifically, ATM may 
inhibit SRC tyrosine kinase activity, while related ATM 
defects up-regulate SRC-promoted TBK1-PRR complex 
formation and type I interferon production independ-
ent of the cGAS/STING pathway [227, 228]. However, 
certain studies have shown that DSB activates ATM/
ATR/Chk1, which can induce the activation of the clas-
sic STAT-IRF1 pathway. The inhibition of ATM or Chk1 
can reduce IRF1 expression (Fig. 2) [221]. Furthermore, 
ATM can promote cancer cell migration by regulating 
the expression of IL-8 independent of its role in the 
repair of DNA double-strand breaks [229]. Co-inhibi-
tion of WEE1 combined with ATM reduced the expres-
sion of MMP-9, IL-8, CXCL1, CCL2, and CCL5, thus 
achieving an anti-migration effect in pancreatic cancer 
(PC) [230].

ATR mutation can regulate the tumor immune micro-
environment in melanoma models and promote tumor 
growth [112, 204]. In previous studies, in addition to 
promoting T-cell homing to the epithelium, ATR mutant 
pigmented nevi also demonstrated a specific CD4 

down-regulation effect [204, 231, 232]. Moreover, it is 
directly related to the increased expression of PD-L1 and 
CD206 [204], suggesting a relationship to the immune 
environment affiliated with T cell inhibition [112].

On the other hand, the effect of CHK1 inhibitors on 
interferon response is divergent. CHK1i can lead to an 
increase in cytoplasmic DNA, as well as the subsequent 
activation of the STING-TBK1-IRF3 pathway [9, 51]. As 
a result, both PD-L1 expression and type I interferon 
expression are upregulated. This results in the release 
of chemokines CXCL10 and CCL5 and facilitates the 
recruitment of CD8+ T cells [9]. CHK inhibitor prexa-
sertib and anti-PD-L1 antibodies combination treat-
ment can induce significant tumor regression in SCLC 
models [121]. However, Wayne et al. showed that CHK1i 
increased the phosphorylation of TBK1, but not the acti-
vation of IRF or type I interferon responses observed in 
solid cancer cell lines [131].

Abnormal DDR pathway and immune checkpoint molecules
The mutation of the DDR gene in cancer cells is usu-
ally associated with the increased expression of PD-1/
PD-L1 genes within the TME [56, 64, 233, 234], such as 
the DSB repair gene [221], MMR gene [146, 235, 236] and 
RB1 [171, 237]. The expression of BER/SSBR has been 
shown to be negatively correlated with the level of PD-L1 
observed in cancer cells [150, 235]. In addition, the clini-
cal significance of PD-L1 in advanced GC depends spe-
cifically on the mutation of ARID1A and the level of 
ATM expression [238].

The following example illustrates the mechanism of the 
influence of DDR on PD-(L)1: the cGAS/STING pathway, 
activated by PARPi, leads to compensatory up-regulation 
of the PD-1/PD-L1 pathway [9, 118, 122]. This mecha-
nism may be related to the secretion of IFN-γ, IFN-α, and 
IFN-β in the TME [211]. IFN-α and IFN-β can induce 
PD-L1 expression in endothelial cells, monocytes, and 
DC [209]. Glycogen synthase kinase 3β (GSK3β) subse-
quently interacts with PD-L1 and regulates its expression 
by inducing proteasome degradation of PD-L1 (Fig.  2) 
[38, 239]. PARPi deactivates GSK3β, thus enhancing the 
up-regulation of PD-L1 (Fig. 2) [33, 38, 122].

The ATM/ATR/CHK pathway is activated by DSB, 
such as when the BER/SSBR pathway is defective or 
during PARPi treatment, which in turn can up-regulate 
PD-L1 expression by phosphorylating STAT1/3 and 
therefore effectively inducing IRF1. It is also capable of 
up-regulating PD-L1 in circumstances that are inde-
pendent of the IFN pathway (Fig. 2) [122, 136, 141, 150, 
209, 221, 240–244]. Some studies have shown that the 
ATM/ATR/Chk1 pathway can up-regulate PD-L1 by 
activating the STAT1/3-IRF1 pathway in cancer cells 
(Fig.  2) [221, 245]. Up-regulation of PD-L1 expression 
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induced by activating IR is carried out through tran-
scription and post-translation mechanisms, while the 
ATM/BCLAF1/PD-L1 axis regulates the stability of 
PD-L1 in response to IR [246].

The inhibition of specific components in the ATM/
ATR/Chk1 pathway can cause various effects on the 
stability of PD-L1. For instance, increased expression 
of PD-L1 can be observed in ATM-defective tumors 
[227]. However, another study investigating pancre-
atic cancer cells revealed that the inhibition of WEE1/
ATM could effectively down-regulate the expression 
of PD-L1 by blocking GSK-3β and reducing the expres-
sion of CMTM6 [230]. ATM can also up-regulate PD-L1 
through the JAK-STAT3 pathway, and inhibition of 
ATM can reduce PD-L1 expression [245]. Furthermore, 
while ATR inhibitor (ATRi) up-regulated PD-L1 mRNA 
in cells, it also led to the activation of the CDK1-SPOP 
axis and subsequent degradation of PD-L1. ATRi/ATR 
siRNA treatment led to the downregulation of PD-L1 
protein expression, while, conversely, olaparib increased 
the expression of the PD-L1 protein [10, 122]. According 
to previous studies, post-translational regulation may in 
fact serve to play a major role in the regulation of PD-L1 
by ATR [219]. Similarly, CHK1i activates the STING/
TBK1/IRF3 innate immune pathway and increases the 
expression of PD-L1, as well as other immune infiltration 
changes [114, 211].

The alteration of the DDR pathway also affects other 
immune checkpoints, as has been seen when the expres-
sion of CTLA-4 and other immune checkpoints in the 
dMMR tumor increased as a result [146, 235]. IFN1 sign-
aling can increase the molecular level of checkpoints, 
such as indoleamine 2,3-dioxygenase 1 (IDO1) and lym-
phocyte activation  gene 3 protein  (LAG3), in various 
immune cells [171]. The high expression of BRCA1 in 
tumor cells is significantly related to the positive expres-
sion of the new target Siglec-15 and a favorable prognosis 
[247, 248].

Prospects
At present, expanding the use of immune checkpoint 
inhibitors is a matter of great urgency. DDR displays great 
potential in this regard [249], as the alteration of the DDR 
pathway in tumors as a predictive marker of ICB presents 
many advantages [20, 249, 250]. More importantly, the 
benefits of DDR inhibitors have been extended to other 
immunotherapies beyond ICB [130]. Although the role of 
the DDR pathway dysfunction in tumor progression and 
immune regulation is somewhat uncertain [58, 112, 251] 
and not always useful [58, 83, 110, 115, 181].

As the anti-tumor benefits generated by DDR func-
tional deficiency are deserving of greater research 
attention, we have put forward here several research 

directions and suggestions regarding the application 
of the DDR pathway in ICB. (1) DDR pathways require 
improved detection methods. This may entail devising 
novel strategies that dynamically detect DNA repair 
function and essentially avoid the associated errors 
caused by the time heterogeneity of somatic mutations 
[58]. (2) It is necessary to determine reliable predic-
tive biomarkers, pay more attention to the prediction 
results of the DDR pathway co-mutation, and deter-
mine the appropriate unified labeling threshold [87, 
115]. (3) Emphasis should be placed on investigative 
efforts aimed at defining the predictive role of the over-
all activation level of the DDR pathway. The first large 
GC cohort to investigate DDR pathway activity proved 
the clinical transformation value of the DDR pathway 
spectrum for patients. Patients with low DDR path-
way signature scores might not benefit from anti-PD1 
therapy [80]. (4) Increased research is advised regard-
ing combination therapy, including the combination 
of two DDR inhibitors and immunotherapy. Moreover, 
the synergistic association of DDR inhibitors with cer-
tain defects may achieve more effective and accurate 
immunomodulation [213]. For example, ATM inhibitors 
are used in ATM defective tumors with positive effect 
[252]. Meanwhile, drug selection, dosage, and combina-
tion time are all carefully considered during personal-
ized treatment, in addition to toxicity, immune-related 
adverse events, and drug resistance [112, 115]. Tumor 
type should also be considered in combination therapy. 
For example, the characteristics of the TNBC make 
it advantageous for combined therapy [93], while the 
determinants of ICB activity in SCLC remain unclear 
[121]. Ultimately, more randomized clinical trials are 
required to determine whether these combined treat-
ments are superior to ICI alone, which must also be ver-
ified in larger clinical cohorts [58, 115]. (5) While there 
are limited reports exploring specific genes, such as 
the NHEJ and NER pathway, the relationship between 
other DDR pathways and immunotherapy remains to 
be investigated [58]. (6) To the best of our knowledge, 
the mechanism of DDR’s influence on the immune 
microenvironment is primarily focused on tumor cells 
rather than immune cells, though this particular aspect 
requires more in-depth study. (7) Further exploration 
of the relationship between emerging immune check-
points and DDR pathway alterations is required. New 
ICIs are one of the primary hopes of patients to improve 
their OS when they fail to exhibit any response to anti-
PD-L1 treatment. However, this topic has considerable 
space for development [248]. For example, the positive 
expression of Siglec-15 is significantly correlated with 
the high expression of BRCA1, but its mechanism has 
not yet been clarified.
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Conclusions
DDR factors are competitive predictive biomarkers of 
specific ICI responses that have become increasingly 
relevant in current research. In addition to the more 
established dMMR, the primary focus of scholarship on 
this topic thus far has been investigating the predictive 
effects of combined DDR mutations. The combination of 
PARPi and anti-PD-L1 mAbs has yielded positive results, 
though more DDRi combination treatments for ICIs are 
required in current preclinical trials. Defection or inhi-
bition of the DDR pathway can increase the efficacy of 
immunotherapy by increasing immunogenicity due to 
aggravated DNA damage, thus inhibiting the DNA dam-
age sensing pathway and causing the accumulation of 
cytoplasmic DNA to activate the IFN pathway. However, 
the effect of DDRi is not consistent. Therefore, the choice 
of combination therapy should not necessarily be recom-
mended for all cancer types.
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