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Abstract

diagnosis, prognosis, and therapeutics.

Single-cell RNA sequencing (scRNA-seq) is a tool for studying gene expression at the single-cell level that has been
widely used due to its unprecedented high resolution. In the present review, we outline the preparation process
and sequencing platforms for the scRNA-seq analysis of solid tumor specimens and discuss the main steps and
methods used during data analysis, including quality control, batch-effect correction, normalization, cell cycle phase
assignment, clustering, cell trajectory and pseudo-time reconstruction, differential expression analysis and gene set
enrichment analysis, as well as gene regulatory network inference. Traditional bulk RNA sequencing does not
address the heterogeneity within and between tumors, and since the development of the first scRNA-seq
technique, this approach has been widely used in cancer research to better understand cancer cell biology and
pathogenetic mechanisms. SCRNA-seq has been of great significance for the development of targeted therapy and
immunotherapy. In the second part of this review, we focus on the application of scRNA-seq in solid tumors, and
summarize the findings and achievements in tumor research afforded by its use. SCRNA-seq holds promise for
improving our understanding of the molecular characteristics of cancer, and potentially contributing to improved
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Background

Tumors are generally considered to be of monoclonal
origin, with mutations facilitating the expansion of a ma-
lignant cell in the body to visible tumor tissue, as well as
from carcinoma in situ to metastatic carcinoma. Not-
ably, patient-derived tumor tissue includes cancer cells
as well as other cell types, such as infiltrating immune
cells and fibroblasts. Therefore, the use of traditional
bulk RNA sequencing technology can only permit an
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average qualitative characterization of such highly com-
plex tissue, representing the average of cancer cells and
non-cancer cells. Although bulk RNA approaches have
made many invaluable contributions to medical science
[1], such approaches have ignored the distinct phenotyp-
ical and functional traits of single cells within tumor
samples.

Since the first single-cell RNA sequencing (scRNA-
seq) study was published in 2009 [2], various commer-
cial platforms and methods have been developed for
scRNA-seq. SCRNA-seq is a technique allowing for the
study of tissues at single-cell resolution. Many re-
searchers within the life sciences employ scRNA-seq for
the investigation of diverse biological functions. In
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particular, great achievements have been made in tumor
research using scRNA-seq technology. The single-cell
resolution afforded by scRNA-seq enables direct meas-
urement of the transcriptional output of cells from
tumor samples [3], comparison of differences between
the transcriptomes of various cells, identification of rare
cell subpopulations, such as heterogeneous tumor sub-
populations [4], or the revelation of differences between
stimulated dendritic cells [5], in turn providing unprece-
dented insights that have contributed to the develop-
ment of cancer therapy.

In the present review, we introduce methods for the
preparation of solid tumor samples, related scRNA-seq
platforms, the analysis of scRNA-seq data, and achieve-
ments in tumor research facilitated by the use of
scRNA-seq.

Single-cell RNA sequencing

To carry out scRNA-seq, solid tumor samples first need
to be processed to effectively isolate viable single cells
from the tissue of interest [6]. Thereafter, the single cells
are lysed to obtain RNA, which is reverse transcribed
into cDNA and then amplified to construct a sequencing
library. The most suitable sequencing instrument must
be selected based on the experimental scheme and re-
search objectives. After sequencing, the data need to be
correctly analyzed to reveal new findings.

Preparation of solid tumor specimens

Many published articles on the use of scRNA-seq in can-
cer research have detailed the preparation of solid tumor
specimens. After cancer is diagnosed, tumor tissues are
removed by biopsy and treated immediately to preserve
single cells. Tumor tissue is usually cut into sections of
approximately 1 mm® and washed with PBS to remove
fat, visible vessels, and surrounding necrotic areas [7].
Tissue is separated into single cells via grinding and fil-
tration [8], using a Human Tumor Dissociation Kit [7,
9], or through other methods. Separated cells are then
centrifuged and resuspended. All samples are stained
with trypan blue to confirm viability, evaluate sample
quality, and remove dead cells. To avoid introducing
gene expression changes associated with processing,
after washing and counting, cell suspensions are pre-
served in cold storage in preparation for cell sorting.

Selection of sequencing platform

Currently, major single-cell sequencing platforms in-
clude the 10X Genomics Chromium, Nadia (Dolomite
Bio), Illumina Bio-Rad ddSEQ Single-Cell Isolator, BD
Rhapsody Single-Cell Analysis System (BD), ICELL8
Single-cell System (Takara), Fluidigm C1, and others. Al-
though new platforms for scRNA-seq are still being
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developed, the most widely used platform remains the
10X Genomics Chromium.

Selecting the most suitable sequencing platform for
your research project is a key step for achieving the de-
sired research results. There are a number of published
articles comparing performance, cost, and other aspects
of existing platforms. In 2019, Zhang et al. [10] com-
pared three widely used drop-based high-throughput
scRNA-seq systems: inDrop, Drop-seq, and 10X Genom-
ics Chromium, and found that the 10X Genomics Chro-
mium had the highest sensitivity and the lowest
technical noise. The 10X Genomics platform is therefore
a more suitable choice for rare samples, such as human
embryos, which require a more efficient cell capture
platform. For abundant samples, Drop-seq may be more
cost-effective, while InDrop is a better choice when a
customized protocol is necessary. Natarajan et al. [11]
compared the BGISEQ-500 platform with Illumina
HiSeq and observed that these platforms were compar-
able with regard to sensitivity, accuracy, and repeatabil-
ity. However, the sequencing cost of the former was
lower. These comparative studies indicate that each se-
quencing platform has its own merits, and no sequen-
cing platform is suitable for all research objectives. In
summary, researches have to choose the sequencing
platform that can best meet their specific experimental
needs.

Analysis of scRNA-seq data

Data generated during scRNA-seq usually gets processed
via two analytical procedures: pre-processing (including
quality control, batch-effect correction, and normalization)
and downstream analysis (cell cycle phase assignment, clus-
tering, reconstruction of cell trajectory and pseudo time,
differential expression and gene set enrichment analysis, as
well as gene regulatory network inference). The following
section will briefly introduce the significance of and
methods for these analytical procedures.

Quality control

Quality control should always be carried out as the first
step for scRNA-seq data. Various methods for quality
control have been developed [12-14]. Data obtained
from poor quality cells (poor activity, containing de-
graded RNA, and zero expression levels of housekeeping
genes such as GAPDH and ACTB) [6] should be ex-
cluded before subsequent bioinformatics analysis to
mitigate its influence on downstream analysis results.
The percentage of mitochondrial reads is a common
quality control metric [15]. When there are a large num-
ber of mitochondrial transcripts, it means that the cells
are in a state of stress [16], so a threshold is commonly
applied to exclude data from cells with too many mito-
chondrial transcripts. Similarly, the proportion of
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ribosomal reads is another commonly used quality con-
trol metric. Because scRNA-seq is mainly used to study
functional (messenger) RNA, cells that have had their ri-
bosomes removed and still have a high proportion of
ribosome reads cannot be further analyzed [17]. In
addition to the quality control methods for a single data-
set, a method denoted ‘scRNABatchQC’ has been pro-
posed that facilitates quality assessment across datasets
to intuitively detect biases and outliers [18]. To aid re-
searchers who are intimidated by scRNA-seq analysis,
Etherington et al. [19] developed tools and training ma-
terials that can be used for scRNA-seq training and
quality control.

Batch-effect correction

During the scRNA-seq experimental procedure, when
cells subject to different conditions are cultured, cap-
tured, and sequenced separately, batch effects will be
evident [20]. There are several methods available for
batch-effect correction of scRNA-seq data, including
Seurat 3 [21], MMD-ResNet [22], Harmony [23], Sca-
norama [24], Liger [25], scMerge [26], ZINB-WaVE [27],
and others. Based on a variety of evaluation indicators,
Harmony, Liger, and Seurat 3 are the recommended
methods for dealing with batch effects, among which
Harmony is the first choice due to its shorter run time
[28]. Recently, a novel numerical algorithm for batch-
effect correction of bulk and scRNA-seq data was pro-
posed, denoted ‘scBatch’. This approach is not limited by
the hypothesis of the batch-effect generation mechan-
ism, and is superior to the benchmark batch-effect cor-
rection algorithms [29].

Normalization

Data normalization is essential for scRNA-seq to make
gene expression comparable within and/or between sam-
ples. A number of methods have been developed for the
normalization of RNA-seq data [30-33]. However, the
majority of methods follow the same principle as bulk
RNA-seq normalization and, thus, are not applicable to
scRNA-seq data [30, 31]. Nevertheless, several methods
have recently been devised to normalize scRNA-seq
data, such as SCONE [34] and regularized negative bino-
mial regression [35]. SCONE provides a flexible frame-
work for users to choose appropriate normalization
methods. Normalization using regularized negative bino-
mial regression effectively eliminates technical differ-
ences due to different sequencing depth without
inhibiting biological heterogeneity. A previous study [36]
compared seven scRNA-seq data normalization methods
with regard to reduction of noise or bias, and found that
each of these methods was suitable to normalize specific
types of data for further downstream analysis.
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Cell cycle phase assignment

Determining the cell cycle phase of a single cell can fa-
cilitate understanding of biological processes such as
tumorigenesis [37—-41] and cell differentiation [42, 43],
and avoid the confounding effects caused by the cell
cycle phase prior to downstream analysis. Scialdone
et al. [44] described and compared six supervised cell
cycle prediction methods based on a cell transcriptome,
of which the parameter-free PCA-based method and the
custom predictor known as the “Pairs” method per-
formed best in allocating cells to the correct cell cycle
stage. Buettner et al. [45] proposed a calculation method,
denoted ‘single-cell latent variable model’ (scLVM),
which can be used to eliminate variations caused by cell
cycle and other confounding factors before downstream
analysis. Recently, Hsiao et al. [46] proposed a new
method to characterize the progress of the cell cycle,
which is different from the traditional classification of
cells according to the standard of cell cycle stage (G1, S
or G2/M phase), but can quantify the cell cycle progres-
sion of induced pluripotent stem cells on a continuum,
which provides a basis for the characterization of the cell
cycle in other cell types.

Cell clustering

One of the basic goals of scRNA-seq data analysis is to
identify cell types from experimental samples to eluci-
date tissue complexity and heterogeneity. Due to the im-
portance of cell type recognition, efforts have been made
to develop new algorithms, including CountClust [47],
CIDR [48], SIMLR [49], SAFE [50], and other advanced
methods. A few studies [51-54] have compared and
summarized diverse clustering algorithms for scRNA-
seq data analysis. Unlike previous methods, Geddes et al.
[55] proposed the first ensemble clustering framework
based on autoencoder dimension reduction, which could
be combined with different clustering algorithms to pro-
mote the accurate recognition of cell types. Since then,
several new clustering methods have emerged, including
DivBiclust [56], a biclustering-based framework, SAME
[57], which extracts cluster solutions from multiple
methods, and PARC [58], which is suitable for large-
scale single-cell data. To overcome flaws associated with
the manual labeling of cell types, Shao et al. [59] devel-
oped an automatic annotation toolkit, denoted
‘scCATCH’, based on clustering, which can accurately
annotate cell types with acceptable repeatability.

Reconstruction of cell trajectory and pseudo-time

By reconstructing cell trajectory and pseudo-time based
on scRNA-seq data, dynamic processes in cells can be
calculated and simulated, which is of great significance
for understanding the transition between cell states in
cancer [60]. Currently available algorithms include
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Monocle 2 [61], Monocle 3 [62], TSCAN [63], Slingshot
[64], SLICE [65], LISA [66], p-Creode [67], Waddington-
OT [68] and others. Considering the exponential growth
in the size of scRNA-seq data, Chen et al. [66] proposed
an unsupervised method, denoted ‘Lisa’, for the recon-
struction of cell trajectory and pseudo-time for a large
number of scRNA-seq datasets. p-Creode is another un-
supervised algorithm that can predict cell state-
transition trajectories. Waddington-OT uses the math-
ematical method of optimal transport (OT) to infer
ancestor-descendant fate, and reconstruct cell trajector-
ies. In addition to the three methods mentioned above,
the algorithms Monocle 2 (the new version Monocle 3),
TSCAN, and Slingshot have been shown to have good
performance at reconstructing cell trajectory and
presudo-time [69].

Differential expression and gene set enrichment analysis
One of the most common uses of gene expression data
is for the identification of differentially expressed (DE)
genes under different experimental conditions (e.g.,
stimulated versus non-stimulated, mutant versus wild-
type, or between different time points), and thus to de-
termine the root cause of phenotypic differences ob-
served under different conditions [70]. A zero value for a
gene’s expression level in scRNA-seq data may indicate
two things. One is the “real” zero, caused by the chan-
ging characteristics of single-cell gene transcription,
while the other is the “dropout” zero, caused by tech-
nical reasons, which often affects the validity of differen-
tial expression analysis. Miao et al. [71] developed the R
package DESingle, which can accurately distinguish be-
tween the two types of zeros. DECENT is a DE gene
analysis method based on UMI scRNA-seq data, and is
used to analyze the pre-dropout distributions of inferred
RNA molecules [72]. In addition to dropout zeros, an-
other challenge in differential expression analysis of
scRNA-seq data is multimodal data distribution. ZIAQ
is the first approach to consider both dropout rates and
the complex distributions of scRNA-seq data, which can
be used to identify more DE genes [73].

We usually group DE genes according to their partici-
pation in common biological processes to facilitate the
interpretation of results [74]. Existing gene set enrich-
ment (GSE) analysis methods include DAVID [75],
PAGE [76], CAMERA [77] and others, but almost all of
these methods are more suitable for bulk RNA-seq ana-
lysis [78]. In addition, almost all existing GSE methods
are used as a separate step after DE analysis. Considering
the above shortcomings, Ma et al. [79] proposed IDEA, a
computational method integrating DE analysis and GSE
analysis for scRNA-seq, which could greatly improve the
outcomes of both.
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Gene regulatory network inference

The combination of active transcription factors and their
target genes is usually described in gene regulatory net-
works (GRNs). Revealing these regulatory interactions is
the goal of GRN inference methods, providing valuable
insights for the identification of causal regulatory factors
in biological processes [74]. A class of GRN inference
methods are based on Boolean network models, such as
SCNS toolkit [80] and BTR [81]. Another approach for
the inference of regulatory networks is based on co-
expression analysis, and example models include SINC
ERA [82], which is specifically used for scRNA-seq data.
In addition, there are algorithms based on ordinary dif-
ferential equations, such as SCODE [83] and InferenceS-
napshot [84]. Recently, Moerman et al. [85] proposed
the GRNBoost2 and Arboreto frameworks, which can
help researchers to deduce high-quality GRNs from large
datasets in a reasonable amount of time.

Progress of single-cell RNA sequencing in tumors
Cancer patients may be unresponsive to therapy due to
drug resistance and metastasis of single cells, both of
which constitute major challenges in the treatment of
malignant tumors. About 90% of available drugs are ef-
fective in less than half of patients [86]. Cancer is associ-
ated with the interaction of thousands of gene products,
and genotype as well as interactions vary greatly within
and between tumors [87], which is a key reason for the
failure of some drugs. In contrast to bulk analysis, which
does not account for the differences between cancer cells
and their cancer-related counterparts, scRNA-seq pro-
vides unprecedented high resolution for the analysis of
each individual malignant cell, stromal cell, endothelial
cell, parenchymal cell, and immune cell, as well gene ex-
pression and pathway activation [88]. Thus, scRNA-seq
provides insights that contribute to the development of
strategies for cancer treatment and personalized medi-
cine (see Additional file 1).

Highlighting intra- and inter-tumoral heterogeneity

The considerable heterogeneity of tumors and tumor tis-
sue samples between different patients is an important
reason for treatment failure [89]. Therefore, understand-
ing the functional status of individual tumor cells and
recognizing cell subset composition and characteristics
is of great significance for cancer biology and treatment
strategies (Table 1 (see Additional file 2)).

Glioblastoma (GBM) is the most common primary
malignant brain tumor in adults [90]. It is the glioma
with the highest degree of malignancy, and the most
often seen in clinical practice, with poor prognosis and a
lack of effective treatment regimens [91]. In 2014, Patel
et al. [92] analyzed 430 cells of 5 primary GBMs (all
IDH1/2 wild-type primary GBMs) using scRNA-seq, and
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found that these cells differed in the expression of vari-
ous programs related to carcinogenic signaling pathways,
cell proliferation, the immune response, and hypoxic
stress. In 2018, Yuan et al. [93] analyzed high-grade gli-
oma (HGG) with large-scale parallel scRNA-seq using a
high-density microwell system, and found that, similar
to oligodendrocyte progenitors, glioma cells exhibited
proliferative characteristics. In contrast, similar to astro-
cytes, neuroblasts, and oligodendrocytes, glioma cells ex-
hibited an amitotic state in tumors.

Melanoma is a highly malignant skin cancer with four
clinically distinguishable subtypes and is responsible for
approximately half of skin cancer-related deaths in Japan
[94]. Gerber et al. [95] used scRNA-seq to analyze tran-
scription in cells from three different metastatic melan-
oma patients (BRAF/NRAS wild type, BRAF mutant/
NRAS wild type, and BRAF wild type /NRAS mutant).
BRAF/NRAS wild-type samples had a low-abundance
subgroup with high expression of ABC transporters,
while cells from the other two samples exhibited more
homogeneous single-cell gene expression patterns.

Head and neck squamous cell carcinoma (HNSCC)
encompasses a group of malignant tumors originating
from the squamous epithelium of the oral cavity, oro-
pharynx, larynx, and hypopharynx [96-98]. Puram et al.
[9] generated scRNA-seq profiles of HNSCC in 18 pa-
tients and found that stromal and immune cells had the
same expression program per patient, whereas the ex-
pression programs of malignant cells within and between
tumors were different with regard to cell cycle, hypoxia,
stress, and epithelial differentiation.

Lung cancer (LC) can be divided into two subtypes:
small-cell lung carcinoma (SCLC) and non-small-cell
lung carcinoma (NSCLC), among which NSCLC ac-
counts for the majority of LC cases [99]. Lambrechts
et al. [100] analyzed 92,948 NSCLC cells (84,341 stromal
cells) at single-cell resolution, and identified 52 subtypes
of stromal cells, providing a comprehensive list of stro-
mal cell types. Based on these findings, the tumor micro-
environment (TME) of lung cancer is more complex and
heterogeneous than previously thought.

Acute myeloid leukemia (AML) is a highly heteroge-
neous hematological malignancy. Van Galen et al. [101]
profiled the cells of 16 patients with AML and 5 healthy
donors by combining scRNA-seq with single-cell geno-
typing, and then correctly classified the cell types by ma-
chine learning, which could correctly distinguish normal
cells from cancer cells, and identified 6 malignant cell
types, which comprehensively parsed the heterogeneous
ecosystem of AML.

Discovery of invasion and metastasis mechanisms
The ability of single-cell gene expression profiling to
identify specific patterns of gene expression allows for
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the elucidation of mechanisms underlying tumor inva-
sion and metastasis [102—105] that are critical for pre-
venting the spread of cancer, which considerably
complicates treatment (Table 2 (see Additional file 3)).

Pancreatic cancer is one of the leading causes of
cancer-related death in developed countries, and it ranks
7th in cancer-related deaths among both men and
women [106]. Ting et al. [107] obtained high-quality
transcripts from 93 single mouse pancreatic circulating
tumor cells (CTCs) and compared them with scRNA-
seq data from pancreatic cancer patients. The expression
of an extracellular matrix protein-encoding gene, SPAR
C, was abnormally high in both mouse and human pan-
creatic CTCs, and its knockdown decreased the ability of
cancer cells to invade and metastasize, indicating that
the gene is closely related to pancreatic cancer invasion
and metastasis. In 2017, Puram et al. [9] identified par-
tial epithelial-to-mesenchymal transition (p-EMT) in
malignant HNSCC tumor cells through scRNA-seq.
Cells exhibiting p-EMT activation were located at the
outer area of primary tumors, promoting the invasion
and metastasis of tumor cells.

Breast cancer is by far the most common malignancy
in women [108] as well as the leading cause of cancer-
related death in women [109]. Chung et al. [110] con-
ducted transcriptomic analysis of 515 single cells from
patients with different breast cancer subtypes, revealing
the gene expression patterns of cancer cells and immune
cells. It is worth noting that rare cell types exhibiting
pronounced EMT and stemness phenotypes were identi-
fied in triple-negative breast cancer (TNBC), and these
may be a driving force of tumor progression and metas-
tasis. Multiple myeloma (MM) is the second most com-
mon hematologic malignancy and cannot be completely
cured [111]. Geng et al. [112] performed single-cell tran-
scriptomic analysis of cells taken from 21 MM patients,
and found that the chemokine CXCL12 was abnormally
upregulated in circulating plasma cells (cPCs). CXCL12
may prompt cPCs to escape bone marrow retention and
migrate into the bloodstream, eventually forming an
extramedullary plasmacytoma (EMP).

Study of drug resistance mechanisms
When anti-cancer drugs are used to target tumor cells,
some cells develop resistance to drugs and contribute to
disease relapse, rendering treatment ineffective. SCRNA-
seq can be employed to distinguish between primary and
recurrent tumor cells, providing insight into the cell sub-
sets responsible for tumor recurrence, mutated genes,
and multiple pathways that drive tumor growth. Thus,
scRNA-seq can guide strategies for the treatment of tu-
mors (Table 3 (see Additional file 4)).

In 2014, Lee et al. [113] employed scRNA-seq in meta-
static  breast cancer cells treated with the
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chemotherapeutic agent paclitaxel. A small number of
cells failed to respond to paclitaxel by producing specific
RNA variants, but these transcripts were not detected in
the two groups of cells that were not treated with
chemotherapy or effective chemotherapy. In 2015, Kim
et al. [114] conducted scRNA-seq on 34 patient-derived
xenograft (PDX) cells isolated from a xenograft tumor of
a lung adenocarcinoma (LUAD) patient, and identified a
tumor cell subpopulation related to anti-cancer drug re-
sistance that expressed KRASS*" through gene expres-
sion and mutation profiling. In 2016, Tirosh et al. [4]
performed scRNA-seq on 4645 cells isolated from 19 pa-
tients with melanoma, and found that all tumors con-
tained cells with two transcriptional states, namely
“MITE-high” and “AXL-high”. After treatment with
RAF/MEK inhibitors, the number of “AXL-high” cells
gradually increased from their initially small population.
However, the proportion of “AXL-high” cells in a lot of
the tumors remained almost unchanged, indicating that
the cells with high AXL expression were related to tar-
geted therapy resistance. In 2018, Chen et al. [115] per-
formed scRNA-seq in over 200 single cells (from
patients with primary and relapsed glioblastoma multi-
forme), revealing relapse pathways in GBM. A trio of
mutated genes, all involved in the RAS/GEF GTP-
dependent signaling pathway, were identified in single
cells from relapsed GBM multiforme, but not in those
from primary tumors. The authors further confirmed
the identified molecular pathway by meta-analysis of
RNA-seq data from thousands of patients.

Medulloblastoma (MB) is one of the most common
malignant brain tumors in children, with a higher inci-
dence in children aged 3 to 4years and 8 to 10 years,
and is slightly more prevalent in boys [116], with no sig-
nificant racial bias [117]. In 2019, Ocasio et al. [118] an-
alyzed the response of Sonic Hedgehog (SHH)-driven
mouse MB to the SHH-pathway inhibitor vismodegib by
using scRNA-seq and lineage tracking. Vismodegib
could reduce some proliferative cell subgroups and pro-
mote the differentiation of certain cells. However, spe-
cific cell types continued to proliferate in vismodegib-
treated tumors, exhibiting either sustained SHH-
pathway activation or stem cell characteristics.

Characterization of the tumor immune microenvironment
Various types of immune cells infiltrate tumor tissue
[119-128]. The gene expression status of each myeloid
cell and lymphocyte can be obtained via scRNA-seq, pro-
viding insights into the immune status of cancers. Such
scRNA-seq data is a valuable asset for formulating effect-
ive immunotherapy approaches for cancer, alongside
studying the basic characteristics of tumor-infiltrating im-
mune cells (Table 4 (see Additional file 5)).
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Hepatocellular carcinoma (HCC) usually occurs in the
context of advanced chronic liver disease, and is primar-
ily associated with hepatitis B or C virus infection and
alcohol abuse, accounting for 70-85% of the total cases
of liver cancer [129]. Zheng et al. [8] performed deep
scRNA-seq on 5,063 T cells isolated from tumors, per-
ipheral blood, and the adjacent normal tissue of 6 HCC
patients. They observed that 11T cell subsets were
present in the HCC microenvironment. The gene LYAN
was highly expressed in activated CD8+ T cell and
Tregs, which could inhibit the function of CD8+ T cells.
In 2017, Muller et al. [130] applied scRNA-seq to
glioblastoma-derived myeloid cells, particularly tumor-
associated macrophages (TAMs), for the first time. The
results revealed that blood-derived TAMs and microglial
TAMs exhibited different phenotypes and localization
within the tumor. Compared with microglial TAMs,
blood-derived TAMs could upregulate immunosuppres-
sive cytokines, exhibited metabolic changes, and were
enriched in perivascular and necrotic areas. Moroever,
in 2017, researchers from another group [131] used
paired single-cell analysis to study the innate immunity
of early-stage LUAD, and found a large number of Treg
and non-functional T cells, as well as NK cell depletion,
in a stage I tumor, indicative of compromised anti-
tumor immunity. Some of the immune features found in
advanced LC were also present in early LC. For example,
PD-1 was present on some of the CD4+ and CD8+ T
cells at both stages. In 2018, Azizi et al. [132] performed
scRNA-seq on 45,000 immune cells, mapped the various
immune cell phenotypes in the breast TME, and identi-
fied most of the immune cell types in 8 patients. Al-
though the expression profiles of immune cells were
quite similar between tumor and normal tissue samples,
specific phenotypic expansion was observed in tumor
immune cells, and T cells were in a continuous state of
activation, which did not conform to the traditional
polarization distribution model of cancer macrophages.

Colorectal cancer (CRC) is a common gastrointestinal
malignancy, and is the third most common cancer in the
United States [133]. Zhang et al. [134] obtained the tran-
scriptomes of 11,138 single T cells from 12 patients with
CRC by scRNA-seq, and quantitatively analyzed the dy-
namic relationship between the development, function,
and migration of 20T cell subsets through TCR
tracking.

Resolution of long disputed questions
ScRNA-seq can solve problems that previous technolo-
gies could not address, thus resolving debates and con-
tributing to the development of oncology.

The relationship between human cytomegalovirus
(HCMV) and GBM is an ongoing debate, as the detec-
tion of HCMV in GBM samples via molecular assays
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may be influenced by cellular heterogeneity. In 2017,
Johnson et al. [135] aligned the scRNA-seq reads from 5
GBM tumors and 2 cell lines to HCMYV, and found that
no complete transcripts of the HCMV virus were discov-
ered in either tumor samples or cell lines.

Understanding the origin and evolution of tumors
ScRNA-seq can be used to better understand the occur-
rence and development of tumors at the cellular level,
which enables to the exploration of new therapeutic
methods (Table 5 (see Additional file 6)).

In 2016, Tirosh et al. [136] selected 4347 cells from 6
untreated grade II oligodendrogliomas (harboring IDH1
or IDH2 mutations) and analyzed them using scRNA-
seq, and found that the cells with proliferative character-
istics were highly enriched in a small number of undif-
ferentiated rare subpopulations, suggesting that
malignant proliferative cells within oligodendrogliomas
could mainly originate from such a subgroup. In 2017,
Venteicher et al. [137] combined scRNA-seq profiles
from astrocytoma (IDH-A) and oligodendroglioma
(IDH-O) tumors with 165 TCGA bulk RNA-seq profiles
to analyze their genotype, phenotype, and the TME. The
shared glial lineages and developmental hierarchy ob-
served in both IDH-A and IDH-O tumors indicated that
all IDH mutant gliomas had a common progenitor. In
2019, Saurty-Seerunghen et al. [138] analyzed public
scRNA-seq data from surgically resected GBM samples
and obtained a comprehensive view of metabolic path-
ways. ELOVL2 was closely related to the tumorigenicity
of GBM cells, and knockdown of the ELOVL2 gene
could inhibit GBM tumorigenicity, indicating that the
overexpression of ELOVL2 promoted the growth of
GBM. The authors further explored the mechanisms of
ELOVL2 and found that the formation and release of
extracellular vesicles is one of the pathways through
which the regulation of which ELOVL2 controls GBM
development.

In 2019, Hovestadt et al. [139] obtained 25 MB sam-
ples, including all molecular subgroups, and created the
first cell map of all MB subgroups, revealing that group
4-MB probably originated from unipolar brush cells and
glutamatergic cerebellar nuclei. In the same year, Weng
et al. [140] identified Zfp36ll as a key regulator of
oligodendrocyte-astrocyte lineage transition and glioma-
genesis by lineage-targeted single-cell transcriptomics
analysis. Through experiments in mouse and human gli-
oma cells, Zfp36l1 was demonstrated to control the gen-
esis and growth of gliomas. Furthermore, gliomas with
higher expression of Zfp36l1 were more difficult to treat.
In 2020, Chen et al. [141] collected a large cohort of his-
tone H3.3 G34R/V (glycine 34 to arginine or valine)
HGGs (1 =95), and proved that G34R/V HGGs origi-
nated from interneuron progenitors expressing GSX2/
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DLX using scRNA-seq, and then confirmed this result
using epigenomic profiles.

Applications in anticancer research design

At present, practice has proven the guiding significance
of scRNA-seq in anticancer protocol design, with im-
portant clinical application value in personalized diagno-
sis, treatment, and prognosis, as well as the evaluation of
treatment effect for highly heterogeneous tumors
(Table 6 (see Additional file 7)).

About 30% of patients with renal cell carcinoma
(RCC) are diagnosed with metastases, and metastatic
renal cell carcinoma (MRCC) is one of the most drug-
resistant malignancies [142]. In 2016, Kim et al. [143]
used scRNA-seq to detect the activation of targeted
pathways in patients with refractory MRCC at the
single-cell level. On the basis of predicting the activation
of multiple drug target pathways, the authors proposed a
combinatorial therapeutic strategy for the treatment of
metastatic cancer. Whether in vitro or in vivo, the effect
of this combined strategy was significantly improved
compared to monotherapy. In 2019, Zhang et al. [144]
proposed a multilayer network biomarker (MNB) based
on the scRNA-seq data of IDH-mutant astrocytoma
samples. MNB links cancer cells and the TME, allowing
for prognosis and prediction of the therapeutic response
in glioma patients.

Identification of potential therapeutic targets

Modern cancer treatment approaches are often limited
in their efficacy. In-depth analysis of malignant prolifera-
tive cells and immune cells at single-cell resolution is
conducive to the identification of potential therapeutic
targets, contributing to the development of new drug
therapy and the improvement of patient survival rate
(Table 7 (see Additional file 8)).

In 2017, Darmanis et al. [145] performed scRNA-seq
on 3589 cells taken from the tumor core and surround-
ing tissue of 4 GBM patients. Groups of genes involved
in size regulation, energy production, inhibition of apop-
tosis, regulation of intercellular adhesion, and central
nervous system development were identified by analyz-
ing the upregulated genes in infiltrating tumor cells,
which could open up new avenues for treatment. In
2018, a study [146] conducted scRNA-seq on 3321 cells
from 6 primary gliomas with histone H3 lysine27-to-
methionine mutations (H3K27m-glioma) and matched
models (PDX, gliomaspheres, and differentiated glioma
cells), and found that H3K27m-glioma were mainly
composed of cells similar to oligodendrocyte precursor
cells (OPC-like). OPC-like cells exhibited greater prolif-
erative ability and are maintained, at least in part, via
PDGEFRA signaling. In 2019, Wang et al. [147] extracted
16,128 tumor cells from epidermal growth factor
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receptor (EGFR) and EGFRVIII GBM tumors for scRNA-
seq. RAD51AP1 was for the first time identified as an
oncogene in GBM, highly related to EGFRVIIL. This
study revealed a new possibility for treatment using tem-
ozolomide combined with RAD51AP1, which could en-
hance the therapeutic effect and prolong patient
survival.

Nasopharyngeal carcinoma (NPC) is an epithelial car-
cinoma arising from the lining of nasopharyngeal mu-
cosa [148-152]. Although there is considerable NPC
incidence in east and southeast Asia, it is not common
compared to other types of cancer. Zhao et al. [7] con-
structed the first transcriptome profiles of primary NPC
malignant cells and infiltrating immune cells using
scRNA-seq. A high proportion of B cells infiltrating into
the TMEs of three NPC patients was identified, and the
expression of cell cycle genes related to proliferation was
significantly upregulated in EBV-positive NPC cells, sug-
gesting that B cells and cell cycle gene expression may
be potential treatment targets. In addition, LAG-3 and
HAVCR-2 were the most expressed checkpoint genes in
CD8 + T cells and may thus be potential new checkpoint
inhibition targets for NPC immunotherapy.

Conclusions
High-throughput scRNA-seq technology is transforming
biomedical research by establishing the transcriptome
profiles of individual cells from different tissue samples
[55, 153]. While there are various sequencing platforms
and tools available for analyzing scRNA-seq data, each
has its limitations. With ongoing technological develop-
ments, scCRNA-seq will become more high-throughput,
the cost of scRNA-seq and associated data analysis will
decrease, the time required will be shorter, and various
indicators such as accuracy and sensitivity will improve.
In time, scRNA-seq will be more widely used in the
study of various tumor types, helping to develop better
diagnostic and prognostic biomarkers, and design more
accurate anticancer therapy to improve therapeutic effi-
cacy and avoid tumor drug resistance. While the tran-
scriptome of cells can be studied through scRNA-seq,
there are some limitations to this method, particularly
with regard to genomic and protein-level information.
When CITE-seq was used in combination with scRNA-
seq, the transcripts and surface marker proteins of cells
could be detected simultaneously, and the phenotypes
that could not be detected by scRNA-seq alone could be
found [154]. The combination of scRNA-seq with geno-
typing can more accurately distinguish malignant cells
from normal cells [101]. In the future, different omics
technologies could combine with scRNA-seq technology
to more comprehensively characterize individual cells.
With deepening understanding of the cellular dynamics
of cancer, the efficacy of personalized medicine will
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improve, ultimately saving lives and reducing the global
burden of cancer on healthcare systems.
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