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Abstract

The extracellular matrix (ECM) plays an important role in cancer progression. It can be divided into the basement
membrane (BM) that supports epithelial/endothelial cell behavior and the interstitial matrix (IM) that supports the
underlying stromal compartment. The major components of the ECM are the collagens. While breaching of the BM
and turnover of e.g. type IV collagen, is a well described part of tumorigenesis, less is known regarding the impact
on tumorigenesis from the collagens residing in the stroma. Here we give an introduction and overview to the link
between tumorigenesis and stromal collagens, with focus on the fibrillar collagens type I, II, III, V, XI, XXIV and XXVII
as well as type VI collagen. Moreover, we discuss the impact of the cells responsible for this altered stromal
collagen remodeling, the cancer associated fibroblasts (CAFs), and how these cells are key players in orchestrating
the tumor microenvironment composition and tissue microarchitecture, hence also driving tumorigenesis and
affecting response to treatment. Lastly, we discuss how specific collagen-derived biomarkers reflecting the turnover
of stromal collagens and CAF activity may be used as tools to non-invasively interrogate stromal reactivity in the
tumor microenvironment and predict response to treatment.
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Introduction
The ECM is an extensive part of the microenvironment
in all tissues. It consists of a non-cellular meshwork of
proteins, glycoproteins, proteoglycans and polysaccha-
rides. When structured in an orderly manner, the ECM
provides a physical scaffold for its surrounding cells,
bind growth factors and regulate cell behavior.
The ECM can be divided into two matrices: the base-

ment membrane (BM) and the interstitial matrix (IM).
Under healthy conditions, the BM is a well-structured
membrane underlining epithelial and endothelial cells
and separating them from the IM. When fully assembled
the BM provides structural support to underlining cells
and regulate cell behavior. The IM makes up the main

stroma and plays a major role in cell migration, cell ad-
hesion, angiogenesis, tissue development and repair [1].
The major proteins in the ECM are collagens, which

constitutes up to 30% of the total protein mass in the
human body [2]. The collagens are organized in a re-
laxed meshwork surrounded by proteins such as elastin
and glycoproteins causing a resilience to extensive ten-
sile strength [2]. Of today, 28 different collagens have
been identified creating a unique ECM composition in
different tissues. The 28 collagens can be divided into
several distinct subgroups, where the so-called
fibrillar-forming collagens and the network-forming col-
lagens have been most extensively characterized [3]. The
major components of the BM are the network-forming
collagens such as type IV and type VIII collagen whereas
the IM is dominated by the fibrillar-forming collagens
type I, II, III, V, XI, XXIV, XXVII and the beaded fila-
ment type VI collagen synthesized by the fibroblasts re-
ceding in the stroma [4–8]. These collagens are not just
collagens but individual structures creating a complex
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network that interact with each other and the surround-
ings (Fig. 1).
In the healthy tissue there is an ongoing ECM remod-

eling to maintain tissue integrity and function, e.g. new
collagens synthesized that replaces older proteins that
are degraded. The collagen production and assembly in
healthy tissue is highly regulated by a perfect counterbal-
ance of metalloproteinases (MMPs) and inhibitors of
MMPs as well as a controlled activity of other enzymes
such as lysyl oxidases (LOX) [9, 10].
During cancer, the ECM-dynamics are skewed. It is

well established that cancer cells secrete high amounts
of MMPs, which in turn remodel and degrade the BM.
The remodeling of the BM leads to a complex chaos of
pro- and antitumor signals from degradation products.
The role of type IV collagen turnover, within the BM,
has been extensively studied in relation to tumor biol-
ogy. Several studies have shown that proteolytic cleavage
of collagen IV can expose so-called cryptic domains,
which are normally hidden when collagen IV is fully as-
sembled [11–14]. Similar things have been seen with
other BM collagens e.g. type XVIII collagen [15]. De-
pending on the context, these cryptic sites have both

pro- and anti-tumor effects; still the turnover and deg-
radation of BM collagens are intrinsically associated with
the invasive phenotype of malignant cells [11].
Tumor cell invasion through the BM expose malignant

cells to the IM and the fibroblast derived collagens; type I,
II, III, V, VI, XI, XXIV and XXVII collagens. Type I, II, III,
V, XI, XXIV and XXVII collagens are all fibrillary colla-
gens embedded in the IM, whereas type VI collagen is
found in the interface between the BM and the IM. Emer-
ging evidence indicate a high impact of fibroblast-derived
collagens and so-called cancer associated fibroblasts
(CAFs) in tumorigenesis [16, 17]. During tumor progres-
sion, CAFs are the major players in the dysregulated colla-
gen turnover leading to tumor fibrosis (desmoplasia)
characterized by excessive collagen depositions in the sur-
roundings of the tumor [18, 19]. The collagens are often
crosslinked and linearized leading to increased stiffening
of the tissue (Fig. 2). This elicits behavioral effects on
surrounding tumor cells, and regulate cell proliferation,
differentiation, gene expression, migration, invasion, me-
tastasis and survival and hereby the collagens are directly
affecting the hallmarks of cancer [20]. In support, tumor
tissue, containing a large amount of these fibroblast

Fig. 1 Collagens within the basement membrane and interstitial matrix. Schematic drawing of the structure and localization of network-forming
collagens (type IV collagen), beaded filament (type VI collagen) and fibril-forming collagens (type I, II, III, V, XI, XXIV and XXVII collagens)
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derived stromal collagens is directly correlated with
poorer outcome for the patient [21–25].
Here we give an introduction and overview to the link

between tumorigenesis, fibroblasts derived collagens and
CAFs.

CANCER ASSOCIATED FIBROBLASTS – Key players in
cancer progression and desmoplasia
New insight into the role of CAFs have shown that these
cells play a key-role in cancer progression. In the tumor
microenvironment, transforming growth factor beta
(TGF-β), platelet-derived growth factor and fibroblast
growth factor-2, among others, secreted from malignant
cells, attracts fibroblasts from neighboring tissue as well
as aid in the transformation of normal fibroblast to
CAFs within the tumor tissue [26–30]. Up to 80% of the
normal fibroblasts in breast tissue acquire the CAF
phenotype during cancer progression [17]. Interestingly,
CAFs can also originate from epithelial cells [31], im-
mune cells and endothelial cells [32] emphasizing the
complexity of this cell type. The CAF phenotype is char-
acterized by changes in morphology and increased ex-
pression of myofibroblast markers such as alpha-smooth
muscle actin (α-SMA), Vimentin, type XI collagen, fibro-
nectin, fibroblast specific protein 1 (FSP-1) and fibro-
blast activating protein (FAP) [33]. Furthermore, CAFs
show increased production of IM collagens [34, 35]. It is
an ongoing discussion whether distinctive features

between CAFs and myofibroblasts exist. The literature
focusing on this topic is scarce and it seems that there is
no consensus on what define quiescent fibroblasts, myo-
fibroblasts and CAFs. Myofibroblasts (hepatic myofibro-
blasts) and CAFs (fibroblasts isolated from liver cancer
patients) expressing α-SMA and Tenascin-C show simi-
lar apoptosis signaling compared to fibroblasts not ex-
pressing α-SMA and Tenascin-C (defined by the authors
as quiescent fibroblasts) [29]. However, in another study
performed by Öhlund and colleagues, it was shown that
the transcriptional profiles between myofibroblasts (pan-
creatic stellate cells grown in monolayer) and CAFs
(pancreatic stellate cells cocultured with tumor organoids)
differs [36]. Thus, the difficulties in defining what a CAF
is and compare these cells/cell states [37] to other cells is
still an ongoing battle. To further complicate things, many
studies have shown that different CAF subtypes exist
based on differences in protein expression, paracrine sig-
naling, tumorigenicity, invasion profile, ECM modifying
capacities etc. [16, 19, 27, 33, 35, 36, 38–40].
Several studies indicate that CAFs modulate epithelial

transformation and promote cancer progression. As one
example, CAFs have shown to initiate malignant trans-
formation in non-malignant cells through overexpres-
sion of estrogen, TGF-β and hepatocyte growth factor
[41, 42]. As another example, a more mesenchymal
phenotype has been observed for non-malignant pros-
tate cells, when co-cultured with CAFs [43]. In addition

Fig. 2 The extracellular matrix during tumor progression. As the cancer cells invade the basement membrane (BM) the interstitial matrix (IM) becomes
more and more desmoplastic characterized by an increased activity of cancer-associated fibroblasts (CAFs) and augmented volume of cross-linked
type I, II, III, V, VI, XI, XXIV and XXVII collagens. In the later stages of tumor progression, desmoplasia pre-dominate the tumor microenvironment with
signals from CAFs and IM collagens stimulating and sustaining the tumor progression
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to these in vitro examples, the initiation of cancer, by
CAFs, have also been shown in vivo, where the injection
of non-tumorigenic prostate cells, co-cultured with
CAFs, lead to the formation of large tumors. On the
contrary, no formation was evident when cells were cul-
tured with normal fibroblasts [41]. Other than initiating
cancer, CAFs have also been shown to sustain cancer
progression and induce angiogenesis. Breast tumor tis-
sue, isolated from mice, containing abundant amounts
of CAFs shows increased vascularity compared to tissue
with normal fibroblast [44]. Glentis and colleagues, sug-
gest that CAFs play a role in the invasion of cancer cells
through the BM by pulling and stretching the BM result-
ing in small wholes which the cancer cells can squeeze
through [39]. They also showed that especially invasive
tumors from colon cancer patients are surrounded by a
thick capsule of CAFs, which further suggests CAF in-
volvement in invasion [39]. In line with this, CAFs also
play a role in metastasis. Lung cancer cells treated with
media from CAFs have increased migration potential
compared to cells treated with media from normal fibro-
blasts [45]. This is further supported, by a study showing
that cervical cancer cells co-transplanted with CAFs into
mice leads to lymph node metastasis. In contrast, injec-
tions without CAFs do not lead to lymph node metasta-
sis [46]. The association between CAFs and lymph node
metastasis has also been shown in esophageal squamous
cell carcinoma in humans [47]. Several studies have also
shown that CAFs play a role in inflammation by modu-
lation of inflammatory components which promote
tumor growth and metastasis [36, 48–50] (reviewed by
[51]). Thus, these examples show the important role
CAFs play in initiating and sustaining epithelial trans-
formation and cancer progression across many different
solid tumor types.
Aside from directly affecting cancer cells, CAFs are also

major contributors to desmoplasia and remodeling of the
ECM. Recent evidence indicates that CAFs modulate the
desmoplastic reaction by affecting a wide variety of ECM
proteins during tumorigenesis. A study has shown that
CAFs take part in the assembly of fibronectin, which is
highly abundant in the ECM and strongly involved in me-
tastasis [52]. CAFs also express high amounts of the major
ECM component hyaluronic acid, which has shown to
encompass many structural and biological functions in
tumor progression [53]. The oncogenes YAP/TAZ are
suggested as being part of the remodeling processes
exerted by CAFs. When the ECM becomes stiff, YAP/
TAZ gets transcriptionally active and promote CAF func-
tion which further stiffens the ECM (reviewed in [54])
[55]. The regulation of YAP/TAZ, resulting in CAF activ-
ity, is further regulated by the so called Rho family of
small GTPases, which plays a role in CAF functioning and
myofibroblast signaling [54, 56, 57].

Some of the major steps in desmoplasia are
cross-linking of collagens, fiber elongation and fiber re-
alignment, which are associated with poor survival in
cancer patients [35, 58]. CAFs secrete increased amounts
of MMPs and LOX-proteins, which catalyze these steps
[19, 35]. CAF secreted MMPs also play a key role in
neovascularization because of the release of VEGF from
degraded matrix [11, 39, 59]. ECM proteins secreted and
modulated by CAFs further recruit other cell types such
as immune cells, which promote tumor progression [26,
27]. Finally, a key step in desmoplasia, is the increased
expression of fibroblast-derived collagens within the
stroma. The accumulation of collagens, accompanied by
increased cross-linking and stiffening of the tissue in-
crease interstitial fluid pressure [60]. This effect has
been shown to reduce drug delivery of chemotherapy
and immunotherapy [60]. The stiffened tissue also play a
role in tumor cell invasion, as the cross-linked collagens
can create paths for the tumor cells to travel on [61].
Although consensus is that desmoplasia is a

pro-tumorigenic event, results have emerged from mouse
studies that have raised debate in the field. In one study, it
has been shown that when the stromal content was re-
duced by deleting the sonic hedgehog protein in a pan-
creas cancer mouse model, the mice had more aggressive
tumors as compared to control mice [62]. This was sup-
ported by similar findings, showing that the depletion of
CAFs in mice led to much more aggressive tumors [63].
These findings do not exclude that desmoplasia is
pro-tumorigenic, but suggest that a homeostatic restor-
ation of the desmoplastic stroma, rather than its ablation,
may be the best approach for eliminating tumor progres-
sion, as also suggested by Froeling and Kocher [64]. To
further complicate matters, it has been suggested that
some CAF subsets promote cancer, while others inhibit
cancer [16, 65]. Albeit CAF biology and desmoplasia is
complex, tumor tissue containing high amounts of CAFs
have been reported to correlate with poor patient outcome
in many different cancer types including colorectal, breast,
tongue and esophageal cancer [66–70].

Fibroblast derived stromal collagens and their
contribution to tumorigenesis
While extensive research is currently going in the direc-
tion of CAF phenotype and their prognostic aspects, less
in known regarding the collagens they produce. Are
there functional differences in the collagen profile of tu-
mors and does ‘good’ and ‘bad’ collagens exist in the
tumor microenvironment as has been described for
fibrosis [71], i.e. are collagen components originating
from CAFs affecting tumor progression?
Collagens, and especially fibroblast-derived collagens

(fibrillar collagens and the beaded filament type VI colla-
gen), are extremely important in cancer. Most of these
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collagens are upregulated in cancer on both gene and
protein level. They all modulate crucial steps in
tumorigenesis such as proliferation, apoptosis, angiogen-
esis, invasion and metastasis. For many of the
fibroblast-derived collagens specific chains of the colla-
gens and pro-collagens have shown to be the effectors.
Some studies even suggest that few of these collagens
can inhibit tumorigenesis, and that different levels of
collagens have different effects [72–74]. This do suggest,
that the turnover of fibroblast-collagens is important
and relevant in the cancer setting and should be consid-
ered when exploring these collagens. Here we give an
overview of these collagens and their contribution to
tumorigenesis (Table 1).

Type I collagen
Type I collagen is the most abundant collagen through-
out the body. It is the major component of the bone and
is present in blood vessels, cornea, sclera, tendon, liga-
ments and skin. It is the most common collagen in the
IM, where it has key structural roles. Apart from its
structural role, type I collagen possess important growth
factor binding potential, and via its binding to a variety
of proteins regulate cell homeostasis [75].
A number of studies have shown that type I collagen

play a significant role in bone related diseases, inclusive
bone cancer and cancer-related bone metastasizes. Espe-
cially the turnover of type I collagen has shown to be
important [76–79].
Type I collagen is also dysregulated in other solid

tumor types (than bone cancer) and can affect tumor
cell behavior. Compared to healthy tissue, the amount of
type I collagen is augmented in pancreas, colorectal,
ovarian, breast and lung cancer [21, 23, 24, 80].
Pancreas cancer cells exposed to type I collagen show

increased proliferation, are less responsive to apoptosis,
secrete higher amounts of TGF-β and show a strong re-
duction in E-cadherin expression [81–83]. Interestingly,
Gao et al. found that tumor cells, in mouse breast tumor
tissue, show high proliferative activity when located adja-
cent to type I collagen, whereas cells not in contact with
type I collagen are quiescent [84].
Type I collagen has also been shown to affect metasta-

sis, as exposure to type I collagen results in more inva-
sive behavior in tumor cells [82]. In an in vivo breast
cancer model, with accumulated type I collagen distribu-
tion, the amount of circulating tumor cells was increased
compared to the amount in wild type mice. Moreover,
the metastatic lesions were larger than in wild type [85].

Type II collagen
Type II collagen is the main collagen in cartilage, where
it constitutes 80% of the total collagen content [86].
Within the joint, it provides stability and resiliency to

stress [86]. Forty percent of all bone cancers originates
from cartilage, however bone cancers accounts for less
than 0.2% of all cancers [87] and therefore very little is
known about type II collagen and its relation to cancer.
However, a few studies have shown that type II collagen
can affect cell behavior and that the type II collagen
fragment PIIBNP can inhibit osteoclast survival and in-
duce cell death in tumor cells [88–90].

Type III collagen
Type III collagen is the second most abundant collagen
and is often distributed close to type I collagen. It is pri-
marily found in vascular systems, intestine, liver, skin
and lung [86]. Like type I collagen, type III collagen dis-
tribution is augmented in many cancer diseases such as
head and neck squamous cell cancer (HNSCC), breast,
pancreas and colorectal cancer [21, 22, 34, 91–94]. In
colon cancer, the distribution of type III collagen is espe-
cially augmented next to neovascular tissue [34, 91].
Pancreas cancer cells grown on type III collagen show

increased proliferation, migration and decreased expres-
sion of E-cadherin [82]. Moreover, type III collagen is in-
volved in invasion and metastasis of glioblastoma cells.
These cells show high invasion and migration response
when exposed to type III collagen and antibodies against
type III collagen inhibit these processes [73]. Another
study, report that collagen III is one of few genes that
are modified, when invasive prostate cancer cells interact
with bone marrow stromal cells, within the bone micro-
environment. This interaction is crucial for the metasta-
sis process, which further suggests an involvement of
type III collagen in invasion and metastasis [74].

Type V collagen
Type V collagen is a minor fibrillary collagen expressed
in same tissues as collagen I and III, and helps in the
formation of tissue specific matrices [86, 95]. Especially,
the a3 chain of type V collagen has shown to be involved
in cancer biology. When injecting breast tumor cells into
mice deficient of the a3 chain in collagen 5 (Col5a3−/−)
tumor growth is reduced and survival prolonged com-
pared to wildtype littermates [96]. In addition, Col5a3−/−

cancer cells injected into Col5a3−/− and Col5a3+/+ mice
prolonged survival significantly in both genotypes com-
pared to injection of cells containing the collagen V a3
chain [96]. Thus, these two examples suggest that the
presence of the collagen V a3 chain promote tumor
growth.

Type VI collagen
Type VI collagen is present in many tissues such as adi-
pose, cartilage, skin, cornea, tendon, lung, skeletal
muscle and dermis. It is located near the BM where it
functions as a mediator between the BM and IM via its
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Table 1 Overview of collagen type I, II, III, V, VI, XXIV and XXVII and their distribution in healthy tissue, cancer tissue, tumor promoting
effects and liquid biomarker potential

Collagen type Description Reference

Collagen type I:

• Tissue distribution Main organic compound in bone.
Also present in soft tissue.

[75]

• Tissue distribution in
associated cancers

Major implications in bone cancer, and metastasis from bone to other solid tumors. Also described in
breast, colorectal, ovarian, lung and pancreas cancer.

[21, 23, 24,
76–85]

• Tumor promoting effects Associated with apoptosis, invasion, metastasis and proliferation. [81–85]

• Liquid biomarker potential Associated with bone metastasis in prostate and breast cancer patients. Increased in serum from
colorectal, lung and pancreas cancer patients.

[21–25]

Collagen II

• Tissue distribution Main collagen in cartilage. [86]

• Tissue distribution in
associated cancers

Associated with chondrosarcoma [88–90]

• Tumor promoting effects Associated with cell death and survival [88–90]

• Liquid biomarker potential n/a

Collagen type III

• Tissue distribution Primarily found in the vascular system, intestine, liver, skin and lung. [86]

• Tissue distribution in
associated cancers

Implications in breast, colorectal, HNSCC and pancreas cancer. [21, 22, 34,
91–94]

• Tumor promoting effects Associated with invasion, metastasis, migration and proliferation. [73, 74, 82]

• Liquid biomarker potential Augmented in serum from ovarian, breast, colorectal, melanoma and pancreas cancer patients. Able to
predict pancreas cancer patients most likely to respond to treatment.

[21, 24, 94,
131]

Collagen type V

• Tissue distribution Primarily in same tissues as collagen type I and III. [86, 95]

• Tissue distribution in
associated cancers

Associated with breast cancer. [96]

• Tumor promoting effects Associated with tumor growth. [96]

• Liquid biomarker potential n/a

Collagen type VI

• Tissue distribution Present in many tissues such as adipose, cartilage, skin, cornea, tendon, lung, skeletal muscle and
dermis.

[97]

• Tissue distribution in
associated cancers

Described in breast, colorectal, ovarian, gliomas, melanomas and pancreas cancer. [98]

• Tumor promoting effects Associated with apoptosis, drug resistance, inflammation, invasion, metastasis and proliferation. [97–106]

• Liquid biomarker potential Augmented in serum from melanoma and pancreas cancer patients. [132, 133]

Collagen type XI

• Tissue distribution Distributed in low levels in skeletal muscle, trabecular bone, tendons, testis, trachea, articular cartilage,
lung, placenta and brain.

[107–114]

• Tissue distribution in
associated cancers

Extremely augmented in colorectal and HNSCC cancer. Also associated with breast, gastric, lung, ovarian
and pancreas cancer.

[107–114]

• Tumor promoting effects Highly implicated in CAF biology. Also associated with invasion, metastasis and proliferation. [107–119]

• Liquid biomarker potential n/a

Collagen type XXIV

• Tissue distribution Distributed in ovaries, testis, liver, spleen, kidney, muscle and bone. [120–122]

• Tissue distribution in
associated cancers

Associated with HNSCC. [123]

• Tumor promoting effects Associated with cell differentiation. [123]

• Liquid biomarker potential n/a

Collagen type XXVII

Nissen et al. Journal of Experimental & Clinical Cancer Research          (2019) 38:115 Page 6 of 12



many binding sites in both matrices. It can bind to a
wide variety of proteins such as type I, II, IV, XIV colla-
gen, integrin’s, fibronectin, tenascin etc. Type VI colla-
gen has many roles covering structural purposes to
more cell-specific functions including regulation of
apoptosis, proliferation, differentiation and maintenance
of cell stemness [97]. Collagen VI expression is increased
in many human tumors such as glioblastomas, melano-
mas, ovarian, pancreatic, breast and colon cancer [98].
In vitro and in vivo studies have shown that collagen VI
increase proliferation and decrease apoptosis in breast,
melanoma and glioblastoma cell lines [97, 98]. Apart
from its direct stimulatory effects on tumor cells, colla-
gen VI also affects the tumor microenvironment by pro-
moting angiogenesis and inflammation [98, 99].
Collagen VI deficiency (col6−/−) inhibit endothelial cell
growth and sprouting of new vessels in a melanoma
mouse model. Regarding inflammation, macrophages
has been shown to produce type VI collagen, which in
this context, modulate cell-to-matrix and cell-to-cell in-
teractions [100]. Lastly, type VI collagen has shown to
affect the invasion-profile of glioblastoma and
lung-cancer cell [101, 102].
A number of studies have shown, that the a3 chain

and the C5 domain of the a3 chain, also called endotro-
phin is involved in many hallmarks in cancer such as
promoting proliferation, angiogenesis, metastasis and
chemotherapy resistance. Type VI collagen a3 is distrib-
uted in high amounts in lung, ovarian, pancreatic,
colon and breast cancer tissues [98]. Endotrophin has
been found to promote metastasis in breast cancer and
recruit endothelial cells to the tumor microenviron-
ment [99]. This study also reported that endotrophin
facilitate tumor cell proliferation and metastasis
through TGF-β activation as well as promote inflamma-
tion in the tumor microenvironment by upregulating
inflammatory markers such as interleukin-6 and TNF-a
[99]. In the context of chemotherapy resistance colla-
gen VI a3 is one of the most highly expressed genes in
cisplatin and oxaliplatin resistant ovarian cancer cells
[103, 104]. In addition, endotrophin is highly upregu-
lated in cisplatin resistant breast tumor cells, and inhib-
ition of endotrophin lead to cisplatin sensitivity in a
breast tumor mouse model [105]. Metallothioneins,

which are associated with cisplatin resistance, are
highly upregulated in breast cancer cells treated with
collagen VI, which could be one of the explanations for
the chemotherapy resistance, as suggested by Iangyar et
al. [106].

Type XI collagen
Type XI collagen is present in low levels in skeletal
muscle, trabecular bone, tendons, testis, trachea, articu-
lar cartilage, lung, placenta and in the brain. It is a
minor fibrillar collagen, which co-polymerize with type
II collagen and type IX collagen. In cartilage, it is ex-
tremely important for proper function, as absence of
type XI collagen lead to abnormal thickening of the tis-
sue. Collagen XI has long been suspected to be of high
impact in cancer formation, and especially the a1 chain
of collagen XI has shown to be an important player in
various cancer diseases. The gene signature of type XI
collagen is upregulated in breast, gastric, pancreatic, and
non-small lung cancer. Interestingly, in both colon and
HNSCC the expression is extremely increased with almost
no expression in healthy controls [107–114]. Knock down
of type XIa1 collagen in HNSCC and ovarian cancer cell
lines, significantly decrease proliferation, invasion and mi-
gration compared to controls, which highlight type XI col-
lagens importance in cancer [107, 115]. In breast and
ovarian cancer collagen XIa1 has also been associated with
resistant to chemotherapy [116, 117].
Type XI collagen is highly associated with CAFs. CAFs

originating from HNSCC, lung cancer and pancreas can-
cer tissue express higher levels of collagen XIa1 than
cells arrived from healthy tissue [107, 110, 118]. In ovar-
ian and pancreatic cancer CAFs strongly stain for colla-
gen XIa1, compared to no staining in epithelial cancer
cells and healthy tissue [110, 119].

Type XXIV
Type XXIV collagen is expressed in ovaries, testis, liver,
spleen, lung, kidney, muscle and bone and is located
close to type I and V collagen [120–122].
As with type II collagen very little is known regarding

type XXIV collagen in relation to cancer. Type XXIV col-
lagen has been associated with osteoblast differentiation

Table 1 Overview of collagen type I, II, III, V, VI, XXIV and XXVII and their distribution in healthy tissue, cancer tissue, tumor promoting
effects and liquid biomarker potential (Continued)

Collagen type Description Reference

• Tissue distribution Expressed in the developing eyes, ears, lungs, heart and arteries. [124–126]

• Tissue distribution in
associated cancers

n/a

• Tumor promoting effects n/a

• Liquid biomarker potential n/a

HNSCC Head and neck squamous cell carcinoma, n/a not available
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with the expression increased in tumor tissue from
patients suffering from HNSCC [123].

Type XXVII
Like type XXIV collagen, type XXVII is a relatively
poorly characterized collagen. During embryogenesis in
mice COL27A is expressed in the developing eyes, ears,
lungs, heart and arteries [124, 125]. However, in adults it
is primarily expressed in cartilage, and is therefore
thought to play a role in the development phases [126].
Type XXVII collagens role in cancer is yet to be
investigated.

Stromal derived biomarkers in clinical cancer research
A number of studies have investigated the possibility of
using CAFs as prognostic markers in different cancer
diseases. The most widely CAF biomarkers used for this
are a-SMA, Vimentin, collagen XIa, fibronectin, FSP-1
and FAP. In esophageal cancer a-SMA and FSP-1 posi-
tive staining correlates with larger tumor size, advanced
T-stage and shorter survival [127]. FAP is highly
expressed in CAFs and present in many different cancer
types, and has been associated with shorter survival in
lung, esophageal and breast cancer [47, 128]. CAFs are
very complex cells and the CAF markers used today
display cellular overlaps, and have to be used in combi-
nations [129]. Therefore, developing specific CAF bio-
markers or biomarkers measuring CAF activity, i.e.
disease progression, should be of high priority.
The existing CAF biomarkers are mainly based on

immunohistochemistry, which rely on tissue biopsies.
Although such tissue biomarkers are still the golden
standard for tumor characterization, there are several
benefits of developing biomarkers based on liquid
biopsies (e.g. serum, plasma, urine). Besides being
non-invasive, cost-effective and highly repeatable, liquid
biopsies are also a real-time representative for the entire
tumor heterogeneity, and not just a snapshot of the
tumor tissue here and now [130].
The formation and degradation of fibroblast-derived

collagens, during desmoplasia, are mediated by CAFs
[33]. Thus, collagen fragments could be a measure of
CAF activity. Interestingly, formation- and degradation
products, in serum, from fibroblast-derived collagens
show diagnostic and prognostic value. Degradation
products from collagen I are significantly increased in
colorectal cancer and able to differentiate stage IV colo-
rectal cancer from stage I-III. [24]. The same trend is
seen in ovarian, breast, lung and pancreas cancer
patients, where degradation products from collagen I
can distinguish cancer patients from healthy controls
[21–23]. Moreover, a strong association between forma-
tion products from collagen I and the amount of bone
metastasizes is seen in prostate and breast cancer [25].

Collagen III formation and degradation products are ele-
vated in ovarian and breast cancer patients, and capable
of distinguishing cancer patients from healthy controls
[21]. This is also shown for colorectal cancer where col-
lagen III products are significantly elevated and correlate
with tumor stage [24]. Interestingly, the ratio of forma-
tion and degradation markers of collagen III has shown
to be capable of predicting pancreas patients most likely
to respond to the hyaluronan targeting drug PEGPH20
(pegvorhyaluronidase alfa) [131]. In addition, a high ratio
predicts increased overall survival in melanoma patients
[94]. Lastly, serum levels of collagen VI are increased in
melanoma and pancreatic cancer patients [132, 133].
Another potential role of collagen biomarkers are re-

lated to anti-TGF-β therapies that are emerging as novel
treatments options, in particular in the immuno-oncology
setting. TGF-β is a complex molecule with many roles in
cancer [103, 134] amongst others TGF-β stimulate CAFs
to produce collagens [28, 135]. Hence collagen turnover
fragments may be predictive of a TGF-β driven phenotype
and hence be used to identify patients benefiting from
such treatment. In addition, these collagen biomarkers
may be used to monitor on target effects of TGF-β and re-
veal valued information on mode of action of the com-
pound investigated. A recent study has shown that the
assembly of collagens can trap T-cells preventing them to
access the tumor, and induce T-cell dependent cell death
[136]. This complicate the use of immune therapy and
could be a reason to why only a subset of patients respond
to therapy. In the last mentioned study, the occurrence of
TGF-β producing fibroblasts was strongly associated with
lack of therapy response [136]. In this respect, collagen
levels have the potential to be used as precision medicine
to select patients most likely to respond to treatment.

Conclusion
Alterations in tissue microarchitecture is a hallmark of
cancer driven by CAFs and the associated deposition of
collagens in the tumor stroma, which amongst other
things leads to desmoplasia, poor prognosis and therapy
resistance. In this review we have highlighted the link
between CAFs, the fibrillar collagens produced by CAFs,
and tumorigenesis. We provide a rationale for studying
CAF-derived collagens in greater detail, to improve the
understanding of tumor biology and patient characteris-
tics. Lastly, we argue that a major biomarker potential
lies in the fact that these collagen products can be mea-
sured in a liquid biopsy, providing a surrogate measure
of desmoplasia and CAF activity. Future biomarker re-
search should focus on implementing such biomarker
tools in the clinical setting for phenotyping of cancer pa-
tients and potentially for predicting and monitoring re-
sponse to treatment.
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