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Abstract

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases, and it is one of the
leading causes of cancer death in both men and women worldwide due to diagnosis in the advanced stage, rapid
metastasis, and recurrence. At present, precision molecular targeted therapeutics directed toward NSCLC driven
genes has made great progress and significantly improved the overall survival of patients with NSCLC, but can
easily lead to acquired drug resistance. New methods are needed to develop real-time monitoring of drug efficacy
and drug resistance, such as new molecular markers for more effective early detection and prediction of prognosis.
Exosomes are nano-sized extracellular vesicles, containing proteins, nucleic acids and lipids, which are secreted by
various cells, and they play an important role in the development of lung cancer by controlling a wide range of
pathways. Tumor-derived exosomes are of great significance for guiding the targeted therapy of NSCLC and
exosomes themselves can be a target for treatment. In this review, we describe the potential roles of tumor-derived
exosomes and their clinical significance in NSCLC.
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Background
Lung cancer is one of the leading causes of cancer-related
death both in men and women [1] and remains the most
frequently diagnosed cancer in the world [2], which is clas-
sified into two histological subtypes: non-small cell lung
cancer(NSCLC)accounting for 85% and small-cell lung can-
cer (SCLC) accounting for the remaining 15% [3]. Only
17.7% of the patients live over 5 years after being diagnosed
with lung cancer [4]. The standard treatment of NSCLC is
curative surgical resection, combined with or without che-
moradiotherapy for the patients with early-stage including
stage I, II and a part of stage III [5, 6]. However, most pa-
tients with NSCLC are diagnosed in the advanced stage [7],
which makes the cancer difficult to surgically resect and in-
creases the rate of postoperative recurrence, while the effect
of radiotherapy and chemotherapy has plateaued [8]. On
the other hand, treatment of NSCLC is evolving from the
use of cytotoxic chemotherapy to precision treatment based
on changes in molecular and gene levels [9], which

inevitably leads to drug resistance sooner or later. In the
past, the golden standard of the patients’ diagnosis and
gene mutations detection is tissue biopsy, which limits the
assessment of lung cancer development and prognosis due
to tumor heterogeneity and evolution [10]. Liquid biopsy is
typically used to separate and analyze circulating free DNA
and RNA from the blood of cancer patients, or other body
fluids, which has potential advantages, such as real-time
monitoring of treatment response, rapid and accurate iden-
tification of drug resistance genes, identification of minimal
residual disease and prediction of prognosis [10, 11]. Exo-
somes are nano-sized extracellular vesicles, containing pro-
teins, nucleic acids and lipids and the encapsulated contents
in exosomes can escape from the degradation. Exosomes
play an important role in cell-to-cell communication, tumor
progression and drug resistance and have excellent pros-
pects in liquid biopsy [12–14]. In this review, we discuss the
close relationship between tumor-derived exosomes and
NSCLC, and the application of tumor-derived exosomes in
the targeted therapy for NSCLC.
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Exosomes and tumor-derived exosomes
The diameter of exosomes which was first reported in the
process of sheep reticulocytes maturation ranged from 40 to
100 nm, showing a characteristic cup-shaped morphology
(after negative staining) or round well-delimited vesicles ob-
served by transmission and cryo-electron microscope
[15, 16]. Exosomes are small vesicles of endosomes that
can be released by many cell types, such as reticulocytes
[16], dendritic cells [17], lymphocytes [18, 19] and cancer
cells [20]. Furthermore, exosomes have been successfully
purified from many body fluids such as blood, urine, pleural
effusions, ascites and broncoalveolar fluid [21]. Also, exo-
somes can transfer information, including DNA, RNA and
proteins, to the receptor cells through fusion with the
plasma membrane, endocytosis by phagocytic mechanism
or receptor-ligand interaction with the cell [22] and have
the heterogeneous biological behaviors due to their differ-
ent secretory cell types with diverse cell status [23], thus
participating in different physiological and pathological pro-
cesses. Rab GTPases, including Rab27a and Rab27b, are the
key regulators of exosomes secretion and Rab27 is closely
related to the occurrence and the development of tumor,
which indicates the role of exosomes secretion in tumor
biology [24]. (These are summarized in Fig. 1).
The immunological activities of exosomes affect the

mechanisms of immunoregulation including immune acti-
vation, antigen expression regulation, intercellular com-
munication, immunization surveillance, and immunos
uppression [25]. Tumor-derived exosomes which carry

tumor-associated antigens can interfere with anti-tumor
immunotherapies [26]. It has been reported that about
2000 trillion exosomes can be detected in normal human
blood versus 4000 trillion exosomes in the blood of cancer
patients [27], which indicates that tumor cells produce
more exosomes than their normal counterparts and can
be a useful diagnostic biomarker [28]. Tumor-derived exo-
somes are believed to be important mediators of intercel-
lular signaling and epithelial–mesenchymal transition
(EMT), which transforms cancer cells into more aggres-
sive phenotype, and contributes to the tropism of meta-
static disease in specific cancer types with pre-metastatic
niche [29]. Azmi et al. found tumor cells exposed to hyp-
oxia secreted exosomes which had enhanced potential of
angiogenesis and metastasis, suggesting that tumor cells
adapt themselves to the hypoxic microenvironment by se-
creting exosomes, so as to stimulate angiogenesis or create
a more favorable tumor microenvironment to promote
tumor metastasis [30]. Furthermore, tumor-derived exo-
somes are of crucial importance in tumor growth and
drug resistance, as they transfer nucleic acids and onco-
genic proteins to the tumor cells, which indicates
tumor-derived exosomes and their contents may be of po-
tential value in the diagnosis, prognosis, prediction of
treatment response and targeted therapy [31]. Due to the
importance of tumor-derived exosomes, the methods to
detect exosomes including isolation purification and ana-
lysis require further development (These methods are
summarized in Table 1).

Fig. 1 The biology of exosomes. Exosomes are some vesicles ranged from 40 to 100 nm, which can be released by many cells and purified from
many body fluids. Exosomes can transfer information to the receptor cells through fusion with the plasma membrane, endocytosis by phagocytic
mechanism or receptor-ligand interaction with the cell
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Roles of Tumor-derived exosomes in the NSCLC
The formation and development of NSCLC is influenced
by many factors and mechanisms, which is a long-term
and complex process. Exosomes secreted by lung cancer
cells play a vital role in this process as mediators of
intercellular communication. (These roles are summa-
rized in Fig. 2).

Tumor-derived exosomes in the growth and progression
of NSCLC
It has been shown that cancer-associated fibroblasts
(CAFs) in the tumor microenvironment can secrete exo-
somes containing lipids, amino acids, and TCA-cycle in-
termediates which can promote tumor growth under
nutrient-stressed or nutrient-deprivation conditions [32].
Angiogenesis is also vital for tumor growth since tumor
vessels are the important sources of nutrient substances
in the tumor cells [33]. Tumor-derived exosomes can ac-
celerate angiogenesis and tumor growth in a TGFβ1 (trans-
forming growth factor β1)-dependent pathway to stimulate
fibroblasts to differentiate into tumor-promoting stromal
myofibroblasts [34]. Exosomal miR-23a from hypoxic lung
cancer cells can increase angiogenesis and vascular perme-
ability by targeting tight junction protein ZO-1(zonula
occludens-1) and prolyl hydroxylase [35]. STAT3-regulated
exosomal miR-21 enhances the level of vascular endothelial
growth factor (VEGF), thereby promoting tumor angiogen-
esis and inducing malignant transformation of bronchial
epithelial cells [36]. Exosomal miR-210 from lung cancer
regulates the level of tyrosine receptor kinase A3 (ephrin
A3) in matrix cells and promotes tumor angiogenesis to
maintain the growth of tumor cells [37]. All of these indi-
cated that tumor-derived exosomes can promote the growth
and progression of NSCLC by angiogenesis. Lung cancer
cell-derived exosomes can also affect the progression of lung
cancer by affecting the physiological functions of other cells
in the surrounding tissues and microenvironment. Mesen-
chymal stem cell (MSC) is an important one among these
cells, which can be transformed into a pro-inflammatory
phenotype via NFκB-TLR signaling pathway regulated by

lung cancer cell-derived exosomes, thus promoting the
growth of lung cancer [38]. Furthermore, lung cancer
cell-derived exosomes can indirectly regulate the progres-
sion of tumor by affecting the function of immune cells in
the tumor microenvironment. Tumor-derived exosomes
can help with immune escape by transferring specific pro-
teins and RNA into the receptor cells [39] and promote
tumor progression by reprogramming functions of immune
cells [26]. Lung cancer cell-derived exosomes containing the
epidermal growth factor receptor (EGFR) can induce tolero-
genic dendritic cells and tumor antigen-specific regulatory T
cells (Treg) which can inhibit the function of CD positive T
cells with anti-tumor function and promote the growth of
lung cancer [40, 41]. Lung cancer cell-derived exosomes
containing HSP72 (heat shock protein 72) can activate the
STAT3 signaling pathway to mediate the immunosuppres-
sive effect of MDSCs (myeloid-derived suppressor cells) and
thereby suppress T cell activation [42, 43]. In conclusion,
these studies revealed that tumor-derived exosomes could
play an important role in the growth and progression of
NSCLC with different contents and provide a novel future
for the therapy of NSCLC, which should be further
researched.

Tumor-derived exosomes in the invasion and metastasis
of NSCLC
Metastasis is one of the major causes of death in lung
cancer patients, which is related to a variety of mecha-
nisms and involves multiple steps [44]. Tumor-derived
exosomes, as carriers of information transmission, pro-
mote metastasis through their direct or indirect roles
[13]. Exosomes can promote the formation of the lung
cancer microenvironment to increase the invasiveness of
tumor cells [45]. Due to the instability of oncogenes,
hypoxia, acidosis and inflammatory immune response
can promote tumor cells to release more exosomes to
form tumor microenvironment [46, 47] which is benefi-
cial to the rapid growth of tumor cells and enhances
their ability of invasion. Tumor-derived exosomes are
associated with invadopodia that initiates invasion

Table 1 Detection methods of exosomes

Contents Methods References

Isolation and purification Ultracentrifugation
Density gradients centrifugation
Immunobeads
Size exclusion chromatography
Spin column-based methods

[127–131]

Analysis of size and shape TEM [132]

Analysis of size distribution and concentration Nanoparticle Tracking Analysis
FAVS

[133–135]

Analysis of proteins Mass spectrometry, Western-blot
SDS-PAGE

[136, 137]

Analysis of RNA NGS, Microarray, RT-PCR [138–140]
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through degradation of the extracellular matrix [48].
Exosomal contents can also promote metastasis and
transfer metastatic potential to recipient cells [13]. EMT
is the disappearance of the epithelial-like characteristics
and gains the phenotype of stromal cells, [49] which is
an important process before the metastasis of the tumor
cells and also a complex process, including cytoskeleton
changes, down-regulation of the expression of adherens
junction molecule E-cadherin and so on [50]. It has been
reported that several proteins and miRNAs are involved
in the EMT [51–54]. Tumor-derived exosomes have also
been reported to be associated with the formation of the
pre-metastatic niche [13] that forms at the site of the future
metastasis and promotes the growth of disseminated tumor
cells [55]. The main sites of NSCLC metastasis are brain,
adrenal gland, bone and the liver [44]. Different types of
metastatic cancer cells have significant differences in organ
tropism [56] which is associated with tumor-derived exoso-
mal integrins [57]. (The major findings of tumor-derived
exosomes associated with invasion and metastasis in
NSCLC are summarized in Table 2).

Tumor-derived exosomes in the targeted drug resistance
Resistance to chemotherapy, radiotherapy and targeted
therapy remains a major obstacle to cancer treatment
[30]. Drug resistance is a multifaceted problem. It has
already been reported that resistance of targeted therapy
and platinum based chemotherapy is associated with
microRNAs [58–60]. Here the authors discuss mechanisms
associated with exosomes. (1) Tumor-derived exosomes me-
diate EMT by transferring related tissue factors (such as
VEGF, TGF2β), and thus the tumor cells can resist apop-
tosis, which usually result in drug resistance [61, 62]. (2)
Tumor cells and stromal cells in the tumor microenviron-
ment can secrete exosomes carrying drug-resistant mole-
cules (miRNAs, proteins) which are transferred to enhance
the tolerance of the tumor cells to the drug through the
interaction of exosomes in the TME (tumor microenviron-
ment) [63–65]. (3) Tumor-derived exosomes can also medi-
ate the drug efflux by transferring multi-drug resistant
(MDR) protein encapsulated drug, thus influencing the drug
efficacy. In the development of many malignant tumors, a
special transporter system which is MDR-associated

Fig. 2 Roles of Tumor-derived exosomes in the NSCLC. Tumor-derived exosomes play a vital role in tumor growth and progression, invasion and
metastasis, targeted drug resistance, and can also be used as biomarkers for early diagnosis, prediction of treatment response and prognosis
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ATP-binding cassette transporter (MDR-ABC) is activated
to mediate the drug from the intracellular to the extracellu-
lar [66]. MDR-ABC is a type of intracellular transporter pro-
teins, which has the same transmembrane domain and is
usually located on the membrane of exosomes and multive-
sicular bodies (MVBs). The chemotherapeutic or targeted
therapy drug and its metabolites in the cell can be trans-
ferred into the inner body which can aggregate to form
MVBs. When the MVBs are fused with the cell mem-
brane, the inner body is released into the extracellular
matrix in the form of exosomes and completes the drug
efflux [67–71]. (4) Tumor-derived exosomes can also in-
fluence the drug effect by regulating the combination of
antibody targeting drugs and tumor cells to enhance the
drug resistance of tumor cells [71, 72]. All of these mecha-
nisms associated with exosomes can induce the targeted
therapy drug resistance. (The major findings of
tumor-derived exosomes associated with drug resistance
in NSCLC are summarized in Table 2).

Tumor-derived exosomes as markers in prognosis of
NSCLC
Increasingly, studies suggest that exosomal miRNAs and
proteins are positively associated with the stage and degree
of tumor progression [73], indicating that exosomal compo-
nents can be used as prognostic markers to improve treat-
ment selection for the patients with NSCLC [74]. For
example, Sandfeld-Paulsen et al. investigated exosomes from
plasma of 276 non-small-cell lung cancer patients, which
were phenotyped by using the Extracellular Vesicle Array.
As a result, they found that NY-ESO-1, PLAP, EGFR, Alix
and EpCam were correlated to overall survival (OS), which
indicated that exosomal membrane-bound proteins were
strong prognostic biomarkers in NSCLC [74]. In addition,
Liu et al. found that elevated levels of exosomal miR-10b-5p,
miR-23b-3p and miR-21-5p were associated with poor over-
all survival by analyzing 84 plasma exosomal miRNAs in
lung adenocarcinoma patients and healthy controls, which
suggested that these exosomal miRNAs may also be used as

prognostic biomarkers of NSCLC [75]. The downregulation
of the miRNA-146-5p indicated a poor progression free sur-
vival (PFS) compared to patients with higher exosomal
miRNA [76]. All of these indicate that exosomes can be
used as non-invasive prognostic biomarkers.

Clinical implications of tumor-derived exosomes in the
targeted therapy of NSCLC
Liquid biopsy samples are becoming more frequently
used in blood or other body fluids as biomarkers for
NSCLC early diagnosis, treatment guidance and drug re-
sistance monitoring [77]. The specificity of the cell types
and the accessibility from the body fluids make the exo-
somes important candidates for the diagnosis and target
therapy of tumors [78].

Tumor-derived exosomes as biomarkers for NSCLC
diagnosis and targeted therapy guidance
The exosomes secreted by lung cancer cells, which en-
rich various proteins, such as EGFR, KRAS, claudins and
RAB-family proteins, and promote the development of
lung cancer, are effective biomarkers for early diagnosis
of lung cancer [79] and the basis of targeted therapy. For
example, Birgitte et al. used EV array to detect exosomal
proteins in NSCLC tissues and normal tissues, and
found that markers CD151, CD171 and tetraspanin 8
were higher in patients with cancer of all histological
subtypes than patients without cancer [80]. Huang and
colleagues carried out immunostaining analysis of exo-
somes of NSCLC tissues and chronic pneumonia tissues,
and found that 80% of the NSCLC specimens were
EGFR positive on the surface of the exosomes, while
only 2% of the chronic pneumonic tissues were EGFR
positive, which suggested that exosomal EGFR protein
could be used as a biomarker for differential diagnosis of
lung cancer [41] and indicated that gene detection could
be further carried out to provide a molecular basis for
targeted therapy. Recently, the translocation ALK-EML4
has also been identified inside the exosomes [81], which

Table 2 Major findings of tumor-derived exosomes in NSCLC

Contents Findings References

Invasion exosomal TGF-β and IL-10 may enhance migration ability in vitro under hypoxia [47]

exosomal vimentin may induce EMT [51]

exosomal Rab3D which activates AKT/GSK3β signaling may induce EMT [52]

exosomal miR-23a may affect the changes of EMT related phenotype [53]

Exosomal miR-302b can inhibit the proliferation and migration of lung cancer cells through
the TGFβRII/ERK pathway

[54]

Drug resistance exosomal VEGF and TGF2β may result in drug resistance [61, 62]

exosomal proteins and phospholipids components are involved in gefitinib resistance [63, 64]

exosomes may antagonize the chemotherapeutic effect of cisplatin by upregulating autophagy [65]

exosomes can regulate the combination of antibody targeting drugs and tumor cells [71, 72]
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is a biomarker for response to first generation ALK-TKIs
[82]. Vykoukal and colleagues found that the expression
of 108 proteins in vesicle preparations of lung adenocar-
cinoma plasmas was significantly different compared to
controls, of which 43 were identified in EVs from lung
adenocarcinoma cell lines [83].
MicroRNAs (MiRNAs) are a class of small noncoding

RNAs (the length of 18–25 nucleotides), post-transcrip-
tional regulation molecules expressed in many organ-
isms [84]. The expression of miRNAs, like other
cancer-associated genes expression, can be altered by
chromosomal amplification/deletion, transcription factor
activation [85]. It has been found that the miRNAs expres-
sion profiles of NSCLC exosomes which are often detected
by miRNA-microarray are different from normal tissues.
Zhao et al. [86] analyzed the expression of the plasma exo-
somal miRNAs in the tumor tissues of 150 patients with
non-small cell lung cancer, and found that plasma levels of
the exosomal hsa-miRNAs (hsa-miR-25, hsa-miR-122,
hsa-miR-195, hsa-miR-21 and hsa-miR-125b) were associ-
ated with EGFR mutation, which could help to determine
whether or not to use targeted therapy drugs and provide a
new way to detect NSCLC gene mutations. The miRNAs
for adenocarcinoma diagnosis showed an AUC value of
0.936, with a sensitivity of 80.65% and a specificity of 91.67%
[87]. Two studies showed that upregulation of miR-1246
and miR-208-a was associated with resistance to radiother-
apy and high proliferation of the tumor by targeting the
genes p21 and DR5 respectively, which could not only lead
to a prognostic biomarker, but also to a new target against
NSCLC [88]. It has been possible to detect the rearrange-
ment of EML4-ALK in NSCLC patients by analyzing the
exosomal miRNAs in blood and has been proved that the
anaplastic lymphoma kinase (ALK)-EML4 translocation in-
side the exosomes with a specificity of 100% and a sensitivity
of 64% [89].
In summary, exosomes are becoming increasingly im-

portant in the diagnosis of NSCLC as biomarkers and
the molecular basis of NSCLC targeted therapy.

Tumor-derived exosomes as biomarkers for NSCLC
targeted therapy resistance
With the increasing understanding of molecular biology
and genetics of tumors, the research and clinical applica-
tion of targeted therapy has become a hot topic, which
can improve prognosis and also guide therapeutic deci-
sion, thus reducing morbidity and mortality. On average,
there are more than 300 mutations in each lung cancer,
but only a few of these genes can promote or “drive” the
lung tumorigenesis [90], mainly including EGFR_(epi-
dermal growth factor receptor), ALK_(anaplastic lymph-
oma kinase), c-met and so on [91–93]. EGFR, also called
ErbB1 or HER1, is involved in the signal transduction
pathway of cell proliferation and apoptosis, which is a

part of the ErbB family of transmembrane receptor tyro-
sine kinases [94]. The EGFR mutations, first reported in
2004 [95], usually contain in-frame duplications/inser-
tions in exon 20, in-frame deletions (around amino acid
residues 747 to 750) in exon 19 and single missense mu-
tations in exon 21_(L858R mutation) [96], and reveal a
potential responsiveness of NSCLC to the tyrosine kin-
ase inhibitors [97]. EGFR TKIs improve time to progres-
sion, response rates and overall survival, but acquired
resistance to EGFR-TKIs is inevitable [98], and thereby
tools to predict the risk of drug resistance are necessary to
improve the clinical treatment choices. Tumor-derived exo-
somes can be used as biomarkers to evaluate therapeutic ef-
fect of targeted therapy by liquid biopsy. T790 M mutation
is found in patients treated with EGFR-TKIs [99], account-
ing for about 50–60% with acquired resistance to erlotinib
or gefitinib [99, 100]. The third generation of EGFR-TKIs
includes osimertinib which overcomes T790 M-mediated
resistance to EGFR-TKIs [101], but it’s still unable to avoid
the targeted therapy drug resistance, and some of the pa-
tients develop a new drug resistance mutation C797S [102].
It has been reported that exosomal RNA is used to detect
EGFR T790 M and activating EGFR mutations, and the
sensitivity is 90% and 98%, respectively [103]. So it’s
possible to identify targeted therapy drug resistance in the
tumor-derived exosomes. In addition, Choi et al. [63]. iden-
tified PC9R cells with rich EV proteins were resistant to
gefitinib due to EGFR T790 M mutation by Nano-LC–MS/
MS analysis and would help to develop new diagnostic
strategies to predict and assess the drug resistance of gefi-
tinib. Chromosome rearrangements of ALK are detected in
the NSCLC of 3–7%, which indicates a response to first
generation ALK-TKIs (such as crizotinib). However, most
patients develop resistance to this therapy [104]. L1196 M
and G1269A are identified as secondary mutation, account-
ing for resistance to ALK-TKIs [104, 105]. This acquired
drug resistance may be predicted by detecting exosomes.

The potential value of tumor-derived exosomes in the
targeted therapy of NSCLC
Studies have found that research based on exosomes and
related components can provide new inspiration for the
precision treatment of NSCLC.
Exosomes have been developed as drug delivery vehicles

for a variety of drugs, such as small molecular drugs, nucleic
acid proteins and other drugs for cancer treatment, with low
immunogenicity and toxicity [106, 107]. Lai et al. used elec-
troporation or lipofection to transfect the drugs of interest
directly into the exosomes or transfer the genes that encode
for the RNA/protein of interest into exosome-secreting cells
[108]. Mendt and colleagues established a standard operat-
ing procedure to generate engineered exosomes which had
the ability to target oncogenic Kras (iExosomes), and was
confirmed to suppress oncogenic Kras and increase the
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survival of mouse models with pancreatic cancer, which laid
the foundation for exosomes in the targeted therapy of
NSCLC [109]. Exosomes can be targetable to specific tis-
sues, resistant to metabolic processes and membrane-per
meable [110], which have a wide application prospect in the
targeted therapy of NSCLC.
Exosomes play an important role in tumor development,

which indicates reducing the contents of exosomes can
help the targeted therapy of NSCLC. Exosomes may also
serve as a direct target for NSCLC. Data shows that the
prevention of exosomes production can inhibit tumorigen-
esis and a series of methods have been suggested to reduce
the contents of exosomes [110]: (1) Blood purification:
Aethlon Medical designed a blood filtration therapy which
could capture a large number of antibodies and other simi-
lar substances, such as aptamers, protein ligands, and exo-
somes to realize the new treatment of NSCLC [111]. Other
studies have shown that the use of hollow fiber filtration
technology to remove exosomes from the patient’s blood
can minimize the immune tolerance caused by the exo-
somes [112]. (2) Change the local pH of the tumor: In
addition to blood purification, proton pump inhibitors
(PPIs) can also improve the low pH of cells by PPI pretreat-
ment in vivo to reduce the contents of tumor-derived exo-
somes in the plasma, so PPI may likely be an effective
method to inhibit the secretion of exosomes in NSCLC
[113]. (3) Drug usage: For example, Fabbri et al. [114].
found that the use of GW4869, a neutral sphingomyelase
inhibitor (regulates ceramide biosynthesis, promotes exo-
somes inward budding), could inhibit the production of
exosomes in mice and reduce the metastasis of lung cancer.
Some studies directly target exosomes as a drug target. For
example, amiloride can inhibit the synthesis and secretion
of exosomes [115], and diannexin can impede the absorp-
tion of exosomes by receptor cells [116]. (4) Interfere with
signal pathway: some studies have shown that interference
with the signal pathway associated with production or
secretion of tumor-derived exosomes can inhibit the exo-
somes secretion. Ostrowski and colleagues found that
knockout Rab27 or its effector (SYTL4 and EXPH5) could
inhibit the secretion of exosomes in HeLa cells [24]. It may
be useful for inhibiting the secretion of exosomes in
NSCLC. It has already been proved that ISGylation as a
novel ubiquitin-like modifier can control exosomes

production [117] and syndecan-syntenin-ALIX plays a key
role in the biogenesis of exosomes [118], which can also be
targeted in NSCLC.
The diversity of exosomes components and functions

associated with NSCLC provides multiple potential
therapeutic targets for the treatment of NSCLC. Yang et
al. found that the promotion of the expression of let-7 in
exosomes was a potential target for the treatment of
NSCLC because of its high tumor suppressor effect,
great clinical significance and tissue specificity [119].
Zhang et al. [120]. identified that exosomes separated
from H460 cells with restoration of LKB1 (liver kinase
B1) had a higher ability in lung cancer cell migration,
which could be a novel target. Nao et al. [121]. devel-
oped a new strategy of antibody therapy with anti-CD9
or anti-CD63 to target on tumor-derived exosomes and
inhibit metastasis of breast cancer in mouse models,
which laid the foundation for targeted therapy of
NSCLC. Lung cancer cells can secrete survivin through
exosomes to inhibit the apoptosis of lung cancer cells
and promote the growth of lung cancer cells, so the use
of survivin gene negative mutant (Survivin-D53A) can
promote the apoptosis of NSCLC cells and may become
a potential gene therapy drug [122–124]. Previously de-
scribed exosomal miR-302b also provided a potential
target for the treatment of NSCLC [54]. The exosomes
membrane can contain specific tumor antigen through
gene transformation, which has a certain target function
and can be used for the treatment of NSCLC [125, 126].
In summary, studies on the treatment of lung

cancer-related exosomes will provide a new idea for ex-
ploring precision treatment of NSCLC. (These potential
values are summarized in Table 3).

Conclusion
In 2006, WHO officially identified lung cancer as a
chronic controlled disease whose occurrence and develop-
ment was a multidirectional, multistep complex network
process. Liquid biopsy for tumor-derived exosomes has
the advantages of noninvasive and real-time monitoring,
which provides a new reference for precision medical and
individualized treatment, and develops a new method for
early diagnosis, prognosis evaluation, drug delivery and
targeted therapy. At present, the application of exosomes

Table 3 Tumor-derived exosomes in the targeted therapy of NSCLC

Potential value Methods References

A tool for drug delivery Use electroporation or lipofection [106–110]

A direct target for reducing
the content

Blood purification: ADAPT, hollow fiber filtration technology
Change the local pH of the tumor: PPIs
Drug usage: GW4869, amiloride, diannexin
Interfere with signal pathway: knockout Rab27, SYTL4
,EXPH5, ISGylation and syndecan-syntenin-ALIX

[24, 110–118]

Other targets let-7, LKB1, CD9, CD63, surviving, miR-302b [54, 119–126]
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in the diagnosis and treatment of NSCLC is still in their
initial stage. In the future, further study in exosomes, in-
cluding biogenesis, secretion, interaction with target cells
and the roles of exosomal components may improve ap-
plications to medical treatment and improve the survival
rate of NSCLC patients. A variety of problems remain to
be overcame: (1) The specific mechanism of exosomes as
an important part of the tumor microenvironment in the
evolution of the NSCLC is not yet clear; (2) The sensitivity
and specificity of exosomes application in the diagnosis
and treatment of NSCLC still need improvement; (3) The
acquisition of high purity exosomes is still an issue due to
technical limitation and high cost; (4) The quantification,
purification and preservation of exosomes has not yet
been standardized; (5) The side effects of exosomes used
in the targeted therapy cannot be completely determined.
All of these problems restrict the application of exosomes
in NSCLC. These reviews synthetically expound the
multi-faceted nature of exosomes and potential value in
the targeted therapy of NSCLC.
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