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Abstract

Background: T-cell immunoglobulin mucin 3 (TIM3) is a negative immune checkpoint and plays a crucial part in
tumor-induced immune suppression. However, the mechanism of TIM3 in regulating immunosuppression in head
and neck squamous cell carcinoma (HNSCC) was still not quite clear.

Methods: We carried out the immunohistochemistry staining of HNSCC tissue microarrays. Through quantification
of the histoscore, we performed the correlation analysis among the TIM3, Galectin-9, Foxp3, CD68 and CD163. The
effects of TIM3 on regulatory T cells (Tregs) and macrophages were detected by utilizing the Tgfbr1/Pten 2cKO
HNSCC mouse model. Flow cytometry were used to analysis the percent of Tregs, macrophages and IFN-y.

Results: We demonstrated the close association among TIM3/Galectin-9 pathway, regulatory T cell marker (Foxp3)
and macrophage marker (CD68, CD163) in human HNSCC. In the transgenic HNSCC mouse model, blockade of
TIM3 by the anti-TIM3 monoclonal antibody induced a reduction of CD4*CD25"Foxp3* Tregs. Meanwhile, the
population of TIM3™ Tregs was also decreased. However, the population of CD206" macrophages was not
significantly declined. The increased IFN-y production on CD8" T cells in anti-TIM3 treatment mice showed that the
antitumor immune response was enhanced through suppression of these negative immune factors.

Conclusions: The present study demonstrated that TIM3 was associated with the immunosuppression in HNSCC.
And targeting TIM3 can enhance anti-tumor immune response by decreasing Tregs in HNSCC.
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Background

Head and neck squamous cell carcinoma (HNSCC) is one
of the most common malignancies around the world [1].
It mainly takes place in the oral cavity, mouth pharynx,
larynx and laryngopharynx, and is characterized by local
invasion and metastasis [2]. Tobacco and alcohol con-
sumption are considered as the major cause of HNSCC,
and HPV infection has emerged as another important risk
factor in recent years [3]. Although treatments have im-
proved and the use of targeted medicines (such as cetuxi-
mab) combined with radiotherapy have improved the
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living quality and prognosis of patients, the 5 year overall
survival rate is still approximately 50% [4].

Recent studies have indicated that the development of
HNSCC is closely related to immunosuppression and
immune escape. The aberrant activities of T lymphocytes,
B lymphocytes, dendritic cells (DC), macrophages, NK
cells and various cytokines are involved in the initiation,
promotion and progress of HNSCC [5]. Regulatory T cell
(Treg) is a subset of CD4" T cells and serves as an inhibi-
tor of the antitumor immune response [6]. Tregs can
inhibit immune effector cells by releasing suppressive cy-
tokines [7]. The transcription factor Foxp3 is a necessary
marker for activity of Treg cells [8]. Recent evidence has
demonstrated that Treg activity is increased in HNSCC
patients, but the prognostic value of Treg in HNSCC is
still controversial [9].
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In addition to Tregs, macrophages also take a part in
tumor initiation and promotion. Macrophages have been
sorted into two main subgroups: classically activated
macrophages (M1) and alternatively activated macro-
phages (M2) [10]. M1 macrophages have anti-tumor ef-
fects on tumorigenesis, while M2 macrophages promote
tumor development by inhibiting tumor-specific
immune response [11]. M2 macrophages in solid tumors
are comparatively more than M1 macrophages [12].
CD206 is one of the surface molecules specific to M2
macrophages. In addition, Zhu et al. have suggested that
CD206 expression was related to the prognosis of hepa-
tocellular carcinomas [13].

T-cell immunoglobulin mucin 3 (TIM3), an important
immune checkpoint protein, was initially shown to be
expressed on CD4" Thl cells and CD8" T cells [14].
Then, studies successively demonstrated TIM3 expres-
sion on macrophages, monocytes and CD11b* DCs [14—
16]. Although several molecules have been reported bind
to TIM3 [16-18], Galectin-9 is considered as the major
ligand [19]. By binding to Galectin-9, TIM3 induces T
lymphocytes exhaustion or apoptosis [20]. While block-
ade of TIM3 could promote IFN-y-mediated antitumor
immunity of T cells [21]. A research showed that TIM3
was expressed on Tregs and correlated with rheumatoid
arthritis activity [22]. An in vitro experiment suggested
that TIM3 on Tregs was correlated with tumor size of
ovarian carcinoma [23]. Moreover, TIM3 could be up-
regulated by stimuli and may be associated with macro-
phage activity [24]. Our previous study has
demonstrated TIM3 is overexpressed in HNSCC and is
associated with myeloid-derived suppressor cells MDSCs
[25]. However, the role of TIM3 in modulating Tregs
and macrophages in HNSCC is still unknown.

We have previously demonstrated the function of
TIM3 in regulating effector T cells in HNSCC [25]. In
this study, we explored the role of TIM3 in regulating
Tregs and macrophages in HNSCC. HNSCC tissue ar-
rays were used to analyze the association among the
TIM3/Galectin-9 signal, the Treg marker (Foxp3) and
macrophage markers (CD68, CD163). By utilizing an
HNSCC mouse model, we explored TIM3 function in
regulating Tregs and M2 macrophages.

Methods

Patient samples and HNSCC tissue microarray

The Medical Ethics Committee of the School and Hospital
of Stomatology Wuhan University approved this study.
Human HNSCC tissue samples were acquired from the
Hospital of Stomatology Wuhan University. All the pa-
tients accepted the informed consent before the surgery.
The HNSCC samples, including 27 normal mucosa, 122
primary HNSCC, were used to construct tissue microar-
rays and applied to immunohistochemistry staining.
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Immunohistochemistry

The immunohistochemistry staining of sections were per-
formed according to the procedure as previously
described [25]. The following antibodies were used: TIM3,
Galectin9, Foxp3 (Cell Signaling Technology, USA), CD68
(Zymed, China), or CD163 (CW Biotech, China).

Animals

The animal experiments were performed under the guide-
lines of the Institutional Animal Care and Use Committee
of Wuhan University. The spontaneous HNSCC mouse
model is a transgenic mouse with a combined Tgfbri/Pten
knockout (K14-Cre™=™+/= Tafhr12¥/ix, - ppepiox/iox) anq
with the background of CD1/129/FVBN/ C57/BL/6. Trans-
forming Growth Factor-p (TGF-f3) and components of the
PTEN/PI3K/Akt signal pathways are the most common
mutation molecules associated with HNSCC progress.
Tgfbrl and Pten knockout by tamoxifen induction in head
and neck epithelium of mice could result in the occurrence
of squamous cell carcinoma with full penetrance. This
Tgfbr1/Pten 2cKO mouse model is immunocompetent, and
it is suitable for cancer immunotherapy research. After five
sequential days of tamoxifen treatments by oral gavage,
Tgfbrl/Pten were knocked out in epithelium of oral cavity
and head-neck region. The course of tamoxifen usage was
illustrated as before [26]. During the induction process,
squamous cell carcinoma occurred in head-neck region of
the mice. This mouse model was maintained and geno-
typed as the previous description [26].

Mice treatment

After tamoxifen induction for 5 days, the mice were di-
vided into control group (n =6) and anti-TIM3 group
(n =6) at random. Rat isotype I[gG2a was applied to the
control group. The prophylactic administration of iso-
type IgG2a (clone 2A3) or anti-TIM3 (RMT3-23) (BioX-
Cell, West Lebanon, NH) in mice was carried out by
intraperitoneal injections (100 pg i.p.) for 3 days since
day 12 and then once a week for the following weeks.
The tumor size of mice was measured every five days.
Finally, the mice were executed by euthanasia.

Flow cytometry

The single cell suspensions were obtained from the
draining lymph node and the spleens and then stained
with antibodies. The following antibodies were used: PE/
Cy7-conjugated CD8, FITC-conjugated CD11b, CD4,
PE-conjugated CD25, F4/80 and Foxp3 (eBioscience, San
Diego, CA). APC-conjugated TIM3 and TIGIT, PE-
conjugated CD206, BV-421 conjugated PD1 and LAGS3,
and PE/Cy7-conjugated CTLA4 (BioLegend, San Diego,
CA). 7AAD (Invitrogen) was applied to exclude dead
cells. The CytExpert software (Beckman Coulter, CA,
USA) was used for flow cytometry analysis.
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Scoring system

Aperio Scan Scope CS scanner (Vista, CA, USA) was
used to scan the HNSCC tissue microarray. The in-
terested area of the section was chosen for quantifica-
tion. The score of the IHC staining was quantified
with background subtraction using Aperio Quantifica-
tion software (Version 9.1). The histoscore of the nu-
cleus and membrane staining were worked out using
the following formula for the percentage of cells with
different positive degrees: (3+)x 3+ (2+) x2+ (1+)x 1
[27]. Histoscores were translated to numerical scores
from -3 to 3 using Microsoft Excel. Cluster 3.0 was
used to perform the hierarchical analysis. Finally, the
cluster picture was completed with Java TreeView
1.0.5.

Statistical analysis

Statistical data analysis was performed by utilizing the
GraphPad Prism 6 software (La Jolla, CA) and was
shown as the mean values + SEM. The Mann-
Whitney test was used to analyze the differences between
two different groups. And the value of Cohen’s d of each
data have been calculated to confirm the significant differ-
ence between two different groups. The two-tailed Pear-
son correlation was used to evaluate the expression
relevance of TIM3, Galectin-9, Foxp3, CD68 and CD163.
Statistical significance was defined as P value < 0.05.

Results

TIM3/Galectin-9 pathway was correlated with the
expression of Foxp3, CD68 and CD163 in HNSCC

To evaluate the TIM3/Galectin-9 signaling pathway in
HNSCC, we detected TIM3 and Galectin-9 expression
in human HNSCC tissue arrays. The IHC photo-
graphs demonstrated that TIM3 was specifically
expressed on immune cells in the tumor stroma. As
the ligand of TIM3, Galectin-9 was not only
expressed on tumor cells of invasive front but also on
immune cells in the tumor stroma. We also examined
the Treg marker (Foxp3) and macrophage markers
(CD68 and CD163) in the HNSCC tissue array. These
markers (Foxp3, CD68, and CD163) were expressed
on immune cells in the tumor stroma (Fig. 1a). The
cluster analysis showed the IHC scores of TIMS3,
Galectin-9, Foxp3, CD68 and CD163 for each patient
and the correlation of their expression in HNSCC pa-
tients (Fig. 1b). Further correlation analysis shows
that TIM3 expression was closely associated with
Galectin-9 expression (Fig. 2a). Foxp3 expression was
correlated with TIM3 and Galectin-9 expression (Fig.
2b). Additionally, the expression of TIM3 and
Galectin-9 were significantly correlated with CD68
and CD163 expression (Fig. 2¢, d).
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Percent of Tregs and CD206* macrophages increased in
the HNSCC mouse model

The phenotypic and pathological features of head and
neck squamous cell carcinoma of Tgfbrl/Pten 2cKO
mouse model are shown in Fig. 3a and b. Tregs and M2
macrophages are considered as the immunosuppression-
mediated cells which suppress the immune response to
cancer cells. We detected the percent of CD4'CD25
“Foxp3™ Tregs and CD11b*F4/80"CD206" macrophages
(M2) in the HNSCC mouse model. The flow cytometry
analysis showed that in the HNSCC mice, the percent of
Tregs was increased compared with that of wild-type
(WT) mice (Fig. 3c and d). Meanwhile, the percent of
CD11b*F4/80"CD206" macrophages was also increased
in the HNSCC mouse model (Fig. 3e and f). These
results showed that the negative immune regulators,
Tregs and M2 macrophages, accumulate in the develop-
ment of HNSCC.

Blockade of TIM3 induced a decrease of Tregs in HNSCC
mice

We next explored the role of TIM3 in immune suppres-
sion by using the HNSCC mouse model. The tumors
with the anti-TIM3 therapy grew at a slower rate than
those of the control group (Fig. 4a). Through flow
cytometry analysis, we found that TIM3 expression was
reduced in the anti-TIM3 group (Fig. 4b). Furthermore,
we examined the population of Tregs in each group.
The results showed that the percent of CD25"Foxp3*
cells in CD4" T cells was significantly decreased in anti-
TIM3 therapy mice compared with that of control mice
(Fig. 4c and d), which means that Tregs were reduced in
response to TIM3 blockade. Furthermore, these CD4
"CD25"Foxp3™ Tregs were labeled with TIM3. Interest-
ingly, the percent of TIM3" Tregs was also down-regu-
lated in the anti-TIM3 therapy group (Fig. 4e). It
suggested that TIM3 may participate in the differentiation
of Tregs, and that the blockade of TIM3 induced a decline
in the number of Tregs.

Impact of TIM3 blockade on immune checkpoints and
macrophages

Immune checkpoints play a vital role in T cell dysfunc-
tion and exhaustion. Here, the expression levels of PD1,
CTLA4, LAG3 and TIGIT were detected by flow cytom-
etry. The expression levels of PD1 and LAG3 were not
changed significantly, while the expression levels of
CTLA4 and TIGIT were significantly decreased (Fig. 5a).
Moreover, since CD206 is considered an important
marker of M2 macrophages, we examined CD11b*F4/80
"CD206" macrophages. However, flow cytometry ana-
lysis demonstrated that the number of CD11b*F4/80
"CD206" macrophages was not substantially decreased
by blocking TIM3 (Fig. 5b and c).
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Fig. 1 TIM3, Galectin-9 and Foxp3 expression in HNSCC. a The representative IHC photographs of TIM3, Galectin-9 and Foxp3 expression in human
normal oral mucosa and HNSCC tissue. b Hierarchical clustering presents the correlation among TIM3, Galectin-9 and Foxp3 in the human HNSCC

Blockade of TIM3 promoted IFN-y production on CD8 T
cells

To verify whether the inhibition of Tregs and immune
checkpoints by blocking TIM3 enhanced the anti-tumor
immune response, we assessed the IFN-y expression on
CD8" T cells. Flow cytometry analysis showed that the
percent of CD8" T cells was significantly increased in
the anti-TIM3 therapy mice compared with that in the
control mice (Fig. 5d, e). Furthermore, the IFN-y pro-
duction on CD8" T cells was also remarkably elevated by
anti-TIM3 therapy (Fig. 5f). TIM3 blockade enhanced
the antitumor immune response in HNSCC mouse
model.

Discussion

The immune system acts as a supervisor during the ini-
tiation and development of HNSCC. Suppression of the
immune system leads to the tumor escape [5]. Tumor
cell co-option of immune checkpoints act as the

major pathways of immune suppression and immune
evasion in cancer [28]. Recent evidence has demon-
strated that TIM3/Gal9 is an important inhibitory
pathway in the immune response of cancer [29].
TIM3 has been proved to be expressed on multiple
immune cells, and blocking TIM3/Gal9 has an effect
on various immune cells, such as effector T cells,
Tregs, macrophages and monocytes [20, 22, 30, 31].
Our previous study has identified the overexpression
of TIM3 in HNSCC patients and the association of
TIM3 expression with MDSCs [25]. Evidences showed
a general increase in the number of circulating and
infiltrating Tregs in HNSCC patients [32, 33]. How-
ever, the actual association among TIM3, Tregs and
macrophages is not very clear in HNSCC. In this
study, we determined that the TIM3/Galectin-9 path-
way is closely related to the expression of the Treg
marker (Foxp3) and macrophage markers (CD68 and
CD163) in a HNSCC tissue array.
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Fig. 3 The number of TIM3" Tregs increased in the Tgfbr1/Pten 2cKO HNSCC mouse model. a Photographs of a wild-type mouse and a Tgfbr1/
Pten 2cKO HNSCC mouse. b HE staining of squamous cell specific tumor tissue in the 2cKO HNSCC mouse model. ¢ Flow cytometry analysis
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The canonical Tregs is a subset of T lymphocyte identi-
fied by CD4"CD25 "Foxp3*. Tregs can restrain CD8" T cell
activation and inflammation through direct contact or pro-
duction of TGF-p and interleukin (IL)-10 [34]. Early re-
search on ovarian carcinoma demonstrated that blockade
of TIM3 reverted Treg-mediated immune suppression [35].
We found that in the transgenic HNSCC mice, the number
of Tregs was elevated compared with that of WT mice,
while blockade of TIM3 induced a decrease in the Tregs
population. Thus, the Treg-mediated inhibition of the im-
mune response mediated was neutralized. Interestingly, the
number of TIM3" Tregs was also reduced by anti-TIM3
therapy, suggesting that TIM3 may participate in the regu-
lation of Tregs. Coincidentally, recent studies have shown
that TIM3 participated in the regulation of Tregs. Sun et al.
observed that the number of TIM3" Tregs was correlated
with rheumatoid arthritis activity. Moreover, IL-10 expres-
sion on TIM3" Tregs was higher than TIM™ Tregs [22]. In
hepatitis C viral infections, TIM3 was found to be
expressed on Tregs and to regulate the balance between
Tregs and effector T cells. And it has been reported that
TIM3" Tregs represent the highly suppressive Tregs due to
their high production of IL-10, perforin, granzyme A and
granzyme G [36]. These findings suggest that TIM3 acts as
a vital regulator of Tregs and affects the function of Tregs.

TIM3 has been shown to be involved in regulating the
macrophage activity [30]. Zhang et al. reported that
TIM3 expression is increased on macrophages in auto-
immune diseases. In addition, increased TIM3 expres-
sion on M2 macrophages participated in immune
regulation by inhibiting macrophage activation [37]. An-
other research also indicated that the upregulation of
TIM3 expression on M2 macrophages in mice mediated
the anti-inflammatory response [38]. However, in the
present study, blocking TIM3 did not reduce the num-
ber of CD11b"F4/80"CD206" (M2) macrophages signifi-
cantly in the HNSCC mouse model. This may be due to
the limited expression of TIM3 on CDI11b"F4/80
"CD206" macrophages in this mouse. The negative im-
mune checkpoints (such as PD-1, LAG3, CTLA4) also
play vital roles in immune suppression through multiple
pathways in HNSCC development. In the vivo study,
although PD-1 and LAG3 expression levels were not ob-
viously decreased by TIM3 blockade, CTLA4 and TIGIT
expression levels were significantly decreased. CTLA4
acts as a negative regulator of T cell activation and the
maintenance of T cell homeostasis [39]. TIGIT is
expressed on memory T cells, Tregs and NK cells, and
can suppress the activation of T cells [40]. Thus, the
downregulation of CTLA4 and TIGIT may alleviate the
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inhibition of T cell activation and strengthen the
immune response. In addition to these mechanisms, the
reduced expression of TIM3 on T cells can directly
increase IFN-y production and enhance the anti-tumor
immune effect.

Conclusion

Taken together, HNSCC is a malignant tumor character-
ized by a substantially suppressed immune system.
There are various mechanisms that contribute to the
failed anti-tumor immune response. We showed that
TIM3 participates in the regulation of Tregs, and that
blockade of TIM3 relieves the immune suppression by
reducing Treg activation and decreasing CTLA4 and
TIGIT in HNSCC, supporting the therapeutic value of
anti-TIM3 treatment in HNSCC.
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