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Role of the nervous system in cancer
metastasis
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Abstract

Cancer remains as one of the leading cause of death worldwide. The development of cancer involves an intricate
process, wherein many identified and unidentified factors play a role. Although most studies have focused on the
genetic abnormalities which initiate and promote cancer, there is overwhelming evidence that tumors interact
within their environment by direct cell-to-cell contact and with signaling molecules, suggesting that cancer cells
can influence their microenvironment and bidirectionally communicate with other systems. However, only in recent
years the role of the nervous system has been recognized as a major contributor to cancer development and
metastasis. The nervous system governs functional activities of many organs, and, as tumors are not independent
organs within an organism, this system is integrally involved in tumor growth and progression.
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Background
Cancer is the leading cause of death worldwide due to the
aging population and unhealthy lifestyle [1]. Although it is
highly treatable when localized, metastatic or recurrent
cancer has a poor prognosis. Metastasis involves a complex
series of steps including proliferation, angiogenesis,
embolization, dissemination, evasion of immune system
surveillance and surviving in ectopic organs [2–5].
However, despite significant advances in understanding me-
tastasis and its mechanisms, the prognosis remains poor. In
the past decades, research has focused on identifying and
characterising genes and gene products that manipulate the
metastatic processes [6–9]. More recently, the impact of
the tumor microenvironment on tumor cell invasion and
metastasis has attracted extensive attention (see ref. [10] for
detailed review) [2, 10–13]. Multiple cellular and extracellu-
lar components within the tumor microenvironment, such
as immune cells, endothelial cells, mesenchymal stromal
cells (fibroblasts and myofibroblasts), and their secretory
products, exert active functions to modulate gene expres-
sion patterns of tumor cells and to alter biological behavior

of tumor cells [14–16]. Invariable crosstalk amongst these
components within the tumor microenvironment triggers
pro-survival, invasion, and metastatic pathways of tumor
cells [17–20]. Several studies, both clinical and in vitro,
reinforce the concept of the nervous system involvement in
cancer metastasis [5, 21–26]. Nerve fibers present in and
around the tumor could release neurotransmitters and
neuropeptides directly acting on receptors expressed
by cancer cells. The findings, primarily in cancer cell
lines and animal models, indicate that there is a bi--
directional correlation between the neural factors re-
leased and cancer progression and metastasis.
Understanding the complex neurotransmitter-cancer
interaction is important for the development of new
avenues for targeted therapeutic intervention. This re-
view presents an overview of the role of the nervous
system in cancer metastasis.

The role of the nervous system in metastatic
cascade
Studies have demonstrated that the nervous system facil-
itates development of tumor metastasis by modulating
metastatic cascades through the release of neural-related
factors from nerve endings such as neurotrophins, neu-
rotransmitters and neuropeptides [27–29]. The process
of metastasis formation involves tumor cells breaking
away from the primary tumor and overcoming the
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obstacles of primary tissue inhibition (initiation and
clonal expansion), anoikis inhibition (evasion from apop-
tosis), breakdown of base membranes (epithelial-mesen-
chymal transition (EMT) and invasion), extravasation
and colonization, angiogenesis, evasion of immune re-
sponse and establishment of tumor microenvironment.

Initiation and clonal expansion
Tumor metastasis initiation and clonal expansion is a
complex process where contributing factors are not well
understood. It is believed that metastasis process is initi-
ated when genetically unstable tumor cells adjust to a
secondary site microenvironment [11]. This process in-
volves selecting traits that are beneficial to tumor cells
and affiliated recruitment of traits in the tumor stroma
that accommodate invasion by metastatic cells.
Metastasis-initiating cells possess these traits and can hi-
jack some of the normal stem cell pathways to increase
cellular plasticity and stemness [30]. Proteolytic enzymes
such as matrix metalloproteinases (MMPs) facilitate this
process by degrading the surrounding normal tissues.
MMPs are regulated by neural-related factors and neu-
rotransmitters and are overexpressed in tumors [31–35].
Hence, nervous system modulates the initiation and
clonal expansion via the expression of MMPs and the
stimulation of metastasis-initiating cells.

Evasion from apoptosis
Anoikis is a programmed cell death induced upon cell
detachment from extracellular matrix, acting as a critical
mechanism in preventing adherent-independent cell
growth and attachment to unsuitable matrix, thus avoid-
ing colonizing of distant organs [36, 37]. For tumor me-
tastasis to progress, tumor cells must be resistant to
anoikis. Tumor cell resistance to anoikis is attributed to
alteration in integrins’ repertoire, overexpression of
growth factor receptor, activation of oncogene, activation
of pro-survival signals, or upregulation/mutation of key
enzymes involved in integrin or growth factor receptor
signaling [37]. Neurotransmitters and neurotrophins play
a role in tumor evasion from anoikis. Increased expres-
sion of brain-derived neurotrophic factor (BDNF) and
its receptor tropomyosin-related kinase B (TrkB) induces
anoikis inhibition in rat intestinal epithelial cells [27].
Similarly, TrkB overexpression induces anoikis inhibition
protecting colorectal cancer cells [38]. Application of re-
combinant human BDNF to gastric cancer cells inhibited
anoikis and stimulated cellular proliferation, invasion and
migration [39]. Nicotine exposure promotes anchorage-
independent growth of A549, MDA-MB-468 and MCF-7
cell lines by downregulation of anoikis [40]. Furthermore,
tumor microenvironment contributes to anoikis resistance
of cancer cells by producing pro-survival soluble factors,
triggering EMT, enhancing oxidative stress, regulating

matrix stiffness, as well as leading to metabolic deregula-
tions of cancer cells [37]. These events assist tumor cells
to prevent the apoptosis mechanism and sustain pro-
survival signals after detachment, counteracting anoikis.

EMT and invasion
EMT is a fundamental process for tumor progression by
increasing invasiveness and resistance to anoikis and sig-
nificantly elevating the production of extracellular
matrix constituents leading to metastasis [41–43]. EMT
development results in the degradation of basement
membrane and formation of mesenchymal-like cells
[42]. Studies have demonstrated that nervous system
regulates EMT development via the release of neuro-
transmitters and neurotrophins [40, 44]. The overexpres-
sion of TrkB or activation by BDNF in human
endometrial cancer cell lines results in altered expres-
sion of EMT molecular mediators [44]. Nicotine treat-
ment induces changes in gene expression associated
with EMT in lung and breast cancer cells [40].

Extravasation and colonization
Nervous system modulates the function of vascular sys-
tem which is essential for tumor cell extravasation and
colonization. It has been found that neuropeptides such
as substance P (SP) and bradykinin enhance vascular
permeability promoting tumor cell extravasation and
colonization [28, 29]. In a mouse model bearing sarcoma
180 cells, bradykinin enhances tumor-associated vascular
permeability [28]. SP regulates physiological functions of
vascular system including smooth muscle contractility,
and vascular permeability [29]. Cell extravasation and
colonization are prerequisite for angiogenesis which is a
crucial step in the development of cancer metastasis.

Angiogenesis
Development of tumor angiogenesis is essential for
tumor growth and progression. Vascular endothelial
growth factor (VEGF) plays significant role in tumor
angiogenesis, leading to metastasis [45–47]. Studies have
demonstrated the important role of neurotransmitters
and neuropeptides in regulating angiogenesis. In the
xenograft models of ovarian cancer, chronic stress medi-
ates the vascularization of intraperitoneal metastasis and
enhances tumor angiogenesis via increasing VEGF ex-
pression [48, 49]. In breast cancer cell lines, direct acti-
vation of β-adrenergic signaling can amplify expression
of VEGF and cytokines, interleukin (IL)-6, and IL-8 that
stimulate tumor angiogenesis [50]. In colon tumor
tissues from HT-29 cell-bearing BALB/c mice, VEGF
expression is elevated by nicotine which correlates with
enhanced microvessel density [51]. Neuropeptide Y
(NPY) enhances the expression of VEGF and its
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secretion promoting angiogenesis and breast cancer pro-
gression [52].

Evasion of immune response
The nervous system plays a fundamental role in regu-
lating immune responses [53]. Inflammatory media-
tors can activate sensory nerves that send signals
regarding inflammation to the central nervous system,
which in turn leads to the release of neuromediators
modulating local inflammation and influencing im-
mune cells [54]. Since inflammatory signals are im-
portant for tumor progression in both the early and
late stages, the anti-inflammatory role of the vagus
nerve may play an important role in cancer metastasis
[55]. β-adrenergic receptor agonist suppressed natural
killer (NK) cell activity resulting in increased lung
metastasis in murine metastatic mammary adenocarcinoma
[56]. In addition, pharmacological or stress-associated
β-adrenergic stimulation results in increased macro-
phage infiltration and cancer metastasis in breast can-
cer model [57].

Tumor microenvironment
Tumor microenvironment (mainly contain stromal cells
and signal molecules) plays essential role in the formation
of cancer metastasis. Stromal cells produce neural-related
factors and express β-adrenergic receptor that facilitated
tumor cell proliferation and survival in the primary site and
secondary organ [10, 24]. Tumor-associated macrophages
play a role in β-adrenergic signaling pathways, by accelerat-
ing angiogenesis, chemokine secretion to attract tumor
cells, secretion of pro-inflammatory cytokines (IL-1, IL-6,
IL-8, and tumor necrosis factor (TNF)-α) and escape of
anti-tumor responses [58–60]. Hence, tumor microenviron-
ment creates a feedback loop with the nervous system en-
abling the growth of primary and secondary tumors.
Overall, these studies have demonstrated that the nervous
system modulates each step of cancer metastasis through
the release of neural-related factors.

Role of perineural invasion in cancer metastasis
Perineural invasion (PNI) also known as neurotropic
carcinomatous spread is a process mainly categorized
by neoplastic invasion of the nerves. PNI is defined
as the presence of cancer cells in the perineurium; it
is believed to be a common route for cancer metasta-
sis can cause cancer-related pain [61–68]. The pres-
ence of PNI is mostly associated with poor prognosis
and high recurrence in colorectal [69], gastric [64],
oral tongue squamous cell carcinoma (OTSCC) [62],
and pancreatic [61] cancers. In stage II and III
colorectal cancer patients, the presence of PNI is
associated with tumor grade, metastasis to lymph
nodes and poor patient survival [63]. However, in

invasive breast carcinoma the presence of PNI has been
demonstrated to have no prognostic value [67, 70].
PNI is influenced by the interaction between the nerve

microenvironment and neurotrophic molecules
expressed by cancer cells such as nerve growth factor
(NGF), BDNF, glial cell line-derived neurotrophic factor
(GDNF) and their receptors [61, 68, 71]. A number of
studies demonstrated correlation between the presence
of PNI with high expression of NGF and its receptor
tropomyosin related kinase A (TrkA) [61, 72, 73]. It is
speculated that neurotrophins released by neural tissue
act as chemotactic factors, and in cancer cells where
Trks are overexpressed, they provide mechanism to in-
vade the perineural space. High expression of NGF or
TrkA and P75NTR receptors is associated with lymph
node metastasis in a mouse model of breast cancer [74].
In OTSCC patients [73], the presence of PNI and NGF
is associated with larger tumor size and lymph node me-
tastasis, suggesting that its presence can be a valuable
marker to predict the disease progression and prognosis
[65]. Overexpression of TrkA associates with enhanced
growth, invasion and migration of breast cancer cells in
vitro as well as enhanced metastasis in xenografted im-
munodeficient mice via the PI3K-AKT and ERK/P38
MAP kinases [75]. Conversely, immuno-histochemical
evaluation of tissues from patients with extrahepatic
cholangiocarcinoma shows that intra-tumoral NGF
expression does not correlate with PNI, absence of dis-
ease recurrence and overall patient survival [76]. GDNF
has been demonstrated to induce cancer cells migration.
In human pancreatic adenocarcinoma tissues and
MiaPaCa-2 cell lines, binding of GDNF to its receptor
GFRα1 stimulates PNI via GDNF-(Ret proto-oncogene)
RET signaling pathway [71]. Activation of GDNF-
GFRα1-RET signaling triggers the MAPK signaling path-
way leading to pancreatic cancer cell migration toward
nerves in both in vitro and animal models of PNI [77].
Cancer-nerve interaction studied in in vitro co-cultures
of DRG and MiaPaCa-2 pancreatic cancer cells demon-
strated that GFRα1 facilitates migration of cancer cells
along neurites toward the center of the DRG [71].
Furthermore, decreased release of soluble GFRα1 from
DRG inhibits migration of cancer cells towards nerves in
vivo providing further evidence that GFRα1 expression
is important in facilitating PNI [71]. In a metastatic
breast cancer model, in vivo inhibition of Ret suppresses
tumour outgrowth and metastatic potential [78].
BDNF facilitates cancer metastasis via binding to its

receptors, TrkB/ TrkC and/or p75NTR as demonstrated
in breast [79], colorectal [80, 81], clear cell renal cell car-
cinoma [82] and non-small cell lung cancer (NSCLC)
[83]. The expression of TrkB associates with nodal me-
tastasis and peritoneal metastasis; whereas, TrkC expres-
sion associates with liver metastasis in colorectal cancer
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patients [81]. BDNF-TrkB signaling pathway mediates
metastatic effect through modulation of cancer-
associated fibroblasts (CAFs) as demonstrated in mouse
model co-injected with OSC19-Luc transfected cell line
and CAFs [84]. In melanoma, neurotrophin (NT)-3, NT-
4, and NGF induce cell migration, with a stronger effect
on metastatic cell lines via binding to p75NTR corecep-
tor sortilin [85]. In breast cancer, NT-3 enhances breast
cancer metastasis in the brain via promoting the mesen-
chymal–epithelial transition of breast cancer cells to a
more epithelial-like phenotype and via increasing the
ability of these cells to proliferate in the brain [86].
Collectively, these studies demonstrate that neurotro-

phins and their receptors play crucial role in PNI. These
studies also suggest that the presence of PNI could be
an effective predictor of metastatic potential and patient
survival.

Tumor innervation influencing cancer metastasis
Tumor innervation
Cancer-related neurogenesis (tumor innervation) is
attributed to the ability of cancer cells to attract
normal nerve fibers via the secretion of signalling
molecules and neurotrophic factor. However, recent
study has demonstrated that cancer stem cells are
capable of directly initiating tumor neurogenesis
[87]. Cancer stem cells derived from human gastric
and colorectal cancer patients generate neurons in-
cluding sympathetic and parasympathetic neurons
which promote tumor progression [87]. Knocking
down their neural cell generating abilities inhibit
tumor growth in human xenograft mouse model.
Neurogenesis and its putative regulatory mechanisms
have been reported in prostate [88], gastric [89],
colorectal [90] and breast [91] cancers. There is a
correlation between the expression of a pan-neuronal
marker protein gene product 9.5 with clinicopatho-
logical characteristics of breast cancer [91]. In fact,
neurogenesis is associated with aggressive features
including tumor grade, poor survival as well as
angiogenesis, especially in estrogen receptor-negative
and node-negative breast cancer subtypes [91, 92]. In
prostate cancer, infiltration of the tumor microenvir-
onment by nerve fibers associates with poor clinical
outcomes [93] and is driven by the expression of
granulocyte colony-stimulating factor (G-CSF) [94]
and proNGF [95]. Similarly, in orthotopic PC3-luc
xenografts model of prostate cancer, neurogenesis
and axonogenesis correlate with aggressive features
including metastatic spread which is attributed to
the neo-cholinergic parasympathetic nerve fiber [94].
These findings indicate that neurogenesis, like angio-
genesis, is also a trait of cancer invasion and can
alter tumor behaviour.

Tumor denervation
On the other hand, disruption of tissue innervation
might cause accelerated tumor growth and metastasis
[56, 96–101]. For instance, in humans, decreased vagal
nerve activity correlates with advanced stages of cancer
[96–98]. Similarly, modulation of vagal nerve activity
enhances metastasis of breast cancer in mice [99, 100].
In addition, capsaicin-induced inactivation of sensory
neurons enhances metastasis of breast cancer cells [56,
101]. On contrary, pharmacological or surgical denerv-
ation supresses the tumor progression as noted in three
independent mice models of gastric cancer [89]. Thus,
these findings suggest that there might be differences in
the effects of local tumor innervation and extrinsic in-
nervation on cancer progression.

Neurotransmitters influencing cancer metastasis
Tumor innervation influences metastasis as the ingrown
nerve endings release neurotransmitters (such as nor-
epinephrine, dopamine and substance P), which enhance
metastatic spread [102]. To date, several neurotransmit-
ters and neuropeptides involved in tumor metastasis
have been identified (Table 1 and Fig. 1). In fact, several
cancer cells express receptors for a number of neuropep-
tides and neurotransmitters, like norepinephrine,
epinephrine, dopamine, GABA, acetylcholine, SP and
NPY which have stimulatory effects on migration of can-
cer cells [103–112].

Catecholamines
The increased expression of β-adrenergic receptor for
catecholamines is associated with poor prognosis in
breast cancer [113]. Stress stimulation leads to macro-
phage infiltration to the tumor site which activates
β-adrenergic signaling pathways leading to increased
metastasis in an orthotopic breast cancer model in
BALB/c mice [57]. In this model, administration of
β-adrenergic antagonist, propranolol, decreases breast
cancer metastasis [57]. Similarly, the use of β-blockers
in breast cancer patients inhibits metastasis and dis-
ease recurrence as well as improving survival of pa-
tients [113, 114]. In ovarian cancer patients, the grade
and stage of tumors correlate with higher tumor
norepinephrine levels associated with stress [115]. In
an orthotopic mouse model of ovarian cancer, chronic
stress elevates tumor noradrenaline levels and in-
creases the aggressiveness of tumor growth [49]. In
prostate cancer C42 xenografts in nude mice and
Hi-Myc mice with prostate cancer, plasma adrenaline
promotes carcinogenesis via β2 adrenergic receptor/
protein kinase A/BCL2-associated death protein anti-
apoptotic signaling pathway [116]. Hence, stimulation
of catecholamines plays a major role in activation of
signals for breast cancer metastasis. Therefore,
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inhibition of the sympathetic nervous system signaling
pathways with β-blockers holds great promise in pre-
venting metastasis of various tumors including breast
cancer. On the other hand, involvement of α-
adrenergic receptors in cancer metastasis is not well
understood. In the murine model of metastatic mam-
mary adenocarcinoma induced by 4 T1 cells in
BALB/c mice, activation of α2-adrenergic receptors
increases tumor growth rate and the number of me-
tastasis [117]. In contrast, blockade of α-adrenergic
receptors in the absence of stress increases distant
metastasis in the orthotopic model of mammary

adenocarcinoma induced by MDA-MB-231HM cell
line in nude mice [118].
The role of dopamine in cancer metastasis is not

clear. Low levels of dopamine have been reported in
stressed mice with ovarian carcinoma [119]. In con-
trary, in hepatocellular carcinoma (HCC) patients
dopamine levels are elevated in the blood samples
compared to healthy individuals [120]. Moreover,
enzymes such as monoamine oxidase A (MAOA)
degrading catecholamines and serotonin [121] may
also play an important role in influencing cancer me-
tastasis [122–124]. Studies have demonstrated that

Fig. 1 Neurotransmitters signalling pathways in cancer. Cancer neuro-immune communication is through the release of neurotransmitters
using different signalling kinases which promote cancer progression via metastasis. Perineural invasion mediate cancer metastasis through
the release of the NGF and GDNF via the activation of different signaling pathway. Ach, acetylcholine; β2-AR, β2-adrenergic receptor;cAMP, cyclic
adenosine monophosphate; DA, dopamine; DR, dopamine receptor; EGFR, epidermal growth factor receptor;EMT,epithelial–mesenchymal transition;
ERK1/2, extracellular signal-regulated kinase;FAK, focal adhesion kinase; GABA, gamma-aminobutyric acid; GABAB,gamma-aminobutyric acid
receptorB;GDNF, glial cell line-derived neurotrophic factor; GFRα, glial cell line-derived neurotrophic factor receptor 1;ICAM-1, intercellular adhesion
molecule-1; JAK2,janus kinase 2;MEK, MAPK/ERK kinase;mTOR, mammalian/mechanistic target of rapamycin;MMP, matrix metallopeptidase;MAPK,-
mitogen-activated protein kinases;RAF, mitogen activated protein kinase;RAS, mitogen activated protein kinase;mAChRs, muscarinic acetylcholine
receptors;NK-1R, neurokinin-1 receptor; NGF, nerve growth factor;nAChR, nicotinic acetylcholine receptor;NE, norepinephrine;NF-kB, nuclear factor-
kappa B;PLC, phospholipase C; PI3K, phosphoinositide 3-kinase;PKA, protein kinase A;PKC, protein kinase C;RET, proto-oncogene;AKT, serine/threonine
kinase or protein kinase B;STAT3,signal transducer and activator of transcription 3; SP,substance P;TrkA,tropomyosin related kinase A
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MAOA expression is decreased in HCC patients; it
suppresses HCC cell metastasis by inhibiting adrenergic
and epidermal growth factor receptor (EGFR) signaling
pathways [125]. Inhibition of MAOA stimulates malignant
behavior in MDA-MB-231 breast cancer cells [126]. On
the other hand, high expression of MAOA in human
tissues correlates with poor prognostic in prostate cancer
patients and increased tumor metastasis in xenograft
mouse model of prostate cancer via HIF1-α/VEGF-A/
FOXO1/TWIST1 signaling pathway [124]. These limited
studies on the role of MAOA in cancer metastasis are
controversial.

γ-Aminobutyric acid (GABA)
Plays a role in cancer metastasis via activation of ionotropic
(GABAA) and metabotropic (GABAB) receptors [127]. It
has been demonstrated that GABA mediates its inhibitory
effect through GABAA receptor. For example, HCC cell
lines and human adjacent non-tumor liver tissues, express
GABAA receptor. GABA inhibits HCC cell migration
through the activation of GABAA receptor [128]. However,
there are studies demonstrating that GABAA receptor en-
hances metastasis. The activation of GABAA receptors
upregulates brain metastasis of breast cancer patients [129].
Expression of the GABAA receptor subunit, Gabra3, which
is normally not present in breast epithelial cells, is increased
in human metastatic breast cancer which correlated with
poorer patients survival [108]. Gabra3 overexpression pro-
motes migration and metastasis of breast cancer cells via
activating serine/threonine kinase or protein kinase B
(AKT) signaling pathway demonstrated in a mouse ortho-
topic model induced by MCF7 and MDA-MB-436 breast
cancer cell lines [108]. Mechanistically, the activation of
AKT signaling pathway enhances metastasis via down-
stream molecules such as focal adhesion kinase and MMPs
[130, 131]. Therefore, it could be speculated that the effect
of GABAA receptor depends on the activated downstream
molecules and signalling pathways. Murine (4 T1) and
human (MCF7) breast cancer cell lines and human breast
cancer tissues express GABAB receptor [107]. In mice,
GABAB receptor mediates 4 T1 cell invasion and pulmon-
ary metastasis via ERK1/2 signaling [107]. GABAB activation
inhibits migration of PLC/PRF/5 and Huh 7 malignant hep-
atocyte cell lines in vitro [132].

Acetylcholine (ACh)
Plays a functional role in cellular proliferation, differenti-
ation and apoptosis. In HCC, the release of ACh acting
on androgen receptor promotes SNU-449 cell invasion
and migration via activation of AKT and signal
transducer and activator of transcription 3 (STAT3)
signaling pathways [133]. Nicotine stimulation of nico-
tinic acetylcholine receptor (nAChRs) enhances SW620
and LOVO colorectal cancer cell invasion and metastasis

in vitro via the activation of p38 mitogen-activated pro-
tein kinases (MAPK) signaling pathway [112]. Similarly,
nicotine pretreatment stimulates the activation of α9-
nAChR which mediates MCF-7 and MDA-MB-231
breast cancer cell migration via the expression of epithe-
lial mesenchymal transition markers [134]. Furthermore,
implantation of CD18/HPAF pancreatic cancer cells into
immuno-deficient mice, demonstrates that nicotine
treatment activates α7-nAChR and mediates tumor me-
tastasis via Janus kinase 2 (JAK2)/STAT3 signaling in
synergy with mitogen activated protein kinase (Ras/Raf/
MEK/ERK1/2) signalling pathway [135]. ACh promoted
cancer metastasis and associate with poor clinical out-
comes in prostate adenocarcinoma via M1R; and
pharmacological blockade or genetic disruption of the
M1R inhibit tumor invasion and metastasis leading to
improved survival of the mice-bearing PC-3 prostate
tumor xenografts [93]. In addition, ACh acting on M3
muscarinic receptor (M3R) associates with metastasis
and low survival rate of NSCLC patients [136]. M3R
activation increases invasion and migration of NSCLC
cells and increased release of interleukin (IL)-8 via the
activation of EGFR/PI3K/AKT pathway [137]. In human
SNU-C4 and H508 colon cancer cell lines, administra-
tion of muscarinic receptor inhibitor, atropine, abolished
SNU-C4 cell migration, however, H508 cell migration
requires the activation of MMP7 [138, 139].

Neuropeptides
Expression of SP is shown to exert functional effects
on small cell lung cancer [140], pancreatic [141],
colon [142], prostate [143, 144] and breast cancer
[145] cells. SP acting on neurokinin-1 (NK-1) recep-
tors enhances pancreatic cancer cell migration and
perineural invasion to the dorsal root ganglia (DRG)
mediated by MMP-2 demonstrating its essential role
in metastasis [146]. Enhanced expression of SP corre-
lated with lymph node metastasis and poor prognosis
in colorectal cancer patients [142]. NPY modulates
cell proliferation, differentiation and survival via act-
ing on its G protein-coupled receptors designated
Y1R–Y5R leading to the development of metastasis
[147, 148]. High levels of systemic NPY associates
with metastatic tumors as noted in Ewing sarcoma
patients [149]. Similarly, in the SK-ES1 xenograft
model, elevated levels of NPY associates with bone in-
vasion and metastases [150]. NPY mediates 4 T1 cell
proliferation and migration via the activation of NPY
Y5 receptor [148]. Neurotensin mediates metastasis
by binding to neurotensin receptors 1 (NTSR1). In
breast cancer, the expression of NTSR1 correlates
with lymph node metastasis [151]. These studies dem-
onstrate the important role of neuropeptide signaling
in cancer metastasis.
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Concluding remarks and future directions
Metastasis continues to be the main cause of cancer-
related death. Although genetic compartments that in-
fluence metastasis have been identified, there are still
needs to conduct comprehensive evaluation of the fac-
tors that contribute to cancer metastasis. This review
demonstrates that the nervous system influences cancer
metastasis through the release of neurotransmitters and
neuropeptides leading to metastasis. However, sensory
nerve fibres have been given less attention. Sensory stim-
uli activate pain transmission pathways which result in
acute or chronic pain depending on the intensity and
the nature of the stimulus [152, 153]. Cancer-related
pain is linked to accelerating cancer progression and me-
tastasis. Sensory nerves can innervate primary tumors
and metastases, thus contributing to tumor-associated
pain as demonstrated in pancreatic [61] and prostate
cancer [154]. Therefore, a possible involvement of sen-
sory fibers in tumor progression and metastasis, al-
though not well demonstrated at this stage, cannot be
excluded.
In conclusion, cancer cells can transduce neurotransmitter-

mediated intracellular signaling pathways which lead to their
activation, growth and metastasis. The findings reported here
are primarily done in cancer cell lines and animal models.
Therefore, better understanding the interaction between
these signaling molecules and tumor cells in human cancers
would enhance our knowledge on pathways promoting can-
cer metastasis.
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