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Abstract

Background: Osteosarcoma is the most common primary malignancy of bone. Its treatment relies on the
administration of neoadjuvant and adjuvant chemotherapy combined with surgery. Alternative to common
intravenous (i.v.) administration of chemotherapeutic drugs, clinical studies also evaluated the benefit of intraarterial
(i.a.) administrations. However, conflicting results were obtained when both routes of administration of cisplatin
(CDDP), a gold standard drug in osteosarcoma treatment, were compared. In order to overcome clinical
confounding factors, we evaluated both routes of drug administration in a mouse model of experimental
osteosarcoma.

Methods: We directly compared i.v. versus i.a. drug infusions of cisplatin (CDDP), in an orthotopic xenograft mouse
model of metastatic osteosarcoma. We performed tumor monitoring using caliper and micro computed
tomography and measured tumor perfusion using laser speckle contrast imaging. Histopathological changes were
evaluated using hematoxylin and eosin staining as well as immunohistochemistry (cleaved PARP-1, CD31, HIF-1α).
Results: First, an effective concentration of 4 mg/kg i.a. CDDP was determined that significantly reduced primary
tumor volume. We used this concentration of i.a. CDDP and compared it to infusions of i.v. CDDP. Systemic (i.v.)
CDDP only showed minor suppression of tumor growth whereas local (i.a.) CDDP strongly inhibited tumor growth
and destruction of cortical bone in the tumor-bearing hind limb. Inhibition of tumor growth was linked to a
reduced blood perfusion and resulted in increased amounts of tumor necrosis after i.a. CDDP. After treatment with
i.a. CDDP, remaining viable tumor tissue responded by increasing expression of HIF-1α. Side effects due to
administration of CDDP were minor, showing no differences in kidney damage between i.v. and i.a. CDDP. However,
increased epidermal apoptosis in the foot was an indirect marker for locally increased concentrations of CDDP.

Conclusions: Our findings demonstrate the great potential of local administration of cytotoxic chemotherapeutics,
such as CDDP. Consequently, we provide a preclinical basis for a renewed interest in the clinical use of i.a.
chemotherapy in osteosarcoma therapy.
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Background
Bone cancers are among the deadliest cancers in
adolescents, with osteosarcoma as its most common
representative [1, 2]. Subsequent to the introduction
of chemotherapy in the early 1970s, 5-year survival
rates of osteosarcoma patients with localized disease
increased from 20 % to above 60 % [1, 3]. Standard
of care for osteosarcoma patients currently includes
systemic, intravenous (i.v.) administration of neoad-
juvant chemotherapy, combined with surgical resec-
tion of the primary tumor, followed by adjuvant
chemotherapy. However, 5-year survival rates plat-
eaued at 60 % and survival rates of patients with
metastatic disease remained unchanged at a low 20–30 %
until today [3].
In osteosarcoma treatment, the use of neoadjuvant

chemotherapy is considered valuable, yet without dir-
ectly improving event-free survival compared to immedi-
ate surgery [4]. Especially pathologic analysis of the
tumor response has important prognostic value. Good
responders (i.e. 90 % or greater tumor necrosis) achieve
up to two times better survival rates compared to pa-
tients with poor histologic responses [5–7]. In addition,
neoadjuvant chemotherapy reduces tumor volumes prior
to surgical resection, facilitating limb sparing procedures
[8]. Therefore, neoadjuvant chemotherapy with highly
cytotoxic drugs in osteosarcoma is commonly accepted
as standard of care. One of the chemotherapeutics
always included in today’s osteosarcoma treatment
regimens is cisplatin (Cis-diamminedichloroplatinum,
CDDP). However, its use is limited by systemic toxic-
ities such as ototoxicity and nephrotoxicity [9, 10].
Therefore, local, yet controlled application of CDDP

may be advantageous. One way to achieve this goal is by
local drug administration via the tumor feeding artery.
Such intraarterial (i.a.) drug administrations were already
successfully performed in the 1980s. These studies con-
firmed a higher bioavailability of the drug after i.a. infu-
sion of CDDP [11–13], explaining superior histological
response rates in osteosarcoma [14–16]. For instance,
Wilkins et al. achieved a good response in 87 % of the
patients if patients with localized osteosarcomas were
treated with i.a. CDDP and i.v. doxorubicin [14], com-
pared to only 41 % in similar patient cohorts where i.v.
CDDP and i.v. doxorubicin were used [17], and 71 % in
case of a three/four-drug regimen comprising metho-
trexate [6, 17–21]. In addition to better response rates,
studies from the St. Luke’s Medical Center achieved 10-
year survival rates of between 82 and 93 % using i.a.
CDDP [14, 22]. These survival rates compare favorably
to other studies with maximum 10-year survival rates of,
at best, 64 % with an i.v. two-drug regimen [17, 23] or
up to 70 % with an i.v. three/four-drug regimen [3, 24].
Similarly, canine osteosarcoma patients showed superior

responses when CDDP was infused via the tumor feed-
ing artery compared to i.v. infusions [25].
Although these results demonstrate a clear added

value of i.a. CDDP in osteosarcoma treatment, a clinical
trial comparing both routes of CDDP administration
was unable to show a benefit of i.a. chemotherapy [10].
This discrepancy might be explained by the design of
the study, dose adaptations, administration of multiple
drugs (standard of care) or its multi-institutional ap-
proach. In another study comparing i.a. versus i.v.
CDDP, superior tumor responses with i.a. CDDP were
only seen in the context of a three-drug regimen, and
not as part of a four-drug regimen [20]. However, tumor
response rates with the three-drug regimen comprising
i.a. (77 %) were similar to the rates found with a four-
drug regimen (81 %).
In summary, these studies demonstrate the difficulty

of evaluating the “true” efficacy of i.a. CDDP due to con-
founding factors such as administration of different
combinations of chemotherapeutics and the large differ-
ence in reported survival rates (between 50 % and 71%
already for i.v. CDDP) per treatment center [6, 26]. In
addition, tumor heterogeneity and side effect manage-
ment make it difficult to reliably interpret the results of
trials comparing both methods in a clinical setting. In
this study, encouraged by the initial promising clinical
benefits of i.a. chemotherapy, we investigated, under ex-
perimentally controlled conditions, the effects of local
(i.a.) versus systemic (i.v.) CDDP in a preclinical mouse
model of osteosarcoma.

Methods
Cell culture and transduction
Human OS 143B cells (CRL-8303) were obtained from
American Type Culture Collection (ATCC, USA) and
cultured in DMEM (4.5 g/L glucose)/HamF12 (1:1)
medium (Invitrogen, USA) supplemented with 10 %
heat-inactivated fetal calf serum at 37 °C in a humidified
atmosphere containing 5 % CO2. Previously, 143B cells
were transduced with the LacZ gene [27]. In this study,
143B/LacZ cells were additionally infected with retro-
viral particles containing the mCherry sequence
integrated into a pQCIXH backbone, similar as de-
scribed elsewhere [28]. The original mCherry-containing
pcDNA3.1 plasmid was a kind gift from Prof. M. Rudin
(Institute of Biomedical Engineering, University and
ETH Zurich). After transduction, 143B cells were se-
lected in tissue culture medium with 1200 μg/ml of
G418 (Merck, Germany) and 400 μg/ml of hygromycin
(Merck, Germany) to stably express LacZ and mCherry.

Animal care
Female 8-week-old severe combined immunodeficiency
mice (CB17/Icr-Prkdc scid/Crl; Charles River Laboratories,
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Germany) were maintained in enriched individually venti-
lated cages with light/dark-cycles of 12 h/12 h. After deliv-
ery, animals were kept for at least a week without any
interventions. Food and water was provided to the mice ad
libitum. Animal care and experimental procedures were in
accordance with the institutional guidelines and approved
by the Ethics Committee of the Veterinary Department,
Canton of Zurich, Switzerland (License Number 64/2013).

Orthotopic tumor induction in mice
143B cells were grown to subconfluence, detached with
Trypsin/PBS/0.05 % EDTA, resuspended in PBS/0.05 %
EDTA and kept on ice until injected. Before tumor cell
injections (TCIs), mice were anesthetized using injection
anesthesia. TCIs into left hind limbs were performed
similar to as described elsewhere [29]. Briefly, holes were
pre-drilled into the medullar cavity of left tibias using sterile
needles, before 105 143B cells were injected. After TCIs,
mice were monitored weekly for development of primary
tumors (see below). Once mice started limping due to the
tumor burden, 0.1 mg/kg of intraperitoneal (i.p.) Buprenor-
phine (Temgesic; Reckitt Benckiser, UK) was given twice
daily. At the end of the study, mice were sacrificed and lung
metastases were counted as described [28].

Tumor monitoring
Primary tumor monitoring
After TCIs, mice were monitored weekly using caliper
and fluorescence measurements, similar as described
[28]. Once human 143B osteosarcoma cells established
measureable primary tumors (unambigous mCherry sig-
nal and a volume greater than 25 mm3), drug treatment
was started. mCherry tumor fluorescence was measured
using an IVIS Lumina XR imaging system (Caliper Life
Sciences, Inc., USA) and quantified with Living Image
v3.1 software (Xenogen Corporation, USA).

Micro computed tomography
Micro computed tomography (microCT) using a Sky-
Scan1176 microCT system (SkyScan/Bruker, Billerica,
USA) equipped with a 0.5 mm aluminum filter was con-
ducted to yield high-resolution tomographs of mouse
hind limbs. Scans were obtained from each animal at the
end of the study at a working source voltage of 50 kV
and a source current of 500 μA yielding a final image
pixel size of 17.7 μm. Frame averaging of three and ex-
posure times of 210 ms per projection were set. Each
shot required a source rotation step of 0.7° yielding scan
times of approximately 8 min per mouse. Post-
acquisition three-dimensional image reconstitution was
done in NRecon software v1.6.9.18 (Skyscan/Bruker,
USA). Reconstituted images were segmented and bone
volumes were calculated using CTAn v1.13.11.0 (Sky-
scan/Bruker, USA). For calculation of bone and tumor

volumes, the region between the distal end of the patella
(“start of selection”) and the bifurcation of tibia and fib-
ula (“end of selection”) was used. Bone volumes were
calculated using the following formula: Δcortical bone
volume = bone volumetumor-limb - bone volumehealthy-limb.
Three-dimensional images of the mouse tibias were
made in Ctvox v.2.7.0 (Skyscan/Bruker, USA).

Drug infusions
After induction anesthesia with 5 % isoflurane (Forane;
AbbVie, Inc., USA), anesthesia was maintained with 2 %
isoflurane during drug infusions. Mice were kept warm
on a heating mat throughout the procedure. Intravenous
infusions were performed via the tail vein using a 30G
needle attached to a polyethylene catheter (Portex;
Smiths Medical, Inc., USA) under control of a syringe
pump (Legato; WPI, Inc., USA). Intraarterial infusions
were performed similarly as described [30]. Briefly, after
revealing the femoral artery proximal to the intratibial
tumor, the femoral nerve and the femoral vein were pro-
tected by inserting a nitrile strip. Subsequently, the fem-
oral artery was cut and in-house-made, polyethylene
catheters were inserted and manually held in place. Drug
(2 or 4 mg/kg CDDP; Sandoz, Austria, in 0.9 % NaCl; B.
Braun Medical, Inc., Germany, containing 0.8 % patent
blue V; Guerbet, France) or vehicle (0.9 % NaCl contain-
ing 0.8 % patent blue V) alone were infused in a total
volume of 350 μl within 2 min under control of a syringe
pump (Legato; WPI, Inc., USA) for three times (every
72 h). All manipulations were performed under a stereo
microscope (SZX 10; Olympus, Inc., Japan) placed in a
sterile working environment. Success of the infusion was
controlled through observing the distribution of the blue
dye across the hind limb. After removal of the catheter,
slight pressure was applied to the injection site in order
to prevent bleeding and the site of surgery was flushed
with 0.9 % NaCl. The wound was closed with non-
degradable silk sutures (7–0 silk; B. Braun Medical, Inc.)
in an intermittent pattern. Surgical procedures for an
individual i.a. drug infusion took on average 52 min.
In total, two studies were performed: 1) a “dose estab-

lishment study” to identify an effective concentration of
i.a. CDDP (N ≥ 4), and 2) a “comparison study” (4 mg/kg
i.a. CDDP (N = 11) or i.a. vehicle (N = 6) versus 4 mg/kg
i.v. CDDP (N = 6) or i.v. vehicle (N = 6)). Overall, i.a. in-
fusions were tolerated well, nevertheless, one mouse
treated with 2 mg/kg i.a. CDDP and two mice treated
with 4 mg/kg i.a. CDDP were sacrificed prematurely
during the “establishment study”, due to excessive
(>15 %) body weight loss. Throughout the “comparison
study”, one mouse of the i.v. vehicle-group had to be
sacrificed due excessive body weight loss. Two mice
from the group of i.v. CDDP dropped out, one during
injection, another one was sacrificed due to excessive body
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weight loss. One mouse of the i.a. vehicle group died dur-
ing the third surgery for unknown reasons. Only one
mouse from the i.a. CDDP group dropped out of the
study, after being found dead in the cage for unknown
reasons. Drop outs were excluded from the analysis.

Hind limb blood perfusion measurements
Laser speckle contrast imaging of the hind limbs of mice
was conducted using a moorFLPI Full-Field Perfusion
Imager (Moor instruments Ltd., UK) while mice were
fixed in supine position. Imaging was done under low-
light conditions on a heating pad set to 37 °C. Analysis
of perfusion was done using the recorded flux (arbitrary
units) images and the moorFLPI Review software v3.0
(Moor instruments Ltd.) by placing regions of interest
(ROIs) where the primary tumor developed as well as
in the corresponding region of the contralateral limb.
Flux-ratios were calculated using the following formula:
flux-ratio = fluxtumor/fluxcontralateral x 100 %.

Histological and immunohistochemical analysis
Shortly after euthanasia, primary tumors were cut in
equal parts, one snap frozen and the other part decalci-
fied, paraffin-embedded and stained using routine
methods. All slides were scanned using a digital slide
scanner (NAnoZoomer-XR C12000, Hamamatsu Pho-
tonics K.K., Japan) and images were obtained using the
corresponding NDP.view2 software. Quantitation of
tumor necrosis was conducted using frozen and
paraffin-embedded, hematoxylin and eosin (H&E)-
stained sections of the tumors, assessing manually the
proportion of necrotic tissues versus the total amount of
tumor tissue available in the sections. Immunohisto-
chemistry (IHC) was applied on frozen tumor sections
to detect apoptotic cells (anti-cleaved PARP1 rabbit
monoclonal antibody, #5625S, Cell Signaling Technology,
Inc., USA; 1:50), HIF-1α (anti-HIF-1α rabbit polyclonal
antibody, NB100479, Novus Biologicals, LLC; USA;
1:500), CD31 (anti-PECAM-1 rabbit polyclonal antibody,
sc-1506-R, Santa Cruz Biotechnology, Inc., USA; 1:1000)
and Von Willebrand Factor (anti-factor VIII-related anti-
gen (FVIII-Rag) rabbit polyclonal antibody, A0082, Dako-
Agilent Technologies, Denmark; 1:100). All immunohisto-
chemical stains were performed using a Dako Autostainer
(Dako-Agilent Technologies). A minimum of five high
power fields (10X magnification in NDP.view2) or if less,
the maximum available tissue area were used for analysis
using ImageJ v1.47 (U. S. National Institutes of Health).
In the H&E-stained kidney sections, at least 300 prox-

imal tubules from four randomly selected cortical regions
were analyzed by a veterinary pathologist (GP) and a re-
searcher (BR) in a blinded fashion. Tubules exhibiting de-
generative changes of the lining epithelial cells such as
pyknosis, fragmentation and absence of the nucleus and

cytoplasmic hypereosinophilia were counted and normal-
ized to the total number of healthy tubules using ImageJ
v1.47 (U. S. National Institutes of Health, USA).
Apoptotic cells in the epidermis of tumor-bearing and

tumor-free hind limbs were counted by a pathologist
(GP) on the digital scans of the H&E-stained sections
and expressed as average number of apoptotic cells per
cm of skin (2 cm of epidermis evaluated in each limb).
Apoptotic keratinocytes (AKs) exhibited a small, strongly
basophilic, often fragmented nucleus and a round-up in-
tensely eosinophilic cytoplasm. Apoptosis was confirmed
using IHC for cleaved caspase-3 on paraffin-embedded
sections (anti-cleaved caspase 3 rabbit monoclonal anti-
body, #9664, Cell Signaling Technology, Inc; 1:50).

Statistical analysis
The results were given as mean ± standard error of the
mean (SEM) unless otherwise stated. If Gaussian distri-
butions were assumed, population means were com-
pared with one-way ANOVA (for analysis of metastases,
bone volume, necrosis, IHC stains) or repeated measures
two-way ANOVA (for analysis of body weights, tumor
volumes, blood perfusion) using Prism 5 v5.01 software
(GraphPad Software, Inc., USA) followed by Bonferroni
posttests. Using Prism 5, Pearson correlation calculations
(HIF-1α versus CD31) as well as the Kruskal-Wallis test
(tubular degeneration) and the Wilcoxon matched pairs
test (number of AKs) were performed. Fisher’s exact test
was calculated using SPSS Statistics v22 (IBM, USA). All
statistical tests were 2-sided and p < 0.05 was regarded as
statistically significant.

Results
Establishment of an i.a. drug injection model for treating
osteosarcoma
First, the concentration of i.a. CDDP that led to a signifi-
cant reduction in primary tumor growth was identified,
which would later on be used in comparison with i.v.
CDDP. After orthotopic injection of 143B osteosarcoma
cells, different concentrations of CDDP in NaCl (0.9 %)
vehicle were i.a. infused into the femoral artery of the
tumor-bearing limb. Only 4 mg/kg (30 ± 11 mm3) and
not 2 mg/kg (128 ± 30 mm3) of i.a. CDDP resulted in
significant retardation of tumor growth compared to the
vehicle (180 ± 89 mm3; Fig. 1a). Moreover, X-gal staining
of tumor cells on the surface of lungs revealed a trend
towards a dose-dependent reduction of lung metastases
after i.a. CDDP (Fig. 1b). Administration of chemothera-
peutics such as CDDP in preclinical models often leads to
body weight loss but no significant differences between
vehicle, 2 mg/kg i.a. CDDP and 4 mg/kg i.a. CDDP were
noted (Fig. 1c). Every drug infusion was assessed visually
by observing a color change from white to blue of the in-
fused areas after successful infusion (Fig. 1d). Infusion
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quality controls indicated homogeneous dye distribution
after three infusions of 4 mg/kg i.a. CDDP, whereas vehicle
and 2 mg/kg i.a. CDDP yielded inhomogeneous dye distri-
butions within the region of tumor growth.

Osteosarcoma development dependent on the route of
CDDP administration
Next, a comparison between i.v. and i.a. CDDP infusions
was conducted. Only i.a. CDDP (88 ± 31 mm3) inhibited
tumor growth and caused regression of primary tumors,
while tumors continued to grow in all other treatment
groups (tumor volumes at 27 days post tumor cell injection:
i.v. CDDP: 307 ± 25 mm3; i.a. vehicle: 375 ± 73 mm3; i.v. ve-
hicle: 491 ± 44 mm3; two-way ANOVA: p < 0.0001; Fig. 2a).
One day prior to sacrifice, mice were subjected to microCT
scans. Tumor volumes measured within the resulting
tomographs confirmed caliper measurements and yielded
significantly smaller final tumor volumes in the group re-
ceiving i.a. CDDP (54 ± 35 mm3) compared to volumes
measured in other treatment groups (i.v. CDDP: 297 ±
29 mm3; i.a. vehicle: 286 ± 58 mm3; i.v. vehicle 479 ±
34 mm3; ANOVA: p < 0.0001). Osteosarcoma is known to
be associated with pathological bone remodelling and

increased fracture risk, and thus, the structural integrity of
the bone influences the quality of life of osteosarcoma pa-
tients. 143B cell-derived osteosarcomas were shown to be-
have mostly osteolytic in vivo and loss of cortical bone
correlates with increasing tumor volume. Accordingly, ad-
ministration of i.a. CDDP (87 ± 5 % of initial bone volume
(before treatment)) led to the smallest loss of cortical bone
compared to i.v. vehicle (75 ± 3 %), i.a. vehicle (68 ± 6 %)
and i.v. CDDP (51 ± 2 %; ANOVA: p < 0.0001; Fig. 2b, c).
Finally, X-gal staining of lacZ tagged cells on the sur-

face of lungs collected during necropsy (Fig. 2d) showed
that systemic i.v. CDDP had no significant effect on
metastatic spread towards the lung compared to i.v. ve-
hicle control (i.v. CDDP: 202 ± 15; i.v. vehicle: 218 ± 41).
In contrast, i.a. CDDP significantly reduced the number
of lung metastases (i.a CDDP: 82 ± 42; i.a vehicle: 695 ±
300; ANOVA: p < 0.001; Fig. 2e). Of note, a nonsignifi-
cant, but on average higher amount of metastases was
found in i.a. vehicle versus i.v. vehicle group.

Effect of CDDP treatment on tumor blood perfusion
Tumor-associated vasculature was assessed in vivo via
blood perfusion measurements. Primary tumor growth

Fig. 1 Identification of an effective concentration of i.a. CDDP. a Tumor volumes after three separate treatments with 0, 2, or 4 mg/kg of i.a.
CDDP. Tumor volumes were determined by caliper measurements. b Presence of pulmonary metastases after treatment with 0, 2, or 4 mg/kg of
i.a. CDDP. Metastases on the surfaces of lungs were counted ex vivo after X-gal staining. c Changes in body weight as an indicator for general
health of the mice. d Examples of tumor-bearing hind limbs; before the third infusion of i.a. vehicle (upper left) and after the third successful
infusion of i.a. vehicle (upper right), 2 mg/kg i.a. CDDP (lower left) and 4 mg/kg CDDP (lower right). The appearance of the blue color across the

leg indicated a successful infusion. Days of drug infusion are indicated by black arrows ( ). *p < 0.05 as compared to the vehicle
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Fig. 2 Effects of different routes of CDDP administration on osteosarcoma development. a Tumor volumes after treatment with vehicle or 4 mg/
kg CDDP, both given i.v. and i.a.. Tumor volumes were determined by caliper measurements. Days of drug infusion are indicated by black arrows

( ). Two-way ANOVA: significant differences are only indicated for day 27. b Representative microCT scans of tumor-bearing bone. White squares

mark the areas between the distal end of the patella and the bifurcation of tibia and fibula, which was used for quantification of differences in cortical
bone. c Quantitation of differences in cortical (mineralized) bone volume as determined by microCT measurements. d Representative images of X-gal
stained lung metastases. White arrowheads (Δ) indicate lacZ+ lung metastases. Scale bar corresponds to 500 μm (4X). e Quantitation of number of
pulmonary metastases on the entire lung surface. *p < 0.05; **p < 0.01; ***p < 0.001 as compared to the indicated treatment
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induced an increase in perfusion of the tumor-bearing
limbs compared to the contralateral control limbs
(Fig. 3a). Following i.a. CDDP, a significant decrease in
perfusion compared to i.v. CDDP or i.a. vehicle was ob-
served (two-way ANOVA: p < 0.05; Fig. 3b). Interest-
ingly, the largest reduction in perfusion were detected
after i.a. CDDP infusions. At the end of the study, perfu-
sion of the i.a. CDDP-treated limbs was close to physio-
logical values, similar to the contralateral knee region.
However, areas formerly infiltrated by osteosarcomas
appeared poorly perfused, indicating the occurrence of
ischemic tumor necrosis (e.g. Fig. 3a: i.a. CDDP).

Histologic response to CDDP chemotherapy
Assessment of tumor necrosis after neoadjuvant chemo-
therapy is an established endpoint to evaluate the re-
sponse to treatment in osteosarcoma patients. Figure 4a
illustrates representative examples from each treatment

group which were used for the analysis of tumor necrosis.
In case of two animals treated with i.a. CDDP, no tumor
tissue could be found on cross sections of the tumor-
bearing limb, indicating a strong anti-tumor effect (100 %
of tumor necrosis was assumed). The largest mean tumor
necrosis was detected after i.a. CDDP (68 ± 12 %) com-
pared with i.a. vehicle (32 ± 8 %), i.v. CDDP (17 ± 2 %) or
i.v. vehicle (21 ± 3 %, ANOVA: p < 0.01; Fig. 4b). Accord-
ing to Salzer-Kuntschik, a good responder is defined by
more than 90 % tumor necrosis [31]. With i.a. CDDP, a
total of five (45 %) good responses was achieved, whereas
no good responses were detected with i.a. vehicle, i.v. ve-
hicle or i.v. CDDP (Fisher’s exact test: p < 0.01; Additional
file 1). Tumor cell death in the H&E-stained sections con-
sisted of multifocal to coalescing, variably sized areas of
necrosis: these areas which are, to varying extents, inher-
ent to any rapidly growing tumor (i.e. after i.v. vehicle) are
likely indicative of ischemic cell death.

Fig. 3 Changes in hind limb blood perfusion during the treatment period. a Representative images of perfusion measurements of the knee
region from each treatment group at the end of the study (27 days post tumor cell injection). Images in the left column illustrate healthy
contralateral limbs. Perfusion images in the right column illustrate tumor-bearing limbs. Circular ROIs (only indicated for “i.v. vehicle”) were used
for measurements. b Flux-ratios of knee regions during the entire treatment period for individual treatment groups. Labeling of the x-axis indicates the
respective measurement times: INF1/2/3: immediately prior to the first/s/third infusion; INF3 + 3d: three days after the final third infusion
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Influence of different routes of CDDP administration on
remaining viable tumor tissue
Due to the anti-tumor efficacy of i.a. CDDP, smaller
areas of viable tumor were evaluated after treatment: i.a.
CDDP (median 0.6 mm2; interquartile range 0.1–4.0 mm2)
compared with i.a. vehicle (7.1 mm2; 3.9–11.3 mm2), i.v.
CDDP (10.0 mm2; 7.2.–12.7 mm2) and i.v. vehicle
(11.9 mm2; 11.0–14.8 mm2). Furthermore, two animals
from the i.a. CDDP group were excluded from all immuno-
histochemical analyses involving viable primary tumor be-
cause of a total absence of tumor tissue. Within regions of
viable tumor, scattered neoplastic cells exhibited mor-
phological features of apoptosis, such as cell shrink-
age, nuclear pyknosis and fragmentation, as indicated
by immunohistochemical stains for cleaved PARP-1, a
marker for chemotherapy-induced apoptosis [32].
However, no significant differences in the number of
cleaved PARP-1+ cells within areas of remaining viable
tumor were detected between corresponding vehicle and
treatment groups (Fig. 5a).
In order to see if the reduced limb perfusion also re-

sulted in increased hypoxia, expression of HIF-1α, a pro-
tein expressed under sub-physiological levels of oxygen,
was studied. IHC of HIF-1α demonstrated intense stain-
ing of remaining viable tumor tissue after i.a. CDDP
(Fig. 5b). Furthermore, quantitation of HIF1-1α expres-
sion demonstrated a significant increase in HIF-1α levels
in tumors after administration of i.a. CDDP (2.8 ± 0.7 %
of remaining viable tumor tissue) compared with tumors
exposed to i.a. vehicle (0.6 ± 0.6 %), i.v. CDDP (0.4 ±
0.2 %) or i.v. vehicle (0.3 ± 0.1 %; ANOVA: p < 0.001;
Fig. 5c). High levels of HIF-1α indicate low oxygen

levels, subsequently triggering neovascularization. To
this end, IHC for CD31 and factor VIII-related antigen
(FVIII-RAg) was performed to characterize and quantify
newly formed blood vessels within the neoplasms [33].
Examples of CD31 IHC are shown in Fig. 5d. In all
groups, areas of viable tumor contained negligible num-
bers of FVIII-Rag+ blood vessels, while the endothelial
cells lining large vessels in the skeletal muscle and con-
nective tissue adjacent to the osteosarcomas expressed
FVIII-RAg (data not shown). Quantitation of the CD31+

areas within viable tumor tissue indicated a trend towards
increased neovascularization after i.a. CDDP (4.1 ± 1.5 %
of remaining viable tumor tissue) compared with the
lower levels observed after i.a. vehicle (1.8 ± 0.7 %), i.v.
CDDP (1.6 ± 0.2 %) or i.v. vehicle treatment (1.3 ± 0.2 %;
Fig. 5e). Furthermore, CD31 IHC significantly correlated
with HIF-1α IHC (Pearson’s r: p < 0.01; r = 0.62; Fig. 5f).

Side effects associated with different routes of CDDP
administration
Similar to the “dose establishment study”, body weights
were measured at regular intervals throughout the “com-
parison study” (Fig 6a). When comparing CDDP admin-
istrations only (i.a. CDDP: 88 ± 2 % of body weight
normalized to the weight at day of tumor cell injection
versus i.v. CDDP: 85 ± 1 %), no significant difference in
body weight development between i.a. or i.v. CDDP ad-
ministration was demonstrated. In contrast, i.v. CDDP
caused a significant drop in body weight compared with
i.v. vehicle (97 ± 2 %), whereas no difference was found
between i.a. CDDP and i.a. vehicle (90 ± 2 %; two-way
ANOVA: p < 0.0001; Fig. 6a).

Fig. 4 Histological evaluation of tumor necrosis. a Representative examples of necrotic (black dashed lines) tumor areas are shown for each
treatment group. Areas overlaid with a striped pattern were not considered for evaluation (e.g. bone, muscle, absence of tissue). Scale bar
corresponds to 500 μm (5X). b Quantitation of tumor necrosis, normalized to the total tumor area which was available for analysis. *p < 0.05 as
compared to the indicated treatment
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In general, application of CDDP is limited by a high
incidence of severe nephrotoxicity characterized by de-
generation or death of the proximal tubule epithelial
cells [34, 35]. In this study, however, no histological ab-
normality was recognized in the kidneys, except in three
mice after i.a. CDDP, which exhibited mild acute tubular
degeneration/necrosis, affecting only a small proportion
of the renal tubules (Fig. 6b).
To assess whether i.a. CDDP resulted in higher apop-

totic rates of non-malignant cells, suggestive of higher
local concentrations of CDDP in the operated limb, the
number of apoptotic keratinocytes within the skin of
treated limbs and contralateral limbs were quantified.
Results demonstrated lower numbers of apoptotic

keratinocytes (AK) after i.v. vehicle (0–0.05 AK/cm of
skin; minimum - maximum of tumor bearing limb), i.v.
CDDP (0–0.1 AK/cm) or i.a. vehicle treatment (0–0.05
AK/cm), in tumor-bearing limbs as well as in the corre-
sponding contralateral limb (Fig. 6c). In contrast, signifi-
cantly higher numbers of AKs were found after the
administration of i.a. CDDP (0.35–7.6 AK/cm), yet in
the tumor-bearing limb only (Wilcoxon matched pair
test: p < 0.01; Fig. 6c).

Discussion
In this study, we present the successful establishment of
i.a. drug administrations in a mouse model of experi-
mental orthotopic osteosarcoma. Using CDDP as a gold

Fig. 5 Effects of different routes of CDDP administration on remaining viable tumor tissue. a Number of cleaved PARP-1+ tumor cells. PARP-1+

tumor cells were only counted within areas of viable tumor tissue. b Representative images of tumor tissue (i.v. CDDP, i.a. CDDP) stained for HIF-1α
(20X). Scale bar corresponds to 100 μm. c Quantitation of HIF-1α+ tumor tissue normalized to the entire viable tumor tissue available for evaluation. d
Representative images of healthy adjacent tissue (muscle) and tumor tissue (i.v. CDDP, i.a. CDDP) stained for CD31 (20X), where the upper image shows
CD31 expression in the endothelial cells lining capillaries as well as the larger vessels in the skeletal muscle surrounding the tumors, the central image
represents CD31 expression after i.v. CDDP and the lower image displays an increase in CD31 expressing cells within the tumor mass after i.a. CDDP.
Scale bar corresponds to 100 μm. e Quantitation of CD31+ tumor tissue normalized to the entire tumor tissue available for evaluation. f Correlation of
HIF-1α IHC with CD31 IHC (Pearson’s r = 0.62). *p < 0.05; **p < 0.01 as compared to the indicated treatment
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standard drug for osteosarcoma treatment, we showed
that our setup of i.a. drug infusions is feasible and that
primary and systemic disease could be inhibited in a
concentration-dependent manner. Moreover, we demon-
strated that i.a. CDDP is more effective in inhibiting
osteosarcoma progression than equivalent concentra-
tions of i.v. CDDP, as indicated by smaller primary
tumor volumes, decreased destruction of cortical bone
as well as decreased numbers of lung metastases.

Increased anti-tumor efficacy of i.a. CDDP infusions was
also confirmed by histological analyses, where we dem-
onstrated increased levels of tumor necrosis. Decreased
tumor blood perfusion and increased hypoxia of the
neoplasms after i.a. CDDP administration was demon-
strated and explains, at least partially, the superior effi-
cacy of localized CDDP delivery. Finally, we showed that
i.a. CDDP causes increased levels of apoptotic keratino-
cytes in the epidermis of tumor-bearing limbs, while

Fig. 6 Effects of CDDP treatment on the health of the mice. a Monitoring of body weights during the study as an indicator for general health of

the mice. Days of drug/vehicle infusion are indicated by black arrows ( ). Two-way ANOVA: significant differences are only indicated for

day 27. b Quantitation of tubular degeneration at the end of the study. Tubular degeneration is displayed as the median ± the interquartile
range. c Apoptotic keratinocyte counts. The number of apoptotic cells per cm of epidermis of the hind limbs was determined. The number of
apoptotic keratinocytes was determined in healthy limbs (control limb) as well as tumor-bearing limbs of the same animal. Data points from
the same animal are connected. *p < 0.05; ***p < 0.001

Robl et al. Journal of Experimental & Clinical Cancer Research  (2016) 35:113 Page 10 of 14



other systemic side effects were similar compared with
i.v. CDDP.
Despite the use of larger animal model systems such

as dogs [25] or sheep [36], the most commonly used
model systems in osteosarcoma research are rodents
[37]. To our knowledge, this is the first report of an i.a.
infusion model in experimental, orthotopic osteosarcoma
in mice, where we could demonstrate superior tumor con-
trol as compared to routine i.v. infusions. Hence, our i.a.
model can be used as a platform for the investigation of
other small molecules whose systemic application is lim-
ited by side effects. Especially for osteosarcomas of the
limb, easy access to the tumor feeding artery offers a valu-
able alternative to systemic CDDP infusions. However, i.a.
infusions are not limited to tumors of the limb. Another
recent study using a mouse model of metastatic brain
tumors demonstrated advantages in tumor control with
i.a. chemotherapy (internal carotid artery) compared with
i.v. chemotherapy (tail vein), similar to our study [38].
This demonstrates that even difficult-to-access tumor en-
tities can be treated with i.a. drug infusions.
Local application of small molecules such as CDDP of-

fers several advantages compared with systemic applica-
tion. First, higher tumor drug loads can be achieved
after infusion of equivalent drug concentrations via the
tumor-feeding artery [11], causing greater tumor necro-
sis [13]. In line with this assumption, we demonstrated
greater tumor necrosis after i.a. CDDP compared with
i.v. CDDP administration. In contrast to Winkler et al.,
we were able to compare i.a. versus i.v. routes of admin-
istration in the absence of clinical confounding factors
such as changes in drug infusion times or stratification
of patients (e.g. high-risk only) [10]. In our study, i.a.
CDDP not only caused a reduction of the primary tumor
volume but also minimized the loss of mineralized bone-
an indicator for experimental osteosarcoma progression
[39]. In contrast, loss of cortical bone was increased after
i.v. CDDP treatment compared with i.v. vehicle. Like-
wise, when sites of bone turnover in dogs were studied,
bone remodeling was significantly influenced by the sys-
temic administration of CDDP [40].
Systemic side effects, especially nephrotoxicity, are

equal or reduced after local CDDP infusion compared to
systemic application without a simultaneous reduction
of the systemic potency of the drug [9, 20]. In our study,
most animals showed no signs of nephrotoxicity. How-
ever, we found evidence of mild nephrotoxicity, repre-
sented by scattered tubular degeneration/necrosis in
three animals treated with i.a. CDDP. Renal injury was
minor and unlikely to have an impact on kidney func-
tion. It is possible that hypovolemia, resulting from
blood loss and/or insufficient rehydration after the re-
peated surgical interventions, exacerbated the observed
nephrotoxicity in these animals.

Skin necrosis is another side effect observed in human
patients after i.a. administration of CDDP [10, 20]. How-
ever, this usually does not lead to complications during
the treatment and regenerates well. Likewise, our results
indicated that i.a. CDDP led to increased numbers of
apoptotic keratinocytes in the tumor-bearing limbs, but
not in the healthy contralateral limbs. Elevated numbers
of AK may indicate a higher local CDDP concentration
in the proximity of the primary tumor and thus, help
to explain the superior response after administration
of i.a. CDDP compared with i.v. CDDP. Interestingly,
some mild chemotherapy-induced toxicities were shown
to be associated with improved osteosarcoma patient
survival [23].
Consistent with the observations reported by Wilkins

et al., where a reduction of the spongy tumor vascula-
ture after i.a. CDDP was detected [14, 22], we also
observed a general decrease in perfusion of the tumor
region shortly after i.a. CDDP administration. This re-
duction in tumor perfusion in addition to the higher
local CDDP concentration may have further contributed
to the regression of the experimental tumors and re-
sulted in a good histological response (as defined by hav-
ing at least 90 % tumor necrosis) in at least 45 % of the
mice. Thus, destruction of the tumor vasculature seems
to be a necessity for i.a. CDDP to successfully induce
tumor necrosis potentially resulting in a high percentage
of good histologic responses [14].
The reduction in tumor perfusion after i.a. CDDP

might have caused the remaining viable tumor tissue to
react by expressing increased levels of HIF-1α. It is
known that constitutively active HIF-1α induces neovas-
cularization and increased expression of CD31 or VEGF
[41–44]. Increased expression of HIF-1α in osteosar-
comas after i.a. CDDP was paralleled by increased
microvascular density assessed using IHC for CD31, a
marker of immature endothelium. In addition to CD31,
consecutive tissue sections were stained for FVIII-RAg,
normally found in large, mature vessels [33]. The few
scattered FVIII-Rag+ vascular structures found within
the tumors were likely pre-existing and no difference
was found among the different groups. In summary, our
results indicate a response of the neoplasms towards is-
chemic damage after i.a. CDDP by increasing HIF-1α-
levels and potentially initiating neovascularization.
Physical manipulation of the primary tumor as well as

changes of blood perfusion within the primary tumor is
known to increase numbers of circulating tumor cells
and thus, the risk for the development of metastases
[45, 46]. In our study, this might be reflected by a
higher, albeit nonsignificant amount of lung metastases
after i.a. vehicle administration, which, following i.a.
CDDP, was reduced below amounts following i.v. CDDP.
Thus, in addition to improved local tumor control, i.a.
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CDDP also successfully controlled the number of spon-
taneous lung metastases. This is especially relevant in
osteosarcoma, where controlling pulmonary metastases
strongly influences patient survival [47–49].
One limitation of our study is the inherent variability

due to any surgical procedure. Although the same sur-
geon performed i.a. drug infusions, the parameters of i.a.
infusions varied (e.g. duration of surgery or degree of
blood loss). Especially the placement of the catheter is
critical for a homogeneous drug distribution in subse-
quent arterial branches [50] and thus, impacts success
of therapy. In general, our study suggests a superior
outcome in the chemotherapeutic response after i.a.
delivery of CDDP, however, the individual outcomes
must be interpreted alongside corresponding toxicoki-
netic information.

Conclusions
Taken together, our study demonstrates the potential of
i.a. CDDP in a clinically relevant osteosarcoma model.
The superior primary tumor control of i.a. CDDP in our
study demonstrates the potential of i.a. drug administra-
tions as currently used in some clinics. Despite the
greater technical requirements for i.a. drug infusions, we
suggest that the potential of i.a. infusions in osteosar-
coma treatment should be considered when evaluating
(novel) compounds and combinations thereof. Especially
for a rare disease such as osteosarcoma, we believe that
our intraarterial therapy model can aid in the preclinical
assessment of drug efficacy and thus, improve osteosar-
coma patient treatment.
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