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Abstract 

A cardinal feature that distinguishes clinically high-risk neuroblastoma from low-risk tumors is telomere maintenance. 
Specifically, neuroblastoma tumors with either active telomerase or alternative lengthening of telomeres exhibit 
aggressive growth characteristics that lead to poor outcomes, whereas tumors without telomere maintenance can be 
managed with observation or minimal treatment. Even though the need for cancer cells to maintain telomere DNA—
in order to sustain cell proliferation—is well established, recent studies suggest that the neural crest origin of neuro‑
blastoma may enforce unique relationships between telomeres and tumor malignancy. Specifically in neuroblastoma, 
telomere structure and telomerase activity are correlated with the adrenergic/mesenchymal differentiation states, and 
manipulating telomerase activity can trigger tumor cell differentiation. Both findings may reflect features of normal 
neural crest development. This review summarizes recent advances in the characterization of telomere structure and 
telomere maintenance mechanisms in neuroblastoma and discusses the findings in the context of relevant literature 
on telomeres during embryonic and neural development. Understanding the canonical and non-canonical roles of 
telomere maintenance in neuroblastoma could reveal vulnerabilities for telomere-directed therapies with potential 
applications to other pediatric malignancies.
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Introduction: emerging roles of tumor cell 
differentiation and telomeres in neuroblastoma 
malignancy
Neuroblastoma or NB, derived from the embryonal neu-
ral crest cells, is the most common solid tumor in chil-
dren and represents ~ 6% of all pediatric tumor diagnosis 
[1, 2]. Despite improvement in therapies over the years, 

it remains one of the most aggressive and lethal pediatric 
tumors, accounting for 10% of mortality and ~ 15% of all 
pediatric cancer deaths. NB is known to have remarkably 
heterogeneous clinical outcomes ranging from spontane-
ous remission to lethal progression [1, 2]. Accordingly, 
accurate assessment of prognosis and stratification of 
patients into different risk groups are crucial for cure 
while reducing unnecessary toxicities [3, 4]. Indeed, low-
risk NB patients have excellent outcomes with minimal 
or no treatments. By contrast, high-risk patients have an 
overall cure rate of about 50% despite undergoing multi-
modal therapies including surgery, chemotherapy, radio-
therapy, immunotherapy, and targeted therapy [5, 6].
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NB tumor cell differentiation states and malignancy
NB is a developmental malignancy that originates from 
the sympathoadrenal neural crest, notable for its plastic-
ity in responding to environmental cues [7, 8] (Fig.  1). 
This developmental origin is a likely blueprint for its 
clinical heterogeneity. The pathway of neural crest dif-
ferentiation and maturation is a complicated one involv-
ing the sequential activities of multiple transcription 
factors. Disruption of different steps along the pathway 
may lead to tumors with distinct phenotypes and malig-
nant potentials. Perhaps not surprisingly, NB tumor cells 
manifest phenotypic diversity reminiscent of the plastic-
ity of neural crest progenitor cells. Early studies of iso-
genic cell lines derived from the same tumor segregated 
tumor cells into three cell types based on morpholo-
gies and biochemical markers: N (neuroblastic)-type 
cells have scant cytoplasm and neuritic processes; S 
(substrate-adherent)-type cells have extensive cyto-
plasm and resemble non-neuronal precursor cells; and I 
(intermediate)-type cells are uncommitted to either N or 
S cells [9–12]. These cell types are interconvertible using 
pharmacologic agents, and they display varying degrees 

of tumorigenicity in animal models. In particular, the I 
cells (malignant NB stem cells) were found to be more 
malignant than N or S cells [10]. More recently, through 
expression and epigenetic profiling, NB tumor cells were 
reclassified into two major groups, named the ADRN 
(adrenergic) and MES (mesenchymal) cells (Fig.  1). 
These two cell types can be distinguished by the activa-
tion of lineage-specific super-enhancers, which con-
trol the expression of ADRN- and MES-signature genes 
[13–15]. For examples, ADRN-specific super-enhancers 
are associated with the expression of adrenergic differ-
entiation makers such as PHOX2A, PHOX2B, and DBH 
[14], whereas MES-specific super-enhancers are simi-
lar to those found in neural crest-derived cells [14, 16]. 
Consistent with phenotypic plasticity, MES and ADRN 
cells can trans-differentiate from one cell type into the 
other [14, 17]. Comparison of the earlier morphologic/
biochemical and the later genetic classifications revealed 
broad congruence between cell types from both schemes, 
with the N/I-type cells resembling the ADRN cells and 
the S-type cells resembling MES cells [9, 14, 17] (Fig. 1). 
For example, both S and MES cells harbor high levels of 

Fig. 1  The developmental origin of neuroblastoma and its relationship to the heterogeneity of tumor cell differentiation. A schematic illustration 
of the developmental pathway of the neural crest cells that give rise to neuroblastoma is presented [1, 2]. The tumor-initiating cells are thought 
to have committed to the sympathoadrenal lineages and to be on the pathways toward differentiating into various mature cell types (e.g., 
sympathetic ganglia and chromaffin). The ADRN and MES cell states in NB tumors (which evidently correspond to previously defined N/I and S cell 
types, respectively) may reflect different stages of neural crest differentiation along these pathways
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cytoskeletal proteins associated with the mesenchymal 
phenotype. Of particular interest, the differentiation state 
of tumor cells has been implicated in disease progression 
and treatment response and may play a role in deter-
mining the risk profile. While the ADRN cells are more 
chemo-sensitive and appear to be predominant at diag-
nosis, the MES cells are more chemo-resistant and may 
be enriched in relapse and in metastatic diseases [14, 15, 
18, 19]. The relatively “quiescent” behavior of MES cells is 
reminiscent of dormant clones that became explosive at 
recurrence. The ability of the ADRN and MES cell types 
in vitro to “transdifferentiate” highlights the plasticity of 
the cell states, which are not irreversibly fixed by lineage 
assignments, but interconvertible depending on environ-
mental cues or pressures.

Genetic alterations in NB tumors
The clinical heterogeneity of NB stems also from the dis-
tinct underlying genetic alterations (as reviewed in [20]). 
However, while the genomic landscape of NB is complex, 
some mutations and structural alterations are recurrently 
associated with high-risk NB (HR-NB). The driver muta-
tions that had been identified include those in MYCN, 
ATRX (α thalassemia/mental retardation syndrome 
X-linked), TERT, and MDM2-CDK4 [21–24]. These can 
be coupled with collaborative mutations in RAS-MAPK, 
PI3K-mTOR and TP53 pathways [21, 25, 26]. In a recent 
clonal analysis of tumor samples, the amplification of 
MYCN occurs in ~ 20 to 30%, ATRX mutations or dele-
tions in ~ 10%, TERT mutations in ~ 10%, and MDM2-
CDK mutations in ~ 2% of HR-NB [27]. Still, nearly 50% 
of HR-NB do not carry these driver mutations, but only 
segmental or numerical copy number variations. Chro-
mosomal aberrations (deletion of 1p and 11q and gain of 
17q) are common in HR-NB and implicated in unfavora-
ble outcomes [28–31]. Mutations of ALK (anaplastic lym-
phoma kinase) are found scattered among these driver 
mutational types and in most cases of familial NB [32, 
33]. Although the mechanisms are not fully understood, 
these genetic aberrations are thought to alter the devel-
opmental and differentiation pathways of normal neural 
crest, thereby triggering malignancy. MYCN, for exam-
ple, is transiently expressed in migrating neural crest cells 
[34], and overexpression of MYCN by gene amplification 
not only enhances proliferation but also compromises 
differentiation [35]. Inactivating mutations in ATRX 
represent another genetic alteration associated with a 
distinct clinical cohort; these cases present predomi-
nantly in older children and young adults and manifest 
a chronic and progressive clinical course with high over-
all mortality [36]. ATRX is a multi-functional chromatin 
remodeling factor implicated in both transcription and 
replication, as well as in suppressing the ALT (alternative 

lengthening of telomeres) pathway [37] (Fig.  2). Muta-
tions in ATRX, like MYCN amplification, could con-
ceivably alter the differentiation of neural crest, thereby 
promoting oncogenic transformation.

Telomere maintenance in NB malignancy
Notably, despite the heterogeneity of the mutational 
landscape, recent studies suggest a common mecha-
nism by which multiple genetic alterations promote 
HR-NB, namely through telomere maintenance. Specifi-
cally, analysis of extensive tumor collections confirmed 
the prevalence of three key mutational driver types in 
HR-NB, namely MYCN amplification, ATRX inactivation, 
and rearrangement of the TERT promoter [22, 38, 39]. 
All three genetic alterations are strongly associated with 
TMM (telomere maintenance mechanism) activation, 
supporting a shared mechanism for driving malignancy 
(Fig. 2). Indeed, profiling of tumor collections revealed a 
strong linkage between the presence of TMM (high tel-
omerase or ALT activity) and poor prognosis for HR-NB 
[21, 40].

Notably, studies to date have highlighted tumor cell dif-
ferentiation and telomere maintenance as two separate 
determinants of NB disease biology. However, a recent 
report suggests that these determinants are not inde-
pendent, but instead mechanistically connected [17]. In 
particular, the ADRN and MES cell types were found to 
exhibit dramatically different levels of telomere-related 
factors, and inhibition of telomerase triggered the con-
version of ADRN into MES cell types in a reversible man-
ner [17]. While unexpected, a potential role of telomeres 
and telomerase in NB differentiation is plausible in light 
of multiple studies linking telomere proteins to neural 
development and neural differentiation. For example, 
one of the essential telomere proteins, TRF2 (telomeric 
repeat-binding factor 2), was shown to regulate neural 
cell differentiation and neural protection partly via non-
telomeric pathways [41–43]. In addition, telomerase 
activity and the catalytic protein subunit (TERT) have 
been reported to function in neural development and 
developing brain neurons [44, 45]. Thus, telomere pro-
teins and telomerase may have the potential to alter the 
differentiation state of neural crest-derived NB tumor 
cells in accordance with the developmental origin of 
these cells. In the ensuing sections, we outline current 
understanding of the roles of telomeres and TMMs in 
cancers and describe in greater detail how they impact 
on NB disease biology. We summarize studies that sup-
port a mechanistic connection between telomeres and 
NB differentiation, and we examine this connection in 
relation to other studies that link telomeres and telom-
erase to normal neural development and differentiation. 
Finally, we discuss the implications of this connection 
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in the development of new biomarkers and therapies for 
HR-NB.

Telomere structure and telomere maintenance 
in normal and cancer cells
Telomeres, the nucleoprotein structures at eukaryotic 
chromosome ends, consist of numerous copies of a sim-
ple short DNA repeat as well as a collection of telomere-
associated proteins [46] (Fig. 2). Maintenance of telomere 
length and structure is crucial for cell proliferation and 
genomic integrity in both somatic and germ cells (as 
reviewed in [46, 47]). The repeat sequence of mammalian 
telomeres is TTA​GGG​/CCC​TAA​, which exists mainly 
as double-stranded DNA repeats (4 ~ 12  kb base pairs), 
but which terminates in a single-stranded 3′ overhang on 
the G-strand (50 ~ 400 bp nucleotides). This 3′ overhangs 
can invade the proximal double-stranded telomeric DNA 
to form T-loops, which prevent the activation of DDR 
(DNA damage response) and allow cells to distinguish 
normal chromosome ends from DSBs (double-strand 
breaks) [48, 49] (Fig.  2). The main telomere-associated 

protein complex is shelterin, a six-protein assembly 
(TRF1-TRF2-POT1-TIN2-TERF2IP-TPP1). Among 
the shelterin components are two proteins that directly 
bind double-stranded telomere repeats, TRF1 (telomeric 
repeat-binding factor 1) and TRF2. TRF1 plays a major 
role in maintaining telomeric DNA, whereas TRF2 is 
important for telomere protection, in part by promoting 
T-loop formation. In addition, TRF2 recruits TERF2IP 
(TRF2-interacting protein 1, also known as RAP1) [50], 
another telomere-protective factor, through protein–
protein interactions. The major 3’ overhang-binding pro-
tein is POT1 (protection of telomeres protein 1), which 
cooperates with TIN2 (TRF2- and TRF1-interacting 
nuclear protein 2) and TPP1 (TIN2 interacting protein 1) 
to bridge single-stranded and double-stranded telomere 
DNAs through a network of interactions (i.e., POT1-
TPP1-TIN2-TRF1 and POT1-TPP1-TIN2-TRF2). For-
mation of this functional, six-protein shelterin complex 
at telomeres protects telomeres and promotes genome 
stability by suppressing ATM  (Ataxia telangiectasia 
mutated)- and ATR (ATM and Rad3-related)-dependent 

Fig. 2  Telomere structure and maintenance mechanisms. The basic structure of telomere DNA (a double-stranded telomere repeat region that 
terminates in a 3′ single-stranded overhang) and the major telomere protection complex (shelterin) are illustrated on the left and the two telomere 
maintenance mechanisms are shown on the right [46, 47, 63]. Shelterin comprises a network of six proteins that collectively bind to both the 
double-stranded telomere repeats and the 3’-overhangs. This special nucleoprotein complex stabilizes chromosome ends by inhibiting DNA 
damage response and DNA repair pathways. Telomere DNA can also adopt the “T-loop” conformation in which the 3’-overhang forms base pairs 
with a more proximal region of telomere repeats. This T-loop structure also suppresses the DNA damage response. Telomerase is a special reverse 
transcriptase comprised of a catalytic protein component (TERT) and a template RNA (TERC). ALT is a recombination-based telomere elongation 
pathway that resembles break-induced replication. In high-risk neuroblastoma, recurrent genomic aberrations are tightly linked to either the 
up-regulation of telomerase or activation of ALT. The telomerase pathway is primarily up-regulated by MYCN amplification or TERT promoter 
re-arrangement, whereas ALT is often activated by alterations in ATRX/DAXX/H3.3 and is associated with telomere replication stress, chromatin 
de-condensation, and elevated levels of telomere variant repeats
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pathways, homologous recombination, and c-NHEJ (clas-
sical non-homologous end joining) at chromosome ends 
(Fig. 2).

Eukaryotic linear chromosomes experience loss of tel-
omere DNA during each round of cell division due to 
incomplete end replication on the lagging-strand [51]. 
In addition, because the G-rich telomere repeats can 
form a variety of secondary structures that hamper rep-
lication fork progression, telomeres can experience sto-
chastic truncations [51, 52]. Another pathway that can 
induce rapid telomere loss is “telomere trimming,” a 
recombination-based telomere shortening pathway [53, 
54]. This pathway appears to be especially active in stem 
cells and germ cells, and is thought to be a homeostatic 
mechanism that prevents excessive telomere elongation 
[53, 54]. Finally, telomere DNA damage, including oxida-
tive damage, has been shown to result directly in acceler-
ated telomere loss [55, 56]. Because an adequate amount 
of telomere DNA is required to suppress DNA damage 
response and sustain cell proliferation, the combined 
effect of telomere shortening pathways may eventually 
compromise the capacity of cells to divide.

To overcome the growth suppressing effect of tel-
omere shortening, the majority of cancer cells activate 
one of two TMMs to elongate telomeric DNA: telomer-
ase and ALT (Fig. 2). The predominant TMM employed 
by human cancers is telomerase, a ribonucleoprotein 
complex that extends the G-strand by copying an RNA 
template component (TERC) using a catalytic reverse 
transcriptase (TERT). Telomerase activity is repressed 
in most normal somatic cells but up-regulated in the 85 
to 90% of human cancers [57]. The up-regulation of tel-
omerase is due primarily to elevated TERT transcription, 
which can be accomplished by a variety of mechanisms, 
including point mutations in the TERT promoter [58, 59], 
TERT gene rearrangement [22, 39], TERT gene amplifica-
tion [60, 61], overexpression of MYC [62], or MYC gene 
amplification [39].

The second TMM, detected in 10 ~ 15% of human 
tumors, is a recombination-dependent mechanism 
named ALT [63, 64]. ALT resembles BIR (break-
induced DNA replication) and is mechanistically com-
plex; it encompasses both a RAD52-dependent and a 
RAD52-independent pathway [65, 66]. The activation 
mechanisms for ALT are still unclear but several predis-
posing factors have been identified. It has been shown 
that genetic mutations in ATRX, DAXX (death domain-
associated protein), and histone variant H3.3 are involved 
in ALT activation in many different malignancies [67–
70]. In an early study, the great majority of ALT cell 
lines were shown to be ATRX-defective [71]. However, 
more recent, large-scale analyses of cell lines and tumor 
samples identified a substantial fraction of ALT-positive 

samples that do not harbor ATRX mutations [72–74]. 
Both ATRX and DAXX are implicated in chromatin 
remodeling and have been suggested to suppress ALT 
activation by regulating telomeric chromatin. Telomere 
chromatin changes are thought to increase accessibility 
and telomere replication stress, which if persistent, will 
ultimately trigger aberrant recombination [75] (Fig.  2). 
One characteristic marker of ALT cells is APB (ALT-
associated promyelocytic leukemia (PML) body), which 
contains telomeric DNA, shelterin complex, DNA repli-
cation- and recombination-related proteins. The weight 
of evidence points to APBs as the active sites for telomere 
DNA synthesis by recombination [66]. Another char-
acteristic of ALT is high levels of single- and double-
stranded ECTRs (extrachromosomal telomeric repeats). 
One of the ECTR species, telomeric C-circle (circular 
DNA that consists of uninterrupted C-strand and nicks/
gaps on the G-strand), is frequently used as a quantita-
tive marker of ALT activity [76]. ALT telomeres also con-
tain high levels of telomere variant repeats, which recruit 
nuclear receptors to facilitate telomere recombination 
and exacerbate genomic instability [73, 77, 78].

Telomeres and TMMs in neuroblastoma
As noted before, NB is remarkable for its heterogeneous 
clinical outcomes ranging from spontaneous regression 
to uncontrollable progression [1, 2]. Multiple studies over 
the past two decades have uncovered roles of telomere-
specific features in the risk factors and clinical outcomes 
for NB. For example, a longer telomere length is associ-
ated with worse prognosis, and heterogeneous telomere 
length within individual NB is strongly related to pro-
gression and death [79, 80]. In addition, common genetic 
variants associated with longer leukocyte telomere 
lengths have been shown to confer risk for NB and other 
childhood cancers [81]. More importantly, recent stud-
ies of NB tumor samples highlight TMMs as a key prog-
nostic indicator. Patients with HR-NB often experience 
relapse and the majority of relapsed HR-NB manifests 
activation of TMMs, i.e., either telomerase or ALT [21, 
40]. While the frequencies vary between study cohorts, 
in one recently analysis, ~ 50% and ~ 25% of HR-NB show 
evidence of high telomerase and ALT activities, respec-
tively [40]. TMMs could add to known genetic prog-
nosticators; for example, mutations in the RAS and p53 
pathways are more unfavorable with TMM activation in 
HR-NB, but lose their effect in TMM-negative low-risk 
NB [21].

Consistent with the crucial importance of TMMs in 
NB, three of the most frequent genetic alterations in 
HR-NB appear to represent mutually exclusive driv-
ers of the disease, and each alteration is mechanisti-
cally linked to TMM activation. Two of these genetic 
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alterations, i.e., TERT mutations (TERT promoter rear-
rangement and TERT amplification) and MYCN ampli-
fication, up-regulate telomerase activity [38, 39]. The 
promoter re-arrangement presumably links the TERT 
gene to an ectopic enhancer, whereas MYCN binds 
directly to the TERT promoter to stimulate transcription. 
Notably, while TERT mRNA is typically over-expressed 
in MYCN-amplified NB, there are exceptions [40], sug-
gesting that additional genetic or epigenetic factors are 
involved in facilitating MYCN-mediate TERT expres-
sion. The third alteration, ATRX mutations, predisposes 
cancer cells to ALT activation and is present in 55 to 60% 
of ALT-positive NB [75]. Interestingly, even though a 
significant fraction of ALT-positive NB tumors does not 
harbor ATRX mutations, such tumors often exhibit low 
ATRX protein expression, suggesting a recurrent path-
way for ALT activation that involves ATRX loss of func-
tion [40, 82]. Notably, each TMM is associated with a 
distinct clinical presentation and disease course (Fig. 3a). 
Telomerase-positive NB tumors are primarily diagnosed 
in children > 18  months of age and are characterized by 
a rapid and aggressive clinical course. In contrast, ALT-
positive NB tumors predominantly affect adolescents 
and young adult (AYA) patients and are characterized 
by a chronic but steadily progressive clinical course with 
ultimate mortality [36]. Thus, beyond conferring tumor 
cells with unlimited proliferation potential, TMMs may 
also modulate the growth rate of tumors [83]. In con-
trast to high-risk NB, low-risk NB cases are most often 
found in infants and are characterized by locoregional 
or stage 4S tumors. These tumors spontaneously regress 
when telomere reserves are exhausted due to the lack of 
TMM and the inability to counteract telomere shortening 
pathways (Fig. 3a). Altogether, these findings underscore 
the critical roles of telomeres and TMM in driving NB 
malignancy.

Why is HR-NB so strongly connected to telomere 
maintenance in comparison to other cancers? Studies 
to date suggest several non-mutually exclusive possibili-
ties. First, in contrast to other cancers, many NB tumors 
exhibit evidence of telomere trimming [84], a rapid tel-
omere shortening pathway that is utilized by stem cells 
and germ cells to achieve telomere homeostasis in the 
setting of high telomerase activity [53, 54]. Second, 
emerging evidence suggests that HR-NB tumors harbor 
high levels of DNA damage and exhibit mutation signa-
tures that are consistent with oxidative DNA lesions [23, 
84]. In ATRX-deficient HR-NB, an additional mecha-
nism of telomere DNA damage appears to be contrib-
uted by replication stress and G-quadruplex formation 
[85]. Moreover, there is evidence that HR-NB tumors 
exhibit altered DDR (DNA damage response) [86, 87]. 

Collectively, the high levels of DNA damage and altered 
DDR may trigger accelerated DNA loss at telomeres. 
Taken together, these observations suggest that the need 
to compensate for the multiplicity of telomere shortening 
pathways (i.e., incomplete end replication, telomere trim-
ming, and telomere DNA damage) makes it imperative 
for NB tumors to activate TMMs.

Conversely, if NB tumors fail to activate TMMs and 
are unable to counter telomere shortening mechanisms, 
then the tumors are predicted to spontaneously regress. 
This proposition is consistent with the clinical course 
of low-risk NB in infants and the lack of TMM in these 
tumors. Considered in the context of all malignancies, 
the presence of TMMs in HR-NB is not particularly sur-
prising given that the majority of tumors in most can-
cer types exhibit either telomerase or ALT [74]. Perhaps 
more unexpected is the frequent occurrence of low-risk 
NB that harbors no TMM and that undergoes sponta-
neous regression. The prevalence of such tumors in NB 
suggests one of two (non-mutually exclusive) possibilities 
(Fig. 3b, green box, for low-risk NB): (i) The tumor-initi-
ating cell(s) originally harbor high TMM activities, which 
become repressed by the time of diagnosis, and (ii) the 
tumor-initiating cells originally possess very long telom-
eres and thus have sufficient telomere reserve to undergo 
numerous cell divisions. Notably, either scenario is com-
patible with features of neural crest progenitor cells that 
give rise to NB, which presumably bear characteristics of 
stem cells, i.e., long telomeres and high telomerase activ-
ity [53, 88]. Indeed, the neural crest origin of NB could 
explain another feature of this cancer, namely the prev-
alence of “telomere trimming” activity [84]. Although 
the mechanism of telomere trimming is not well under-
stood, it is known to be particularly active in stem cells 
and germ cells [53, 54]. Evidence for telomere trimming 
was also observed in normal neural tissues [84], suggest-
ing that this pathway may remain active in neural devel-
opment, including in the neural crest progenitors that 
undergo oncogenic transformation. These considerations 
underscore the potential impact of NB developmental 
origin on the telomere biology of this cancer. It is tempt-
ing to speculate that the TMM characteristics of tumors 
in different subgroups of NB may be related to the plas-
ticity road map of the neural crest tumor-initiating cells.

It is worth noting that while TMMs are crucial for 
the great majority of HR-NB, there are exceptions. 
In one study, a small subset of HR-NB was found to 
exhibit no TMM and to manifest continuous telomere 
erosion while undergoing > 200 population doublings 
[89]. This is possible because the tumor-derived cells 
manifested no evidence for telomere trimming and 
initially harbored extremely long telomeres (Fig.  3b, 
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blue box, for HR-NB). While these exceptions could 
be interpreted as refuting a universal requirement for 
TMM in HR-NB, they also provide further illustration 
of the complex telomere biology of NB progenitor cells 
and how telomere shortening and lengthening path-
ways could be dysregulated in different combinations 
to permit uncontrolled proliferation.

A reciprocal, mechanistic relationship 
between telomere regulation and tumor cell 
differentiation in neuroblastoma
As described in the opening section, another critical 
determinant of NB malignancy that is dictated by its neu-
ral crest origin is tumor cell differentiation. NB displays 
two major differentiation states that may reflect different 

Fig. 3  Telomere maintenance in the development of high-risk and low-risk neuroblastoma. a. A model for the growth of NB tumors that belong to 
different risk groups. Low-risk NB (stage 1, 2, 3 and 4 s) has no TMM; hence, the progressive erosion of telomeres (due to incomplete end replication, 
telomere trimming, and telomere DNA damage) eventually results in the exhaustion of telomere reserve and loss of proliferative capacity. HR-NB 
tumors (stage 4) harbor either telomerase or ALT and are able to proliferate indefinitely by counteracting telomere loss. Telomerase-positive NB 
tumors are faster growing and present predominantly in children, whereas ALT-positive tumors are slower growing and present predominantly 
in adolescents and young adults. b. A more detailed model on how dynamic changes in telomere trimming activity and telomere maintenance 
mechanisms during and after oncogenic transformation may influence the growth of NB tumors. The neural crest progenitor cells are proposed 
to harbor both telomere trimming and telomerase activity. In low-risk NB (green-shaded box), the tumor-initiating cells may either harbor no TMM 
or turn off telomerase expression in accordance with the developmental program in normal neural crest. The inability to counteract telomere 
shortening mechanisms leads eventually to short telomeres that are unable to support tumor growth. In contrast, HR-NB can sustain proliferation 
by either activating TMMs or (in a minority of cases) by repressing telomere trimming completely prior to shutting off telomerase. Low-risk NB 
spontaneously regress or differentiate when the telomere reserve is insufficient to sustain cell proliferation, whereas high-risk NB tends to progress 
and cause relapse
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stages of neural crest development: undifferentiated MES 
cells and committed ADRN cells, and these two cell types 
are interconvertible [14, 17]. Ectopic expression of key 
transcription factors (e.g., NOTCH and PRRX1), asso-
ciated with the differentiation program, can trigger the 
conversion between cell types through a feedforward 
mechanism [13]. These differentiation states have been 
implicated in HR-NB malignancy. For example, MES 
cells are more resistant to the standard NB chemotherapy 
than ADRN cells in vitro and are enriched after chemo-
therapy and during relapse in vivo [14, 15, 18, 19].

Even though few studies have addressed the relation-
ship between telomeres and tumor cell differentiation in 
NB, the fact that both are impacted by its developmental 
origin suggests a potential mechanistic linkage. Indeed, 
a recent study uncovered multiple evidence for such a 
linkage in MYCN-amplified HR-NB [17]. First, ADRN 
and MES cells were found to exhibit sharp differences 
in telomere-related protein levels and subcellular distri-
butions. Three shelterin components (TRF1, TRF2, and 
TPP1) and multiple telomere DNA synthesis- or repair-
related proteins were consistently detected at higher lev-
els in ADRN cells, and the level of telomerase activity was 
also higher in these cells [17]. Second, stringent inhibi-
tion of telomerase activity by either pharmacologic treat-
ment or the expression of a catalytically inactive TERT 
(Dn-hTERT) triggered the differentiation of ADRN into 
MES cell. This differentiation is accompanied by robust 
changes in the expression of telomere-related proteins 
that are in line with naturally derived ADRN/MES cells 
[17]. This again supports telomere remodeling as an inte-
gral component of the ADRN/MES switch process. Nota-
bly, the conversion induced by telomerase inhibition was 
reversed upon subsequent up-regulation of telomerase 
activity. The role of telomerase activity in NB differen-
tiation was also supported by two previous reports. In 
one study, drug-induced telomerase inhibition resulted 
in morphologic differentiation as determined by exten-
sion of neurites [90]. In the other study, the expression 
of Dn-hTERT caused NB cells to switch from a neuronal 
(ADRN-like) to a substrate-adherent (MES-like) mor-
phology with loss of malignant properties [91]. Although 
these studies did not directly address ADRN-to-MES 
switch, they provided additional support for a connec-
tion between telomerase activity and NB differentiation. 
Overall, the earlier and recent findings point to a recip-
rocal mechanistic relationship between tumor cell states 
and telomere regulation, i.e., ADRN/MES switch engen-
ders telomere/telomerase modulation, and telomerase 
modulation engenders ADRN/MES switch. The clinical 
significance of this relationship is currently unclear and 
worthy of further investigation. In a preliminary explo-
ration, an expression signature that incorporates both 

telomere- and differentiation-related genes was found 
to cluster NB patients’ tumors into different groups with 
distinct clinical outcomes, suggesting potential prognos-
tic applications [17].

The roles of telomere‑related factors in embryonic 
and neural development: a possible developmental 
basis for the telomere‑differentiation linkage 
in neuroblastoma
Because normal telomere function is presumably 
required to stabilize chromosome ends in all cell types, 
the drastic telomere protein profile differences between 
ADRN/MES cell types are somewhat unexpected. Could 
these differences reflect normal changes associated 
with neural crest development? Indeed, there is grow-
ing evidence for both physical and functional alteration 
of telomere complexes during embryonic and neural 
development. Moreover, certain telomere proteins (e.g., 
TRF1 and TRF2) appear to mediate extra-telomeric, 
differentiation-related functions in normal development. 
In this section, we will highlight observations concern-
ing telomere proteins in development that could be rel-
evant to their roles in NB tumor cell lineage specification 
(Table  1). It should be noted, however, that the great 
majority of these studies address neuronal development 
and maturation [43, 92, 93] and could not be directly 
applied to neural crest and NB. They do, however, point 
to possible connections between telomere proteins and 
neural crest cell fate that warrant further investigation in 
the context of NB.

TRF2
The telomere protein with the strongest evidence for 
development- and neural differentiation-related changes 
is TRF2, a key component of the shelterin complex [46, 
94]. In non-neuronal cells, TRF2 can prevent senescence 
and apoptosis by protecting telomeres and inhibiting tel-
omere-associated DNA damage response involving ATM  
and p53 [94–96]. The special involvement of TRF2 in the 
nervous system was suggested by regulated expression 
of TRF2 during neural development and differentiation 
in animals and cell cultures (Table  1). In general, TRF2 
expression was found to be up-regulated during neuronal 
differentiation and subsequently maintained throughout 
neuronal maturation [97]. In mouse and human stem 
cell or progenitor cell culture models, TRF2 was initially 
expressed at low levels and underwent strong increase 
following differentiation into neural progenitor cells or 
neurons [41, 43, 97].

The mechanistic connections between TRF2 and 
neural development were further reinforced by func-
tional studies in stem and progenitor cells. For example, 
shRNA-mediated knockdown of TRF2 in hESCs (human 
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embryonic stem cells) and NPCs (neural progenitor cells) 
had strong inhibitory effects on neural differentiation 
[43]. Interestingly, these inhibitory effects were not asso-
ciated with telomere length changes. Instead, current evi-
dence suggests that TRF2 promotes neural differentiation 
by modulating the function of REST (repressor element-
1-silencing transcription factor), a repressor of neuronal 
gene expression [98, 99]. This TRF2-REST pathway 
is multi-faceted, context-dependent, and involves the 
activities of not only full-length proteins, but also short 
isoforms  of both proteins. In several studies, TRF2 was 
observed to promote neural differentiation by binding to 
and up-regulating REST4, a truncated isoform that pro-
motes rather than inhibits neural gene expression [43, 
100]. Consistent with this proposal, overexpressing TRF2 
increased hREST4 levels in hESCs, whereas knockdown 
of TRF2 reduced hREST4 in NPCs. Notably, the failure 
of shTRF2-treated NPCs to differentiate was rescued 
through hREST4 overexpression, suggesting that TRF2 

may act upstream of and primarily through hREST4 
[43]. Another mechanism by which TRF2 may promote 
neural differentiation involves a truncated, neural tissue-
specific isoform named TRF2-S. This splicing variant, 
which contains a unique nuclear export signal, was found 
to be predominantly cytoplasmic and to be complexed 
with full-length REST [41]. TRF2-S was thus proposed 
to enhance neuronal maturation by sequestering REST 
in the cytoplasm and preventing the latter’s ability to 
suppress neural gene expression. In support of this idea, 
co-expression of TRF2-S (but not full-length TRF2) with 
REST blocked the neural gene-silencing effect of REST 
in a cell culture model [41]. Besides these mechanisms, 
TRF2 is also reported to bind non-telomeric regions of 
the genome and regulate the transcription of associated 
genes [101–103]. Moreover, a recent report suggests that 
the neural developmental functions of TRF2 is conserved 
in zebrafish [104].

Table 1  Differential expression of telomerase and TRF2 in development and differentiation

ESC embryonic stem cell, NPC neural progenitor cell, NGN newly generated neuron, MN mature neuron, NT2 teratocarcinoma cells with CNS neuronal precursor 
features, NT postmitotic CNS neurons, NEP neuroepithelial cells, FC human fibroblast, HPC hepatocyte progenitor cell

*Cai J., Wu Y., Mirua T., Pierce J. L., Lucero M. T., Albertine K. H., et al. (2002). Properties of a fetal multipotent neural stem cell (NEP cell). Dev. Biol. 251, 221–240

ESC NPC NGN MN Non-neural progenitor 
cells

References

Telomerase activity

Cell culture

 Human High activity in 
embryonic NT2 
neuronal precursor 
cells

Low activity in NT neurons Kruk et al. [118]

 Rat High activity in NEP 
stem cells isolated 
from E10.5 embryos

Low activity in E14.5 neural tubes cells isolated from  
E14.5 embryos (mixed cell of postmitotic neurons,  
neuronal precursors, NEP cells, and glial precursors)

High telomerase activity
in glial precursor cells

Cai et al., 2002*

Embryo

 Mouse High activity at E13 (embryonic day 13) during brain development
progressive decline from E13 to E18
low level until P3 (postnatal day 3)
undetectable telomerase activity from P16

Klapper et al. [117]

TRF2

Cell culture

 Human Low levels High levels Low in FC and HPC Ovando-Roche et al. [43]

 Mouse Undetectable Undetectable High Cheng et al. [97]

Low or Undetectable Low or Undetectable Ovando-Roche et al. [43]

 Rat Detectable Undetectable in differentiated 
neural cells
Undetectable in cortical neuron

High in glial cells Zhang et al. [41]

Embryo

 Mouse Undetectable in NPCs and NGNs at E16 during brain development
Very low in neurons at E18
Progressively higher levels through P15
High levels in adult brain

Cheng et al. [97]

 Rat High at E14 during brain development
Very low after E14 through adult brain

Zhang et al. [41]
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The functions of TRF2 in the development of the nerv-
ous system suggest a role for this protein in NB differen-
tiation and cell fate specification. In line with this idea, 
TRF2-S was found in both ADRN and MES cells, con-
sistent with the neural crest origin of this tumor [17]. 
In addition, ADRN cells evidently contain higher levels 
of TRF2 that are predominantly cytoplasmic, again con-
sistent with the neuroblast-like phenotype of these cells. 
Conversely, the low level of TRF2 in MES cells suggests 
that these cells may resemble ESC with regard to tel-
omere regulation (Table  1). Quite strikingly, two recent 
studies of mouse ES cells point to dramatically different 
function of TRF2 in these cells; in contrast to somatic 
cells, TRF2 deletion in ES cells triggers only a mild DDR 
and no telomere fusions [105, 106]. This reduced tel-
omere protection function of TRF2 appears to be due to 
increased role of other telomere proteins (e.g., POT1B 
and ZSCAN4) or functional redundancy. It is possible 
that the neural crest-derived mesenchymal cells may 
share this reduced dependency on TRF2 and thus mani-
fest reduced expression. Accordingly, neuroblastoma 
MES cells may resemble normal neural crest mesenchy-
mal cells with regard to telomere regulation.

TRF1 and TERF2IP
TRF1 is the second major duplex telomere-binding pro-
tein in shelterin. It probably arose through duplication of 
an ancestral TRF2-like gene during vertebrate evolution 
[107]. While the evidence linking TRF1 to neural devel-
opment is not as strong as that for TRF2, there are mul-
tiple studies that support a potential connection. TRF1 
is strongly implicated in stem cell function and pluripo-
tency; its expression is up-regulated in ESCs and iPSCs, 
but may be down-regulated in neural progenitor cells 
in  vitro [43, 108, 109]. Knocking down TRF1 reduced 
the reprogramming potential of stem cells in  vivo, fur-
ther underscoring its roles in maintaining pluripotency. 
The stem cell function of TRF1 could be mediated 
through its established roles in promoting telomere rep-
lication and genome stability [110, 111]. Alternatively, 
like TRF2, TRF1 has been suggested to bind interstitial 
regions of the chromosome and could mediate its func-
tions through a non-telomeric pathway [102]. However, 
a genome-wide analysis of TRF1-binding to chromatin 
in mouse embryonic fibroblasts points to exclusive local-
ization of TRF1 to telomeric regions [112]. Like TRF1, 
TERF2IP has been reported to mediate several non-
telomeric functions such as metabolism by regulating 
transcription [113, 114]. Several recent studies further 
implicate TERF2IP in hematopoietic stem cell survival, 
but no direct connection to neural development has 
come to light [115, 116].

Telomerase and TERT
Telomerase activity is present at high levels in neural pro-
genitor cells and newly generated neurons, but declines 
rapidly after terminal cell division, suggesting a role in 
neural development [117, 118] (Table  1). The associa-
tion between telomerase activity and neural cell differ-
entiation is supported by several cell culture studies. For 
example, differentiation of neural cell lines and primary 
neurons correlates with a decrease in telomerase activ-
ity [44, 119]. Conversely, anti-sense inhibition of telom-
erase activity in glioma cells can promote the expression 
of glial cell markers in surviving cells [120]. Abnormally 
short telomeres in neural stem cells have been shown to 
disrupt neuronal differentiation [121]. However, stud-
ies of mTERT-/- mice have led to conflicting conclusions 
regarding the need for TERT in neurodevelopment [121–
123]. The potential functions of telomerase and TERT in 
neural crest development and how these functions relate 
to the linkage between telomerase and NB tumor cell dif-
ferentiation warrant further investigation.

Implications for future research and for developing 
telomere‑based biomarkers and therapies 
for HR‑NB
In short, the critical importance of telomeres in NB 
malignancy is underscored by (i) the poor prognosis of 
tumors that harbor telomerase or ALT and (ii) the spon-
taneous regression and/or maturation of low stage tumors 
that harbor no TMM. It should come as no surprise that 
TMMs have emerged as a high priority focus for HR-NB 
therapeutic development [87, 124]. However, as noted 
in the 2020 Trans-Atlantic Neuroblastoma NDDS (New 
Drug Development Strategy) initiative, there are currently 
no drugs specifically related to telomere maintenance 
(e.g., drugs that target telomerase, ALT, TERT, or ATRX) 
that are being tested clinically [124]. One obstacle for tel-
omerase-based therapies is toxicity in normal tissues and 
cells that harbor this enzyme [125]. Nevertheless, prom-
ising preclinical data for compounds that target telom-
eres are beginning to emerge, and further development 
of these compounds is clearly worthwhile [87, 126, 127]. 
At the same time, since the role of telomeres in HR-NB 
is multi-faceted, additional preclinical studies that address 
the telomere-related vulnerabilities of NB as well as the 
connections between telomeres and other determinants 
of NB malignancy should help prioritize these early leads.

One area that merits better understanding is the roles 
played by ADRN/MES interconversion and telomeres in 
the context of standard chemotherapy and radiotherapy. 
It is possible, for example, that the frequent response of 
HR-NB patients to front-line therapies may be due in 
part to trans-differentiation of faster growing ADRN into 
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slower growing MES cells. The MES cells could become 
dormant, only to regrow with the cessation of chemo-
therapy, a pattern not uncommon among patients after 
favorable initial responses. The prevalence of relapse and 
progression in HR-NB suggests that the extent of ADRN/
MES conversion and related TMM alterations (e.g., 
reduction in telomerase activity) is not sufficient to eradi-
cate tumor growth. This idea is also consistent with the 
conclusion, based on analysis of 20 paired tumor sam-
ples, that the TMM status does not change significantly 
over the course of disease [21]. Thus, the inability of con-
ventional therapies to improve survival may be partly 
attributable to their failure to fully suppress TMM.

Another set of factors to consider in relation to NB tel-
omeres are the levels of DNA damage and the proficiency 
for DNA repair. The impact of DNA damage in the ini-
tiation and evolution of NB is evidenced by the discovery 
of mutational signatures associated with specific DNA 
damage pathways [23]. Among these signatures, the ROS 
(reactive oxygen species)-associated SBS18 appears to 
be especially prevalent [128, 129]. Consistent with this 
finding, glycosylase-sensitive lesions that inhibit PCR 
amplification of telomere DNA have been detected in 
HR-NB [84]. Notably, oxidative stress has been repeat-
edly implicated in generating telomere DNA damage 
and triggering accelerated telomere shortening [55]. The 
high levels of ROS-induced telomere lesions in NB thus 
provide an additional reason for the heightened depend-
ence of these tumors on TMMs. Moreover, if ROS indeed 
plays a role in the addiction of NB tumors to TMMs, it 
may be another surrogate biomarker, together with the 
SBS18 signature, for telomere-directed therapies. Not to 
be overlooked is the complex relationship between DNA 
repair activities and telomere maintenance. While oxida-
tive lesions such as 8-oxoguanine can be eliminated by 
BER (base excision repair) pathways, incomplete repair of 
such lesions could lead to accumulation of intermediates 
(e.g., single strand breaks) that are more toxic to the cell. 
Therefore, therapeutic strategies that target DNA dam-
age response and DNA repair factors should be evaluated 
also in connection with their impacts on telomeres.

Finally, the effects of targeting telomeres on the immu-
nobiology of NB are worth considering. To date, the only 
clinically validated immunotherapies for NB are mono-
clonal antibodies against GD2, a disialoganglioside that 
is enriched on neuroblasts. While other approaches 
such as immune checkpoint inhibitors and CAR-T cell 
therapy showed promise, their efficacy in neuroblastoma 
needs to be confirmed in larger phase III trials [130–134]. 
Notably, two recent reports have revealed striking dif-
ferences in the immunogenicity of ADRN and MES cells 
that could have strong implications for immunothera-
peutic strategies [135, 136]. Particularly noteworthy is 

the greater immunogenicity manifested by the MES cell 
type, including both innate and adaptive immune gene 
signatures as well as evidence for inflammatory sensing. 
It will therefore be of great interests to determine the 
effect of telomere-targeting drugs on the immunogenic-
ity of tumor cells. Understanding the interconnection 
and consequences of telomere-based therapies on NB cell 
proliferation, differentiation, DNA damage/repair, and 
immunogenicity is critical not only for eventually bring-
ing these therapies to the clinic, but also for developing 
more effective ways to combine them with standard of 
care and other investigational modalities.

The issues and concepts we have discussed for neuro-
blastoma may be applicable to other pediatric cancers. 
In contrast to adult cancers, pediatric cancers have a dif-
ferent mutational landscape and are strongly influenced 
by the developmental origin and stage of the cancer-
initiating cells [137]. Given the precedence established 
by NB, one may speculate that telomere-related factors 
could likewise influence the differentiation states of 
other pediatric cancers such as medulloblastoma and 
sarcomas, which also display TMM activation and cel-
lular plasticity [138–141]. Telomere-targeting therapies 
for NB and the research tools already developed to study 
telomeres in NB could provide the paradigm and the 
toolbox for undertaking similar initiatives in other pedi-
atric cancers.
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