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Noncoding RNAs link metabolic 
reprogramming to immune microenvironment 
in cancers
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Abstract 

Altered metabolic patterns in tumor cells not only meet their own growth requirements but also shape an immuno-
suppressive microenvironment through multiple mechanisms. Noncoding RNAs constitute approximately 60% of the 
transcriptional output of human cells and have been shown to regulate numerous cellular processes under develop-
mental and pathological conditions. Given their extensive action mechanisms based on motif recognition patterns, 
noncoding RNAs may serve as hinges bridging metabolic activity and immune responses. Indeed, recent studies have 
shown that microRNAs, long noncoding RNAs and circRNAs are widely involved in tumor metabolic rewiring, immune 
cell infiltration and function. Hence, we summarized existing knowledge of the role of noncoding RNAs in the remod-
eling of tumor metabolism and the immune microenvironment, and notably, we established the TIMELnc manual, 
which is a free and public manual for researchers to identify pivotal lncRNAs that are simultaneously correlated with 
tumor metabolism and immune cell infiltration based on a bioinformatic approach.
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Background
When confronted with the severe nutritional crisis asso-
ciated with increased interstitial pressure, destruction of 
vascular structures and hypoxia in the tumor microen-
vironment, tumor cells and other immunostromal cells 
experience conspicuous metabolic reprogramming [1–5]. 
In recent decades, many studies have deciphered altera-
tions in metabolic profiles within tumor cells, and aber-
rantly activated metabolic pathways such as glycolysis 
and glutaminolysis allow tumor cells to sustain a higher 

proliferation rate and resist cell death signals [6–9]. How-
ever, altered metabolic patterns in tumor cells not only 
meet their own growth requirements but also shape an 
immunosuppressive microenvironment by disturbing 
the metabolism of other cells in the microenvironment 
through multiple mechanisms [2, 3]. Tumor-derived 
metabolites directly reduce the antitumor activity and 
recruitment of immune cells or indirectly compromise 
their function by inducing the formation of an acidic 
microenvironment [10–13]. Interestingly, tumor-derived 
metabolites were recently shown to enhance the func-
tion of suppressive immune cells, which dramatically 
restrained the cytotoxicity of antitumor immune cells 
[14]. In addition, reprogrammed metabolic pathways 
regulate the expression of immune checkpoints, while 
activated immune checkpoints in turn damage antican-
cer immunity by inducing metabolic reprogramming in 
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T cells [15–17]. Hence, approaches concurrently target-
ing tumor metabolism serve as a synergetic strategy for 
immunotherapy.

However, recent studies implied that immunostro-
mal cells also overcome these obstacles by triggering the 
metabolism-dependent death of tumor cells, which is a 
mechanism regulating the capability of tumors to plun-
der nutrients while bypassing the intratumor metabolite 
pool. For example, CD8+ T cells secrete IFN-γ to down-
regulate the expression of cystine/glutamate antiporter 
(SLC7A11) on the surface of tumor cells, which dramati-
cally restrains the availability of cysteine, a key factor 
required for tumor cells to avoid lipid ROS accumulation-
mediated cell death (ferroptosis) [18]. Moreover, because 
cysteine is an important nutritional substance for effec-
tor T cells to maintain their normal function, IFN-γ-
mediated SLC7A11 downregulation might be a potent 
mechanism by which effector T cells hijack cysteine and 
improve their antitumor activity [19, 20]. Tumor cells 
were reported to tame multiple immunostromal cells to 
fuel their growth. Interestingly, metabolites derived from 
these tumor-educated cells also compromise antitumor 
immunity [21–23]. For instance, myeloid-derived sup-
pressive cells (MDSCs) harness the glycolytic byproduct 
methylglyoxal to suppress effector T cell function and 
stimulate tumor development [24].

Nonetheless, the majority of previous studies focused 
on the direct effect of differentially expressed enzymes 
on metabolic rewiring and subsequent remodeling of the 
tumor microenvironment. However, with more aware-
ness of the pathophysiological regulatory mechanism of 
noncoding RNAs [25–27], small molecules that regu-
late signaling pathways in cells or intercellularly through 
multiple pathways, such as binding to DNA, RNA and 
even proteins, researchers have gradually recognized the 
potential role of noncoding RNAs in bridging metabo-
lism to anticancer immunity. Compared with the specific 
maps of interactions between metabolic enzymes and 
pathways, one noncoding RNA might simultaneously 
regulate different metabolic pathways via a competing 
endogenous RNA (ceRNA) network [28, 29], suggest-
ing that some hub noncoding RNAs may exert essential 
functions at the crossroads of intratumoral metabolism 
and the immune microenvironment.

In fact, the role of ncRNAs, including miRNAs, lncR-
NAs and circRNAs, in tumor development has been 
reported by numerous studies [30, 31], and their effects 
on tumor metabolism have recently received increas-
ing attention [32–36]. Overexpression of some ncRNAs 
counteracts the antitumor capability of effector T cells by 
triggering the aberrant upregulation of immunosuppres-
sive metabolic activity [37, 38]. Stroma-derived metabo-
lites induce an immunosuppressive environment through 

immune cell polarization and abnormal ncRNA expres-
sion to accelerate tumor development [10]. Immunosup-
pressive metabolic enzymes also destroy the antitumor 
function of cytotoxic immune cells by altering ncRNA 
expression [39]. Notably, ncRNAs play an important role 
in determining the metabolic activity of immune cells, 
their antitumor function and cell fate [40–42]. In this 
review, we mainly focused on the pivotal role of ncRNAs 
in the immunometabolic crosstalk between tumor cells 
and other cells in the tumor microenvironment, summa-
rizing the current status and future perspectives in this 
field. Moreover, at the end of this review, we elaborated 
the Tumor Immuno-MEtabolic-LncRNA (TIMELnc) 
manual, which identifies potential lncRNAs regulat-
ing tumor metabolism and the immune microenviron-
ment. Readers interested in this topic could refer to this 
manual to identify potential lncRNAs and design their 
experiments.

Common paradigms for the crosstalk 
between intratumoral metabolic and immune 
activity
We summarized the common crosstalk patterns between 
intratumoral metabolism and immune activity in this 
section, which are potentially widely regulated by non-
coding RNAs (Fig. 1).

Tumor‑derived metabolic products regulate the function 
of immune cells
Lactate
In the 1920s, Warburg and colleagues reported that 
tumor cells metabolize approximately ten-fold more 
glucose to lactate at a particular time than normal cells 
under aerobic conditions, which is known as the War-
burg effect [43, 44]. In the next few decades, research-
ers focused on the benefits of the Warburg effect for 
tumor development, revealing that it not only supports 
the rapid proliferation of the tumor itself but also regu-
lates the function of immune cells by producing a large 
amount of lactate [45, 46].

Excess lactate directly represses effector T cell and 
natural killer (NK) cell function and thereby establishes 
tumor immunosurveillance [47]. Mechanistically, lac-
tate inhibits RLR signaling by directly binding to the 
MAVS transmembrane (TM) domain and preventing 
MAVS aggregation, which further impedes the produc-
tion of IFN-γ by cytotoxic cells [13]. In addition, lactate 
upregulates the expression of PD-L1 on the tumor cell 
surface by activating the transcription factor TEAD and 
its coactivator TAZ [48]; then, elevated PD-L1 expression 
increases the number of exhausted T cells in the tumor 
microenvironment through its interaction with PD-1 [49, 
50].
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Nonetheless, tumor-derived lactate is not toxic to 
every cell type in the microenvironment. A recent study 
reported that lactate exposure enhances the function of 
Tregs. Lactate uptake is dispensable for the function of 
peripheral Treg cells but required within tumors. Block-
ing the uptake of lactate in Treg cells leads to slower 
tumor growth and an increased response to immuno-
therapy [14].

Glutamate
Most tumor cells consume glutamine at a high rate 
to sustain their rapid growth. Intriguingly, they 

simultaneously excrete glutamate, the first intermedi-
ate in glutamine metabolism. The reason why tumor 
cells are addicted to glutamine metabolism but upregu-
late glutamate excretion remains unclear. Nilsson et  al. 
explained that glutamate excretion may help tumor cells 
increase the nucleotide synthesis rate to sustain growth 
[51]. However, based on accumulating evidence, tumor-
derived glutamate facilitates tumor immune evasion. 
Glutamate exposure exerts a direct inhibitory effect on 
T cell proliferation and activation [52]. Excess accumula-
tion of glutamate in the microenvironment restrains the 
uptake of cystine by antigen-activated T cells through the 

Fig. 1  Noncoding RNAs regulate biological functions through multiple mechanisms, including ceRNA, transcriptional regulation, stabilizing/
destabilizing proteins, chromatin/histone remodeling, stabilizing/destabilizing mRNAs, alternative splicing, sequestering and scaffolding of proteins 
and protein recruitment. Hence, given their polyfunctionality, noncoding RNAs may serve as hinges bridging metabolic activity and immune 
responses. Common patterns for the interaction of metabolism and the immune microenvironment were as follows: metabolites recruit or exclude 
immunosuppressive cells, damage or maintain the function of antitumor cells and fuel or restrain tumor-educated immune cells and tumor 
development
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cystine-glutamate antiporter (xCT) and further dampens 
antitumor immunity [53]. Glutamine blockade not only 
abrogates the proliferation of tumor cells but also over-
comes tumor immune evasion [54].

Kynurenine
Kynurenine, the first degradation product in the 
indoleamine 2,3-dioxygenase (IDO)-dependent trypto-
phan degradation pathway, has been reported to regu-
late immune cell function [55]. Kynurenine induces and 
activates aryl hydrocarbon receptor (AhR) and thereby 
upregulates PD-1 expression [56]. Moreover, an inter-
action between kynurenine and AhR generates more 
regulatory T cells by inducing naive T cell differentiation 
[57]. Furthermore, kynurenine depletion reverses IDO-
mediated immune suppression and markedly increases 
the intratumor infiltration and proliferation of polyfunc-
tional CD8+ lymphocytes [58].

Adenosine
The adenosinergic pathway is a major immunosuppres-
sive mechanism and an attractive novel therapeutic tar-
get for cancer [15]. Meanwhile, extracellular adenosine 
serves as an essential immunosuppressive metabolite 
that restrains the maturation of NK cells and tumor-
reactive effector T cells and then impairs antitumor 
immune responses [59, 60]. In contrast, inhibition of 
the adenosine receptor reduces the expression of T cell 
coinhibitory receptors and improves effector function 
for enhanced checkpoint blockade in preclinical cancer 
models [61]. In addition, the differentiation of regulatory 
T cells is obviously decreased upon inhibition of adeno-
sine receptor [62]. The application of adenosine A2A 
receptor antagonists for cancer immunotherapy in recent 
decades was summarized in a review [63].

Prostaglandin E2
As an essential homeostatic factor, prostaglandin E2 
(PGE2) is also an important mediator of immunopathol-
ogy in cancer. PGE2 directly impairs the function of NK 
cells through a mechanism involving the suppression 
of responsiveness to interleukins [64, 65] and indirectly 
restrains the NK cell function by abrogating the help 
from its adjuvant cells [66]. PGE2 also affects the induc-
tion of antigen-specific immune responses through the 
multifaceted regulation of DC functions to substantially 
reduce T cell-mediated immunity [67–69]. The inhibi-
tion of cytotoxic T lymphocytes mediated by PGE2 also 
contributes to tumor immune evasion [70, 71]. Moreover, 
PGE2 is also involved in the process of Ig class switch-
ing in activated B cells [72], Th cell polarization [73] and 
Th17 differentiation [74]. Notably, tumor-derived PGE2-
mediated activation of nuclear p50 NF-κB epigenetically 

shifts the response of monocytic cells to IFN-γ toward an 
immunosuppressive phenotype, which enhances the anti-
cancer properties of IFN-γ [75].

Other metabolites
In addition to the abovementioned classical immu-
noregulatory metabolites, recent studies also reported 
that some other tumor-derived metabolites potentially 
affect the function of immune cells. Fatty acids play an 
important role in the pathophysiological function of 
immune cells [17, 76–79]. Interestingly, recent studies 
showed that not all types of fatty acids exert the same 
function in antitumor immunity. Excess saturated fatty 
acids impair antigen presentation and NKT function 
by reducing CD1d expression on the cell surface, while 
polyunsaturated fatty acids decrease cancer progression 
by inducing an antitumor immune response [80]. Even 
as enantiomers, S-2-hydroxyglutarate treatment signifi-
cantly increases the in vivo proliferation, persistence and 
antitumor activity of adoptively transferred CD8+ T cells 
[81], while tumor-derived R-2-hydroxyglutarate induces 
a perturbation in nuclear factor of activated T cell tran-
scriptional activity and polyamine biosynthesis, leading 
to the suppression of T cell activity [82].

We summarized the reported metabolites involved in 
immune regulation in Table 1. In addition, their relation-
ships with noncoding RNAs, which we will discuss in the 
following sections, are listed in Table 1.

The metabolism of tumor‑educated cells regulates 
the function of immune cells
Cancer-associated fibroblasts (CAFs) are some of the 
most critical components of the tumor stroma and not 
only provide physical support for tumor cells but are 
also key functional regulators of the tumor microenvi-
ronment. According to a recent study, CAFs reduce the 
percentage of the antitumor Th1 subset through lactate-
dependent, SIRT1-mediated deacetylation/degradation 
of the T-bet transcription factor [10]. In addition, CAF 
exposure also increases the level of infiltrating Treg cells 
by driving naive T cell polarization through a mechanism 
dependent on lactate-mediated NF-kB activation and 
FoxP3 expression [10].

MDSCs decrease the availability of metabolites criti-
cal for T cell functions through multiple pathways. For 
example, MDSCs deplete L-arginine through four differ-
ent enzymes, including nitric oxide synthases (NOS1-3), 
arginases (ARG-1 and ARG–2), arginine-glycine amidi-
notransferase and L-arginine decarboxylase [83]. In addi-
tion, MDSCs also increase the uptake of L-arginine from 
the tumor microenvironment by the CAT-2B transporter 
[84].
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The metabolism of tumor‑educated cells fuels 
the progression of tumor cells
Many studies have reported that the metabolic activity 
of tumor-educated cells supports the proliferation and 
metastasis of tumor cells. As shown in the recent study 
by Sun et  al., CAF-derived lactate promotes tumor cell 
progression by activating the TGFβ1 signaling path-
ways and enhances mitochondrial activity in tumor cells 
[85]. Tumor cells also take up lactate secreted by CAFs 
to fuel the TCA cycle, accumulation of oncometabolites 
and subsequent hypoxia-mediated EMT [86]. In addi-
tion, macrophage-derived succinate is likely a significant 
oncometabolite that induces tumor development by acti-
vating the TCA cycle [87]. Cancer cells can educate stro-
mal cells to enhance their ability to use different nutrient 
sources for glutamine synthesis, which then supports 
tumor cell mitochondrial activity and de novo purine 
biosynthesis through glutaminolysis [88–90].

Tumor metabolism regulates the recruitment of immune 
cells and remodels the physicochemical properties 
of the microenvironment
The metabolic activity of tumor cells has been reported 
to modulate gene transcription through multiple mecha-
nisms, such as epigenetic modification [91–93]. Hence, 
a plausible speculation is that altered tumor metabolism 
disturbs the expression of some molecules involved in 
immune cell recruitment. Li et al. reported that glycolysis 
restriction inhibits the expression of granulocyte colony-
stimulating factor (G-CSF) and granulocyte macrophage 
colony-stimulating factor (GM-CSF), which are essential 
chemotaxis molecules that recruit MDSCs [94]. Mecha-
nistically, glycolysis inhibition restrains the expression of 
liver-enriched activator protein (LAP) through the AMP-
activated protein kinase (AMPK)-ULK1 and autophagy 
pathways, whereas LAP controls G-CSF and GM-CSF 
expression to support MDSC development.

The essential metabolic activities for immune cells 
to maintain normal function
Low tryptophan levels lead to cell cycle arrest and T lym-
phocyte apoptosis by activating the general control non-
derepressible (GCN)-2 kinase [95]. The accumulation 
of tryptophan metabolites in the micromolar range in 
tumors leads to the differentiation of CD4+ T cells into 
a regulatory phenotype by binding to the aryl hydrocar-
bon receptor (AHR) and a reduction in T cell cytotoxicity 
[57]. In addition, lactate dehydrogenase inhibition pro-
motes CD8+ T cell stemness and antitumor immunity 
[96].

STAT3 activation-induced fatty acid oxidation in 
CD8+ T effector cells is critical for obesity-induced 
breast tumor growth [97]. In contrast, tumor-infiltrating 

MDSCs tend to increase fatty acid uptake and activate 
fatty acid oxidation (FAO). Pharmacological inhibition of 
FAO blocks immune inhibitory pathways and the func-
tions of these immunosuppressive cells to decrease their 
production of inhibitory cytokines. FAO inhibition alone 
significantly delays tumor growth in a T cell-dependent 
manner and enhances the antitumor effect of immuno-
therapy [98].

Immunostromal cells regulate the metabolism in tumor 
cells
Breast cancer-associated macrophages promote tumori-
genesis by suppressing succinate dehydrogenase activity 
in tumor cells. The decrease in SDH levels in tumor cells 
results in the accumulation of succinate, which increases 
the stability of the transcription factor HIF1α and repro-
grams cell metabolism to a glycolytic state [99]. In turn, 
HIF1α and glycolysis activation contribute to PD-L1 
expression and failure of immunosurveillance, as previ-
ously observed in other cells in the tumor microenviron-
ment [99, 100]. Tumor-associated macrophages (TAMs) 
secrete TNFα to promote tumor cell glycolysis, whereas 
depletion of TAMs by clodronate is sufficient to abrogate 
aerobic glycolysis [101]. TAM depletion leads to a signifi-
cant increase in PD-L1 expression in aerobic cancer cells.

The regulatory pattern and mechanism 
of noncoding RNAs in tumor biology
The concept of noncoding RNAs
Noncoding RNAs constitute approximately 60% of the 
transcriptional output of human cells and have been 
shown to regulate numerous cellular processes and path-
ways under developmental and pathological conditions 
[25]. Based on the threshold of 200 nucleotides for RNA 
length, noncoding RNAs have been divided into lncRNAs 
and small RNAs [102], and the latter are further classi-
fied into several distinct RNAs, such as miRNAs, small 
nucleolar RNAs (snoRNAs) and piwiRNAs (piRNAs) 
[103]. Noncoding RNAs exert their biological functions 
through multiple mechanisms that bypass translation, 
such as inducing instability of target mRNAs [104], com-
petitive endogenous networks [29], interactions with pro-
teins [105] and transcriptional regulation [106]. Although 
the majority of noncoding RNAs have little protein-cod-
ing potential, many studies recently reported that some 
noncoding RNAs, such as circRNAs and lncRNAs [107, 
108], potentially exert their functions by encoding pep-
tides and regulating cancer development [109].

Regulatory patterns and mechanisms of noncoding RNAs
Competing Endogenous RNA
LncRNAs and circRNAs can function as endogenous 
miRNA sponges [110–114]. ceRNAs communicate with 
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each other by competing to bind to common miRNAs, 
thereby dictating miRNA availability [29]. The comple-
mentarity between the seed region of the miRNA and the 
3′ untranslated region of the target mRNA mediates the 
cleavage of the latter [115]. Hence, lncRNAs or circRNAs 
could rescue the expression of some genes that are essen-
tial for cancer development by binding to their target 
miRNAs. In recent decades, ceRNA mechanisms have 
been shown to play important roles in tumor biology [28, 
31, 116]. Different ceRNA combinations regulate the ini-
tiation [117, 118], growth [119–121], progression [122–
124], metastasis [125–127], chemoresistance [128–130], 
apoptosis [121, 131, 132], stemness [133–135], recur-
rence [136–138] and metabolism [139–141] in various 
tumors. Moreover, the ceRNA network also modulates 
the tumor microenvironment by regulating stromal for-
mation [142, 143], angiogenesis [144–146] and immune 
cell infiltration or function [147–150].

Transcriptional regulation
Many noncoding RNAs have been reported to directly 
regulate gene transcription or indirectly affect tran-
scription factors [29, 151–153]. Li et  al. have reported 
a class of circRNAs associated with RNA polymerase II 
in human cells, which is called ElciRNAs. In the ElciR-
NAs, exons are circularized with introns ’retained’ 
between exons. These epithelial circRNAs are predomi-
nantly localized in the nucleus, interact with U1 snRNP 
and promote the transcription of their parental genes 
[151]. Similarly, lncRNAs were also reported to regu-
late transcription by binding to histone-modifying com-
plexes, DNA binding proteins and RNA polymerase II 
[154]. An increasing number of studies have also shown 
that miRNAs may mediate transcriptional gene activa-
tion or silencing, which implies that miRNAs may not 
exclusively function at the posttranscriptional level. For 
instance, miR-373 induces the transcription of both 
E-cadherin and cold-shock domain-containing protein 2 
[155], and miR-205 induces the transcriptional activation 
of the tumor suppressor genes IL24 and IL32.

Protein stability
Many noncoding RNAs have been shown to regulate pro-
tein stability. For example, the lncRNA LINRIS blocks 
the K139 ubiquitination of IGF2BP2, an oncogenic RNA-
binding protein, maintaining its stability through the 
autophagy–lysosome pathway [156]. Similarly, another 
lncRNA, NEAT1, also directly binds to the DDX5 protein 
and regulates its stability, which sequentially activates 
Wnt signaling and exerts oncogenic functions [157]. The 
circRNA CDR1as was also reported to stabilize the p53 
protein by preventing its ubiquitination. CDR1as directly 
interacts with the p53 DBD domain and thus disrupts 

p53/MDM2 complex formation, which inhibits gliom-
agenesis [158].

Chromatin/histone remodeling
Liquid–liquid phase separation is the basis for the forma-
tion of membrane-less organelles in cells and is involved 
in many biological processes [159]. Recently, many stud-
ies have shown that phase separation participates in 
chromatin/histone remodeling, and noncoding RNAs 
may also play an important role in this process [160–
163]. Daneshvar and colleagues reported that the lncRNA 
DIGIT is required for bromodomain and extraterminal 
domain protein BRD3 to form phase-separated conden-
sates [164], which is important for regulating endoderm 
differentiation. In addition to liquid–liquid phase sepa-
ration, the lncRNA Xist silences the transcription of one 
X chromosome during development in female mammals 
by directly interacting, recruiting and activating a series 
of proteins and further deacetylating histones to exclude 
Pol II from the X chromosome [165]. Another approach 
by which noncoding RNAs indirectly modulate chroma-
tin or histones is via epigenetic regulators. For instance, 
the lncRNA GATA6-AS epigenetically regulates gene 
expression through an interaction with LOXL2-medi-
ated changes in histone methylation [166]. Reciprocally, 
H3K27 acetylation induces the expression of the lncRNA 
colon cancer-associated transcript-1 (CCAT1), whose 
overexpression may induce tumorigenesis in many can-
cers [167].

mRNA stability
In addition to miRNAs, other noncoding RNAs also 
showed the ability to directly influence mRNA stability. 
Chen recently revealed that circNSUN2 is upregulated in 
colorectal cancer and promotes liver metastasis by sta-
bilizing the HMGA2 mRNA [168]. Similarly, Wu et  al. 
reported that the lncRNA THOR increases osteosarcoma 
cell stemness and migration by increasing SOX9 mRNA 
stability. Further experiments indicated that the lncRNA 
THOR directly binds to the middle region of the SOX9 
3’UTR, thereby increasing SOX9 mRNA stability and 
expression [169].

Alternative splicing
Alternative splicing is tightly associated with the tran-
scription of noncoding RNAs, particularly circRNAs 
[170]. However, noncoding RNAs may subsequently reg-
ulate the alternative splicing of other genes [171]. Some 
lncRNAs, such as NEAT1 and MALAT1, potentially 
interact with splicing factors. An intimate association 
was observed between them and SC35 SF-containing 
nuclear speckles in both human and mouse cells, sug-
gesting their participation in mRNA splicing [172]. Their 
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role was further confirmed by the results of an RNA 
FISH analysis. Serine/arginine-rich (SR) proteins are 
a conserved family of proteins that are mainly involved 
in splicing. In addition, a continuous phosphorylation 
or dephosphorylation cycle of SR proteins is required 
for proper premRNA splicing and the regulation of AS 
patterns. According to recent studies, one SR protein, 
SRp40, directly recognizes NEAT1, exhibiting a dynamic 
association throughout adipocyte differentiation. Then, 
an increased concentration of the phosphorylated SRp40 
protein after release from NEAT1 was proposed to pro-
mote the splicing of the PPARγ2 mRNA [173].

Sequestering, scaffolding and recruitment of proteins
Sun et al. reported that the novel lncRNA GClnc1 func-
tions as a modular scaffold to recruit key components 
of the histone methyltransferase complex. Then, many 
oncogenic genes, such as SOD2, are activated epige-
netically and mediate tumorigenesis [174]. In addition, 
Jie et  al. [175] identified a novel circRNA named circ-
MRPS35, which is associated with the clinicopathological 
characteristics and prognosis of patients with gastric can-
cer. Mechanistically, circMRPS35 functions as a scaffold 
to recruit histone acetyltransferase KAT7 to the promot-
ers of the FOXO1 and FOXO3a genes, which catalyzes 
the acetylation of H4K5 in their promoters. Notably, circ-
MRPS35 directly binds to FOXO1/3a promoter regions, 
thereby inducing the transcription of FOXO1/3a and 
triggering subsequent expression of downstream onco-
genic genes [175].

Protein coding
Although noncoding RNAs are generally recognized to 
lack a protein-coding capability, recent studies have grad-
ually shown that some of these molecules encode pep-
tides and regulate biological processes in cancers. Huang 
and colleagues discovered that the lncRNA HOXB-AS3 
encodes a conserved 53-aa peptide that suppresses colon 
cancer growth itself instead of its parental lncRNA [176]. 
In addition, Zhang et al. documented that an endogenous 
circRNA generated from a lncRNA encodes a regulatory 
peptide using ribosome nascent-chain complex-bound 
RNA sequencing [177]. This peptide directly interacts 
with the polymerase-associated factor complex and 
inhibits the transcriptional elongation of multiple onco-
genes, thereby fueling glioblastoma tumorigenesis. Nota-
bly, Pan et  al. previously summarized three categories 
of noncoding RNA-encoded peptides: miRNA-encoded 
peptides, a 90 residue-long regulatory peptide encoded 
by an lncRNA, and a circRNA-encoded truncated NCX1 
protein [178].

Other functions
Significant enrichment of miRNAs has been observed 
in the nucleolar region of cells [179]. Many studies have 
reported the potential biological functions of nucleolar 
miRNAs in biological processes [180, 181]. For example, 
nucleolar RNA was observed to be colocalized with 28S 
ribosomal RNA, suggesting that miRNAs may associate 
with ribosome subunits at an early stage of ribosome bio-
genesis [182].

Noncoding RNAs regulate both tumor metabolism 
and the immune microenvironment
Since noncoding RNAs regulate many aspects of gene 
expression from pretranscriptional to posttranslational 
processes, as mentioned above, they are expected to 
exert effects on numerous cellular activities. In this con-
text, miRNAs, lncRNAs, circRNAs and their regulatory 
networks may participate in the remodeling of tumor 
metabolism and the immune microenvironment (Fig. 2).

Tumor metabolism has always been a field studied 
by a wide range of researchers. Treatments targeting 
the addiction and dependence of tumor cells on repro-
grammed metabolic pathways results in stringent tumor 
suppression in vivo and in vitro [9, 183, 184]. Many stud-
ies have reported that miRNAs, lncRNAs and circRNAs 
contribute to tumor metabolic rewiring, including gly-
cometabolism [185], lipid metabolism [186] and amino 
acid metabolism [187]. Mechanistically, noncoding RNAs 
either directly regulate the mRNA and protein expression 
of metabolic enzymes or indirectly interact with the key 
factors that regulate the synthesis of metabolic enzymes.

Meanwhile, an increasing number of studies have 
emphasized the role of noncoding RNAs in remodeling 
the tumor microenvironment, which is involved in the 
immune cell differentiation trajectory, function and infil-
tration [188–194].

Glycometabolism, noncoding RNAs and the immune 
microenvironment
Aerobic glycolysis or the Warburg effect is a representa-
tive hallmark of tumor metabolism. Through ceRNA 
mechanisms [139, 195–201], nucleolar translocation 
[202], protein interactions [156, 203, 204] and alterna-
tive splicing [205], noncoding RNAs reprogram glycolytic 
activity in tumor cells.

Interestingly, macrophage-derived lncRNAs were 
recently shown to regulate glycolysis in tumor cells. 
Extracellular vesicle-packaged HIF-1α-stabilizing 
lncRNA (HISLA) from tumor-associated macrophages 
regulates aerobic glycolysis in breast cancer cells by 
inhibiting the hydroxylation and degradation of HIF-1α. 
Reciprocally, the glycolytic product lactate upregulates 
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the expression of HISLA in tumor-associated mac-
rophages, which constitutes a feed-forward loop between 
TAMs and tumor cells [206]. Similarly, CAF-derived 
lactate modulates the polarization of CD4+ T cells by 
reducing the infiltration of Th1 cells and increasing the 
infiltration of Treg cells, a process in which miR-21 plays 
an important role [10].

In addition, Zhao et al. found that ovarian cancer cells 
imposed a glucose restriction on effector T cells and 
impaired their function by upregulating the expression 
of miR-101 and miR-26a, which constrained the expres-
sion of the methyltransferase EZH2 and the activity of 
the Notch pathway [207]. Consequently, the function of 
T cells was compromised due to the deficiency in Notch-
mediated Bcl-2 signaling and polyfunctional cytokine 

expression [207]. Cancer-associated fibroblasts also 
mediate the upregulation of LINC00092, which further 
promotes glycolytic activity in ovarian cancer cells by sta-
bilizing fructose-2,6-biphosphatase [208].

The lncRNA MALAT1 has been reported to regulate 
tumor cell metabolism through multiple mechanisms. 
For example, Malakar et  al. reported that a metabolic 
transcription factor, TCF7L2, is stabilized by MALAT1 
and mediates the upregulation of glycolytic activity but 
decreases gluconeogenic enzymes via the mTORC1-
4EBP1 axis [209]. Similarly, Nanni et  al. showed that 
MALAT1 silencing reduces the expression of some meta-
bolic enzymes, including malic enzyme 3, pyruvate dehy-
drogenase kinases 1 and 3 and choline kinase A, which 
promotes a glycolytic phenotype and increased lactate 

Fig. 2  Existing knowledge has revealed the pivotal role of noncoding RNAs in bridging tumor metabolism and the immune microenvironment. 
(→ : promote; : inhibit; the most frequently occurring noncoding RNAs have been marked in red, blue and green, respectively)
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production [210]. As we have described in the previous 
sections, the activation of glycolysis in tumor cells trig-
gers an immunosuppressive tumor microenvironment. 
Hence, MALAT1 is expected to be a negative regula-
tor of antitumor immunity. In fact, many studies have 
shown that MALAT1 exerts immunosuppressive effects 
in recent years. As shown in the study by Wang et  al., 
MALAT1 sponges miR-195 to increase the expression 
of PD-L1, thereby promoting immune escape in diffuse 
large B cell lymphoma [147]. Likewise, through a ceRNA 
mechanism, MALAT1 overexpression contributes to 
angiogenesis and impairs M1 macrophage polarization 
by binding to miR-140 in hepatocellular carcinoma [211]. 
However, not all studies support the role of MALAT1 in 
promoting the immune evasion of tumors. Zhou et  al. 
noted a negative correlation between the relative expres-
sion of MALAT1 and the proportion of MDSCs, while 
knockdown of MALAT1 significantly increases the pro-
portion of MDSCs in the peripheral blood of patients 
with lung cancer [212].

Interestingly, immune cells facilitate tumorigenesis by 
inducing MALAT1 expression. For example, IL8 secreted 
from M2-polarized macrophages promotes prostate can-
cer progression via the STAT3/MALAT1 pathway, while 
knockdown of MALAT1 expression levels in prostate 
cancer cell lines inhibits cell proliferation, invasion and 
tumor formation [213].

As one of the most aberrantly expressed miRNAs 
detected in human cancers, miR-21a was reported to 
increase lactate generation and decrease oxygen con-
sumption in lung cancer cells. Mechanistically, miR-21a 
directly targets fructose-1,6-biphosphatase and thereby 
reduces oxidative phosphorylation and increases glycoly-
sis [214]. In this context, miR-21a may contribute to the 
formation of an immunosuppressive microenvironment 
by releasing glycolytic byproducts. Notably, miR-21a 
within MDSCs maintains the immunosuppressive micro-
environment by enhancing the infiltration and function 
of polymorphonuclear MDSCs through the suppression 
of the MLL1 complex, while tumor-derived miR-21 also 
promotes the expansion of MDSCs by downregulating 
PDCD4 expression [215, 216]. Additionally, miR-21 pro-
motes the transformation of macrophages toward M2 
subtypes and further compromises antitumor immunity 
[217].

Lipid metabolism, noncoding RNA and the immune 
microenvironment
According to a previous study, miR-424-5p modulates 
glucose metabolism during tumor growth and metastasis 
[218]. However, recent studies also showed that it affects 
lipid metabolism in cancer cells. Notably, miR-424-5p 
binds to ACSL4 and abrogates ferroptosis, a cell death 

mechanism dependent on lipid peroxidation, in ovar-
ian cancer cells. In contrast, knockdown of miR-424-5p 
increases the sensitivity of ovarian cancer cells to ferrop-
tosis inducers [219]. Moreover, miR-424-5p reduces the 
expression of phospholipid scramblase, which is respon-
sible for collapsing lipid asymmetry by catalyzing bidi-
rectional transbilayer movement of the major classes of 
phospholipids [220]. As a tumor suppressor, miR-424-5p 
also participates in regulating the expression of effector 
cytokines in T cells by promoting PD-L1 degradation 
[221]. The paradox is that miR-424-5p abrogates ferrop-
tosis but promotes antitumor immunity; however, previ-
ous studies showed that ferroptosis potentially serves as 
an immunogenic form of cell death that triggers robust 
antitumor immunity [222, 223]. Future studies are 
expected to elucidate the mechanism underlying this 
contradiction. In addition, miR-122 controls fatty acid 
β oxidation by interacting with SIRT6 and predicts the 
prognosis of hepatocellular carcinoma [224]. Through 
immunoregulatory mechanisms, exosome-derived miR-
122 drives tumor immune evasion by regulating TCR 
signaling and TNFα secretion [192].

As shown in previous studies, miR-181a is an essential 
modulator that regulates immune responses [192, 225], 
such as T cell differentiation [226, 227]. A recent study 
proposed that miR-181a also inhibits innate immune 
signaling by interrupting the STING-associated IFNγ 
response and lymphocyte infiltration in patients with 
cancer [228]. Moreover, Jiang et  al. showed that exo-
some-derived miR-181a promotes the expansion of 
early-stage MDSCs by targeting PIAS3, a member of the 
protein inhibitor of activated STAT family, in breast can-
cer [229]. Chu et al. also showed that miR-181a decreases 
the expression of genes involved in lipid synthesis and 
increases the expression of genes involved in β-oxidation, 
subsequently inhibiting lipid accumulation in transgenic 
mouse models [230].

The long noncoding RNA NEAT1 has been reported to 
drive tumorigenesis and metastasis in multiple cancers 
[157, 231–234]. Liu et al. recently reported that lncRNA-
NEAT1 modulates the expression of adipose triglyceride 
lipase (ATGL) and disrupts lipolysis in hepatocellular 
carcinoma cells [235]. In contrast, NEAT1 knockdown 
attenuates HCC cell growth through miR-124-3p and 
rescues lipolysis. NEAT also manifests an immunoregula-
tory function in cancers. Tumor samples with high levels 
of cytotoxic CD8+ infiltration express NEAT1 at lower 
levels. Furthermore, NEAT1 promotes tumor growth by 
inhibiting cytotoxic T cell-mediated immunity through a 
decrease in the expression of cyclic GMP-AMP synthase 
stimulator of interferon genes [236]. NEAT1 also induces 
the activation of the NLRP3 inflammasome in dendritic 
cells or macrophages to regulate their functions and 
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phenotypes [237, 238]. In addition, NEAT1 sponges miR-
214 to regulate M2 macrophage polarization by regulat-
ing B7-H3 in multiple myeloma, which further promotes 
tumor immune evasion [239].

Amino acid metabolism, noncoding RNAs and the immune 
microenvironment
Tryptophan metabolism has long been recognized as an 
immunosuppressive mechanism in cancers [240–242]. 
Recent studies have shown that many noncoding RNAs 
regulate IDO-1 expression, which catalyzes the con-
version of tryptophan into kynurenine and promotes 
immune evasion by activating T regulatory cells and 
MDSCs and suppressing the functions of effector T cells 
and natural killer cells [243]. According to Wang et  al., 
IDO1 is overexpressed in colorectal tumors and is neg-
atively associated with patient survival. Interestingly, 
IDO1 expression is reduced by miR-153, which targets 
the 3’ untranslated region of IDO1 transcripts. Overex-
pression of miR-153 significantly inhibits tumor growth 
and enhances CAR T cell immunotherapy [38]. This find-
ing was validated by another study showing that miR-153 
decreases tryptophan catabolism and inhibits angiogene-
sis in bladder cancer [33]. In addition, Lou et al. screened 
miRNAs targeting IDO1 using a dual luciferase reporter 
assay. Their results showed that miR-448 significantly 
downregulates IDO1 protein expression and thereby 
suppresses the apoptosis of CD8+ T cells [37]. Nota-
bly, IDO1 also suppresses antitumor immunity through 
noncoding RNA-dependent mechanisms. For instance, 
IDO1 impairs NK cell cytotoxicity by promoting miR-
18a expression, which is required for NKG2D/NKG2DL 
silencing [39].

Glutamine addiction has long been known as the main 
feature of tumor metabolic rewiring that fuels tumor 
growth [244, 245]. As we have summarized in the pre-
vious sections, glutamine metabolism is tightly associ-
ated with tumor immune evasion. The lncRNA HOTAIR 
was reported to upregulate chemokine (C–C motif ) 
ligand 2 and promote the proliferation of macrophages 
and MDSCs in hepatocellular carcinoma [246]. A plau-
sible speculation is that HOTAIR then mediates tumor 
immune evasion through MDSC recruitment. Interest-
ingly, HOTAIR was also found to increase the expres-
sion level of glutaminase, which is essential for glutamine 
metabolism and subsequent oncogenic processes [247]. 
In this context, HOTAIR may mediate the immunosup-
pressive response by upregulating glutamine metabolism.

The role of noncoding RNAs in the metabolism of immune 
cells
Given the potent functions of noncoding RNAs in mul-
tiple processes, a biologically plausible hypothesis is 

that noncoding RNAs in immune cells regulate many 
processes, such as metabolism and effector functions 
[248–250]. For instance, overexpression of miR-30c in 
macrophages promotes M1 macrophage differentia-
tion and function by increasing glycolytic activity [251], 
while miR-143 inhibits glucose uptake and glycolysis by 
decreasing the expression of glucose transporter 1 in T 
cells to interrupt T cell differentiation [252].

Regarding lipid metabolism, miR-33 inhibits fatty acid 
oxidation in macrophages by decreasing the expression 
of retinoic acid-producing enzyme aldehyde dehydroge-
nase family 1 both in vitro and in a mouse model [253]. 
In addition, microRNA-150 expressed in macrophages 
also regulates pathological lipid trafficking [254].

Manually interrupting metabolism in immune cells 
has become a novel treatment modality in recent years 
that may function through noncoding RNAs. Sheng 
et al. blocked glycolysis in malignantly transformed mac-
rophages and dendritic cells using 3-bromopyruvate 
(3-BrPA). They found that 3-BrPA significantly inhib-
ited the proliferation of malignantly transformed mac-
rophages and dendritic cells in a dose-dependent and 
time-dependent manner. Utilizing an online database 
and experimental data, they showed that 3-BrPA inhib-
its malignant progression via the miR-449a/MCT1 axis, 
which blocks lactate transport [255].

Noncoding RNAs bridge metabolites and pro‑ 
or antitumor immunity
Metabolites are one of the most active elements that 
regulate multifaceted biological processes in the tumor 
microenvironment, serving as either nutrients producing 
energy or wastes whose accumulation interrupts normal 
cellular function [256–258]. Metabolites in the micro-
environment modulate antitumor immunity or immune 
evasion. In this section, we describe currently reported 
metabolites that either enhance antitumor immunity 
or promote immune evasion in Table  1, and noncoding 
RNAs participating in the generation or utilization of 
these metabolites are also presented.

Noncoding RNAs regulate the generation or utilization 
of metabolites that promote antitumor immunity
Metabolites enhance antitumor immunity through mul-
tiple mechanisms, one of the most important of which is 
providing essential nutritional support for tumor-killing 
immune cells. Arginine is important for effector T cells 
to maintain their antitumor activity. An increase in the 
L-arginine concentration triggers global metabolic rewir-
ing, including a shift from aerobic glycolysis to oxidative 
phosphorylation in activated T cells, and promotes the 
generation of central memory-like cells. In  vivo experi-
ments further showed that increased arginine levels 
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endowed a mouse model with higher antitumor activity 
and prolonged survival [259]. Interestingly, MDSCs with 
increased arginase I expression is part of an important 
mechanism that induces an immunosuppressive micro-
environment by restricting the availability of arginine 
and restraining effector T cell function [260]. According 
to previous studies, miR-1291 targets the rate-limiting 
enzyme argininosuccinate synthase and reduces arginine 
synthesis [261]. miR-1291-5p sensitizes pancreatic carci-
noma cells to arginine deprivation through the regulation 
of arginolysis [262]. In addition, external L-arginine also 
regulates the expression of many noncoding RNAs and 
triggers downstream biological changes [263–266].

T cell activation is initiated by the specific binding of 
the T cell receptor to an antigenic peptide presented by 
the major histocompatibility complex on the surface of 
an antigen-presenting cell (APC). Then, many ligations 
of costimulatory molecules on the surface of T cells are 
engaged and induce a downstream cascade of signal-
ing events and pathways that regulate the clonal expan-
sion and differentiation of naive T cells into effector T 
cells. These interactions were determined by investigat-
ing membrane physiology, which is maintained partially 
by the catabolic cleavage of sphingomyelin and the sub-
sequent generation of ceramide [267, 268]. Some studies 
have reported that noncoding RNAs regulate the gen-
eration of ceramide or downstream of ceramide-medi-
ated biological processes. For example, miR-34a causes 
ceramide accumulation [269], while ceramide inhibits 
the proangiogenic activity of multiple myeloma through 
miR-29b [270].

Another mechanism by which metabolites regulate 
antitumor immunity is epigenetic modification. For 
instance, acetate serves as an alternative energy source 
for both cancer cells and immune cells when glucose 
is restricted. Acetate rescues the effector function of 
CD8+ T cells by promoting histone acetylation and 
chromatin accessibility, thus facilitating IFN-γ gene tran-
scription and cytokine production in an acetyl-CoA syn-
thetase-dependent manner [271].

As we described in the previous sections, IDO-medi-
ated tryptophan degradation was a major cause of effec-
tor T cell dysfunction in the tumor microenvironment. 
Hence, tryptophan itself is very important for the tumor-
killing function of effector T cells. Many noncoding 
RNAs have been reported to affect tryptophan metabo-
lism, enabling cells to reverse metabolism-mediated 
immune suppression [37–39, 272, 273]. Similarly, glucose 
is the basic nutrient required for the activation of various 
immune cells, especially effector T cells [274]. Zhao et al. 
reported a novel mechanism by which primary cancer 
imposes glucose restriction on T cells and affects anti-
tumor immunity. They found that miR-101 and miR-26a 

were imperative factors mediating the effects of glucose 
deprivation on T cell polyfunctionality, while T cells were 
activated, and the abundance of miR-101 and miR-26a 
was rapidly reduced [207].

Tetrahydrobiopterin (BH4) is an important enzy-
matic cofactor required for the synthesis of dopamine, 
serotonin and nitric oxide [275]. Recently, Cronin et  al. 
reported that BH4 controls antitumor immunity by 
increasing intratumoral expansion and function [276]. 
Administration of BH4 to animal models markedly 
reduces tumor growth and rescues the impaired anti-
tumor immunity mediated by tryptophan-kynurenine 
metabolism [276]. Notably, BH4 metabolism could also 
be regulated by many noncoding RNAs [277, 278], sug-
gesting that treatments targeting BH4 metabolism by 
modulating noncoding RNAs might be a novel modality 
for cancer immunotherapy.

Other small metabolites, such as vitamin D [279], tau-
rine [280] and cysteine [281], also enhance antitumor 
immunity. Vitamin D regulates immune cell trafficking 
and differentiation, taurine alters the splenocyte immu-
nological profile of CD3+ CD4+, CD3+ CD8+, CD4+ 
CD25+ and CD11b+ Ly6G+ cells to achieve better 
immune surveillance against tumor cells, and cysteine 
exerts a positive effect on T cell proliferation and acti-
vation. Noncoding RNAs play an important role in the 
production or transportation of these metabolites [282–
285], reciprocally, they might also exert their functions 
through noncoding RNAs [286–288].

Noncoding RNAs regulate the generation or utilization 
of metabolites that fuel tumor immune evasion
Cholesterol-derived metabolites play pivotal roles in sup-
porting cancer progression and suppressing antitumor 
immune responses [289]. As shown in a recent study, 
tumor microenvironment-derived cholesterol increases 
CD36 expression and subsequent fatty acid uptake in 
tumor-infiltrating CD8+ T cells. Excess uptake of fatty 
acids triggers lipid peroxidation and ferroptosis in CD8+ 
T cells, which further leads to reduced cytotoxic cytokine 
production and impaired antitumor activity [290]. Even 
the hydroxylated products of cholesterol, 25-hydroxy-
cholesterol or 27-hydroxycholesterol, induce immu-
nosuppression by either promoting MDSC infiltration 
or decreasing CD8+ T cell numbers [291, 292]. Sallam 
et  al. documented that the lncRNA MeXis promotes 
cholesterol efflux via the transcriptional regulation of 
the Abca1 gene [293], suggesting that MeXis may exert 
a similar function in tumor-associated macrophages 
to alter T cell function. In addition, Wagschal et al. lev-
eraged a meta-analysis of genome-wide association 
studies and identified four microRNAs, including miR-
128-1, miR-148a, miR-130b and miR-301b, involved in 
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cholesterol-lipoprotein trafficking [294]. The metabolism 
of hydroxylated cholesterol is also regulated by or func-
tions via other noncoding RNAs [295–297]. Targeting 
related noncoding RNAs may contribute to cholesterol-
dependent immune suppression. Similar to cholesterol, 
lipid peroxidation byproducts and triglycerides fuel 
abnormal lipid accumulation in tumor-associated den-
dritic cells and reduces their ability to prime T cells 
[298, 299]. Moreover, many noncoding RNAs have been 
reported to regulate lipid peroxidation byproducts [235, 
300–303].

Unlike lactate and kynurenine, two well-known immu-
nosuppressive metabolites that regulate and are regulated 
by many noncoding RNAs in tumor biology, itaconic acid 
was recently identified as a macrophage-specific metabo-
lite that promotes tumor progression. As the product of 
immune-responsive gene 1-mediated (IRG1) catabolism 
of mitochondrial cis-aconitate, itaconic acid in tumor-
associated macrophages is upregulated by tumor cells 
and in turn alters tumor metabolism [304]. Repression 
of itaconic production significantly slows tumor devel-
opment. Based on in  vitro experiments, miR-93s also 
decrease itaconic acid production through an IRG1-
mediated mechanism. Then, the decreased itaconic acid 
production mediated by miR93 further promotes and 
sustains M2-like polarization, even under M1-like polar-
izing conditions [305].

Chemotherapeutic drug resistance is a common prob-
lem faced by many patients with late-stage tumors. Many 
drugs are first metabolized and then exert their func-
tions within cells, such as gemcitabine [306]. Recently, 
Halbrook et al. reported that macrophages in pancreatic 
cancer release a spectrum of pyrimidine species, which 
decrease gemcitabine efficacy through molecular compe-
tition at the level of drug uptake and metabolism [307]. 
Genetic or pharmacological depletion of tumor-associ-
ated macrophages in pancreatic cancer resensitized these 
tumors to gemcitabine [307]. miR-375-3p was found to 
be widely downregulated in human colorectal cancer 
cell lines and tissues and was associated with sensitivity 
to 5-fluorouracil. Mechanistically, miR-375-3p directly 
targets thymidylate synthase and is cotransported with 
5-FU [308].

The potential role of ncRNAs in metabolic remodeling 
during immune checkpoint therapy
Approaches targeting immune checkpoints such as PD1/
PDL1 and CTLA4 have been a popular treatment modal-
ity for many cancers, including bladder cancer, mela-
noma, lung cancer and breast cancer [309–312]. Because 
the regulation of ncRNAs in tumor biology is multilay-
ered and plastic, a plausible hypothesis is that ncRNA 
disturbances might determine the efficacy of ICIs. Many 

studies have shown that ncRNAs affect the expres-
sion levels of immune checkpoint genes. For example, 
miR155 increases PD-L1 expression in lymphoma cells, 
recruits CD8+ T cells through the PD-1/PD-L1 interac-
tion and inhibits CD8+ T cells [313]. In contrast, miR-
873 inhibits PD-L1 expression by directly binding to its 
3’-untranslated region [314]. Through ceRNA mecha-
nisms, lncRNAs and circRNAs also regulate checkpoint 
expression and immune evasion [150, 315]. In addition, 
ncRNAs seem to affect checkpoint trafficking. Hong et al. 
reported that circ-CPA4 promotes the secretion of PD-
L1-containing exosomes and triggers immune evasion 
[133]. Interruption of the expression of some ncRNAs 
synergistically improves the efficacy of ICI treatment 
[316]. Notably, most of these ncRNAs have been reported 
to be involved in cell metabolism, including cholesterol 
efflux [317], glycolysis [318] and oxidative phosphoryla-
tion [319].

Interestingly, ncRNAs might also mediate side effects 
of ICI treatment. Xia et al. revealed that ICIs induce exo-
somal trafficking of miR-34a-5p from macrophages to 
cause cardiac injury in vivo [320]. However, few studies 
have focused on the direct alterations of ncRNA profiles 
during ICI treatment, which might become a hot field 
in the near future. Some questions must be answered by 
conducting appropriate studies. First, do ncRNAs medi-
ate ICI resistance through metabolic rewiring? Second, 
do treatments targeting ncRNAs and metabolic repro-
gramming optimize the efficacy of ICIs, as the response 
rates to ICIs were unexpectedly low? Third, do specific 
ncRNAs exert pivotal effects on metabolic networks and 
dramatically reprogram the metabolic pattern to pro-
mote immune cell activation or inactivation in the anti-
tumor microenvironment? Enriched high-throughput 
whole transcriptional sequencing data for samples from 
individuals treated with ICIs will be valuable to answer 
these questions.

Construction of the TIMELnc manual by reviewing 
the transcriptomic data for 28 cancers in TCGA (The 
Cancer Genome Atlas)
Despite the increasing number of studies reporting the 
roles of noncoding RNAs in tumor metabolism and the 
immune microenvironment, we speculated that many 
other noncoding RNAs involved in tumor immunity and 
metabolic reprogramming have yet to be identified given 
the broad regulatory mechanisms of noncoding RNAs 
in the physiopathology of tumors. LncRNAs play pivotal 
roles in the noncoding RNA regulatory network, and 
the intratumor expression of lncRNAs at the pancancer 
level can be accessed in public databases. In this context, 
we reanalyzed the transcriptomic data for 28 distinct 
cancers in TCGA database using the protocol shown 



Page 17 of 26Zhang et al. J Hematol Oncol          (2021) 14:169 	

Fig. 3  The TIMELnc manual was constructed to identify lncRNAs that are simultaneously correlated with tumor metabolism and immune cell 
infiltration. a Flow chart. b LncRNAs that are simultaneously associated with MDSCs and various metabolic pathways in pancreatic cancer are shown 
as an example
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in Fig.  3a and constructed the TIMELnc manual. This 
manual consisted of two sections: one section lists 85 
lncRNAs associated with metabolic pathways, while the 
other section presents lncRNAs related to the infiltration 
of 28 immune cell types. Notably, we set an extremely 
low threshold (Pearson’s correlation coefficient (r) < 0.1) 
to screen potential lncRNAs of interest; hence, readers 
are recommended to set a higher threshold (e.g., r > 0.4) 
when using the manual if they want to select lncRNAs for 
further experimental validation.

We defined TIME-lncRNAs as those simultaneously 
correlated with intratumoral metabolic rewiring and 
immune cell infiltration. Readers could easily acquire 
mutually correlated metabolic pathway–lncRNA–
immune signature pairs using the “screening” function 
in EXCEL. A representative screen of TIME-lncRNAs is 
described below. We set the threshold (r > 0.4) to screen 
metabolism-associated lncRNAs and immunity-associ-
ated lncRNAs in TCGA-PAAD cohort. An intersection 
was then acquired, and the metabolism–lncRNA–immu-
nity network was established. We visualized the rep-
resentative metabolism–lncRNA–MDSC correlation 
network in Fig. 3b. As shown in this figure, the lncRNA 
PCAT19 and CARD8-AS1 were positively associated 
with both tryptophan metabolism and MDSC infiltra-
tion, suggesting that their immunosuppressive role in 
the tumor microenvironment is potentially mediated 
by promoting immunosuppressive metabolism. Refer-
ring to the existing literature, PCAT19 is an oncogenic 
lncRNA that promotes tumor progression through mul-
tiple mechanisms [321–324], similar to CARD8-AS1 
[325, 326]. In this context, their experimentally validated 
oncogenic functions paralleled their immunosuppressive 
roles we proposed using the TIMELnc manual, which 
also supported the value of applying TIMELnc in design-
ing future studies. Readers can download the TIMELnc 
manual in the Additional files 1 and 2.

Conclusions
Although more mechanisms underlying the intratumor 
interactions between metabolism and immune regula-
tion have been deciphered in recent years, challenges 
and difficulties remain to be resolved before their effec-
tive “bedside” translation. One of the most important 
obstacles to metabolism-targeted treatment in cancers 
is that the activation of some so-called oncogenic path-
ways, such as anaerobic glycolysis, is also imperative for 
maintaining the antitumor function of effector immune 
cells [5, 327–329]. Under these circumstances, methods 
that precisely target metabolic pathways in tumor cells 
have become a bottleneck to the accelerated application 
of related regimens.

Our review summarizes existing knowledge of the 
role of noncoding RNAs in the remodeling of tumor 
metabolism and the immune microenvironment. Then, 
we proposed that noncoding RNAs potentially serve 
as hinges bridging metabolic activity and immune 
responses given their extensive action mechanisms 
based on motif recognition patterns. Target potential 
hub noncoding RNAs may simultaneously regulate 
multiple immunometabolic axes and reach optimal effi-
cacy alone or in combination with immune checkpoint 
inhibitors. Hence, we also established the TIMELnc 
manual, which may help researchers screen these hub 
lncRNAs in future studies.
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