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LETTER TO THE EDITOR

Precision oncology in AML: validation 
of the prognostic value of the knowledge bank 
approach and suggestions for improvement
Marius Bill1*† , Krzysztof Mrózek1,2,9*† , Brian Giacopelli1†, Jessica Kohlschmidt1,2,3, Deedra Nicolet1,2,3, 
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Abstract 

Recently, a novel knowledge bank (KB) approach to predict outcomes of individual patients with acute myeloid 
leukemia (AML) was developed using unbiased machine learning. To validate its prognostic value, we analyzed 1612 
adults with de novo AML treated on Cancer and Leukemia Group B front‑line trials who had pretreatment clinical, 
cytogenetics, and mutation data on 81 leukemia/cancer‑associated genes available. We used receiver operating char‑
acteristic (ROC) curves and the area under the curve (AUC) to evaluate the predictive values of the KB algorithm and 
other risk classifications. The KB algorithm predicted 3‑year overall survival (OS) probability in the entire patient cohort 
(AUC KB = 0.799), and both younger (< 60 years) (AUC KB = 0.747) and older patients (AUC KB = 0.770). The KB algorithm 
predicted non‑remission death (AUC KB = 0.860) well but was less accurate in predicting relapse death (AUC KB = 0.695) 
and death in first complete remission (AUC KB = 0.603). The KB algorithm’s 3‑year OS predictive value was higher than 
that of the 2017 European LeukemiaNet (ELN) classification (AUC 2017ELN = 0.707, p < 0.001) and 2010 ELN classifica‑
tion (AUC 2010ELN = 0.721, p < 0.001) but did not differ significantly from that of the 17‑gene stemness score (AUC 

17‑gene = 0.732, p = 0.10). Analysis of additional cytogenetic and molecular markers not included in the KB algorithm 
revealed that taking into account atypical complex karyotype, infrequent recurrent balanced chromosome rearrange‑
ments and mutational status of the SAMHD1, AXL and NOTCH1 genes may improve the KB algorithm. We conclude 
that the KB algorithm has a high predictive value that is higher than those of the 2017 and 2010 ELN classifications. 
Inclusion of additional genetic features might refine the KB algorithm.
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To the Editor,
Risk-stratification schemas based on cytogenetic data 
and mutational status of selected genes, such as the 
2010 and 2017 ELN genetic-risk classifications [1, 2], 
are widely used to predict the AML patients’ outcomes 
and guide therapeutic decisions. To increase accuracy 
of outcome prediction for individual patients, Gers-
tung et al. [3] developed a novel knowledge bank (KB) 
algorithm, which combined data on pretreatment clini-
cal, cytogenetic, and gene mutation characteristics, 
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treatment received, and outcomes from 1540 German 
AML patients [3]. Testing of several machine learning 
models revealed that inclusive, multistage statistical 
models scored best in predicting OS and probabilities 
of non-remission death, relapse death, and death in 
CR1. Although a relatively small study [4] confirmed 
prognostic usefulness of KB approach, to our knowl-
edge, it has not been hitherto validated in a large, inde-
pendent patient cohort. Therefore, we applied the KB 
algorithm to 1612 adults with de novo AML and inves-
tigated whether additional cytogenetic and molecu-
lar alterations might improve its accuracy. No patient 
receiving an allogeneic stem-cell transplantation in 
CR1 was included in the analyses (Additional file 1).

We used ROC curves and the AUC to assess the abil-
ity of the KB approach to predict 3-year OS prob-
ability in comparison with the actual patient outcomes. 
The KB algorithm had a high AUC KB = 0.799 (95% CI 
0.777–0.821) for the entire patient cohort, for younger 
(< 60  years) patients AUC KB = 0.747 (95% CI 0.717–
0.776) and for older (≥ 60 years) patients AUC KB = 0.770 
(95% CI 0.716–0.824), for whom risk stratification is 
more difficult because they have generally poor prognosis 
(Fig. 1a–c).

Concerning other outcome endpoints, the KB algo-
rithm was excellent for prediction of non-remission 
death (i.e., death within 3  years after diagnosis with-
out CR1 achievement) with an AUC KB = 0.860 (95% CI 
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Fig. 1 The receiver operating characteristic (ROC) curves illustrating the ability of the knowledge bank (KB) algorithm to predict 3‑year overall 
survival rates in the a whole AML patient cohort, b younger adults with AML and c older adults with AML. The ROC curves illustrating the ability of 
the KB algorithm to predict additional outcome endpoints. d non‑remission death, e relapse death and f death in first complete remission. The ROC 
curves illustrating the abilities of the KB algorithm (blue line), 2017 European LeukemiaNet (ELN) genetic‑risk classification (gray line) and 2010 ELN 
genetic‑risk classification (magenta line) to predict 3‑year overall survival rates in the g whole cohort of patients with AML and h patients who did 
not die early. i The ROC curves showing the abilities of the KB algorithm (blue line) and the 17‑gene stemness score (magenta line) to predict 3‑year 
overall survival rates in 863 patients with RNA expression data available
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0.838–0.882). For relapse death (i.e., death of patients 
achieving CR1 who relapsed and died within first 
3  years), the predictive ability of the KB approach was 
worse (AUC KB = 0.695, 95% CI 0.662–0.727). It was even 
worse for prediction of death in CR1, with a poor AUC KB 
of 0.603 (95% CI 0.537–0.670; Fig. 1d–f).

Next, we compared the predictive values of the KB 
approach and of two well-established genetic-risk clas-
sifications, the 2010 [1, 5, 6] and 2017 ELN [2, 7, 8] clas-
sifications. Among all patients, the KB approach had the 
highest predictive value with AUC KB = 0.799 (95% CI 
0.777–0.821), followed by the 2010 ELN classification 
(AUC 2010ELN = 0.721, 95% CI 0.696–0.746) and the 2017 
ELN classification (AUC 2017ELN = 0.707, 95% CI 0.682–
0.732; Fig. 1g). Compared directly, the KB approach was 
significantly better than both the 2017 (p < 0.001) and 
2010 (p < 0.001) ELN classifications.

When we performed the aforementioned comparisons 
after excluding early death patients, the KB approach 
still outperformed both the 2010 and 2017 ELN classi-
fications, but the differences among classifications were 
smaller than in the entire patient cohort (Fig. 1h; Addi-
tional file 1).

We also compared the predictive value of the KB 
approach [3] with another AML risk classification, the 
17-gene stemness score [9, 10], which is calculated as 
the weighted sum of the normalized expression values 
of 17 genes whose expression differs between leuke-
mia stem cells and leukemic bulk blasts [9]. Among our 
863 patients with RNA expression data available, the 
predictive values of the KB approach (AUC KB = 0.764, 
95% CI 0.733–0.800) and of the 17-gene stemness score  
(AUC 17-gene = 0.732, 95% CI 0.700–0.765) did not differ 
significantly (p = 0.10; Fig. 1i).

To determine whether genetic alterations not included 
in the KB algorithm might improve its performance, 
we compared the frequencies of 44 gene mutations and 

eight cytogenetic categories (listed in Additional file  1) 
between patients alive 3  years after diagnosis who were 
correctly predicted alive and patients falsely predicted to 
be dead. Three molecular and two cytogenetic markers 
were significantly different between the patient groups 
(Table 1).

To cross-validate these findings, we compared these 
markers’ frequencies between patients who died within 
first 3  years and were correctly predicted as dead and 
those falsely predicted to be alive. The frequencies of 
SAMHD1 mutations and atypical complex karyotype 
(i.e., without 5q, 7q and 17p abnormalities) [11] were sig-
nificantly different in both comparisons. Frequencies of 
AXL and NOTCH1 mutations and of infrequent recur-
rent balanced chromosome rearrangements [12] were 
significantly different among patients alive and tended to 
be different among patients who died (Table 1).

Summarizing, we show that the KB algorithm has a 
high predictive value, higher than the 2017 and 2010 ELN 
classifications, and identify additional genetic factors that 
might improve it.
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Table 1 Predicted and observed frequencies of additional genetic markers in AML patients alive and those who were dead 3 years 
after diagnosis

*p-values for categorical variables are from Fisher’s exact test. p-values for continuous variables are from Wilcoxon rank sum test

Characteristic Patients alive Patients dead

Correctly 
predicted alive (%)
n = 300

Falsely predicted 
dead (%)
n = 222

p* Falsely predicted 
alive (%)
n = 368

Correctly predicted 
dead (%)
n = 722

p*

AXL, mutated 1 2 < 0.001 3 0 0.09

NOTCH1, mutated 3 1 < 0.001 1 3 0.18

SAMHD1, mutated 1 2 0.04 1 0 0.04

Atypical complex karyotype, present 2 5 0.005 0 3 0.01

Recurrent but infrequent balanced rear‑
rangements, present

1 2 0.04 0 2 0.17
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