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Abstract 

Chimeric antigen receptor (CAR)-modified T cells and BiTEs are both immunotherapies which redirect T cell specificity 
against a tumor-specific antigen through the use of antibody fragments. They demonstrated remarkable efficacy in 
B cell hematologic malignancies, thus paving the way for their development in solid tumors. Nonetheless, the use of 
such new drugs to treat solid tumors is not straightforward. So far, the results from early phase clinical trials are not as 
impressive as expected but many improvements are under way. In this review we present an overview of the clinical 
development of CAR-T cells and BiTEs targeting the main antigens expressed by solid tumors. We emphasize the most 
frequent hurdles encountered by either CAR-T cells or BiTEs, or both, and summarize the strategies that have been 
proposed to overcome these obstacles.
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Background
The recent years have seen the revolution of immuno-
therapy enter the clinic. This new class of agents uses 
different therapeutic approaches, most of which focus 
are based on T cells. While immune checkpoint inhibi-
tors (ICI) have been approved in a wide range of solid 
tumors, other immunotherapies such as chimeric antigen 
receptor (CAR)-T cells and T cell redirecting bispecific 
T cell Engager (BiTE) have exclusively been approved in 
hematologic malignancies and are yet poorly studied in 
solid tumors [1–3]. Immune therapies which have been 
approved in hematologic malignancies target “ideal” anti-
gens, namely CD19, CD20 and BCMA, for several rea-
sons: these antigens are present on all tumors cells; the 
normal cells which also express these antigens are dispen-
sable and can be eliminated without excessive “on-target, 
off-tumor” toxicity; these antigens are expressed on the 
surface and as such are easily accessible without the need 
for presentation through the major histocompatibility 

complex (MHC). Because of impressive results observed 
with BiTEs and CAR-T cells in hematologic malignan-
cies, many researchers, both academic and industrial, 
are trying to expand these therapies to the field of solid 
tumors. In this review, we present the specificities related 
to the development of CAR-T cells and BiTEs in solid 
tumors, illustrate the main challenges encountered in 
this development, and highlight approaches to overcome 
these obstacles.

CAR‑T cells and BiTEs: overview of their 
development in solid tumors
CAR-T cells and BiTEs’ mechanisms of action rely 
on redirecting T cell specificity against a tumor anti-
gen through the use of antibody fragments. CAR-T 
cells are genetically engineered T cells (either autolo-
gous or allogeneic) that express a chimeric antigen 
receptor (CAR). Indeed, the CAR is composed of an 
extracellular single-chain variable fragment (scFv), 
“antibody-like” antigen-binding domain, which recog-
nizes a tumor-specific antigen in a MHC independent 
manner, and intracellular signaling domains, which 
mimic T cell receptor (TCR) activation [4]. Adoptive 
cell therapies (ACT) also encompass ex vivo expansion 
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and infusion of tumor-infiltrating lymphocytes (TILs) 
[5] and genetic redirection of non-therapeutic endog-
enous lymphocytes with a TCR which recognizes a 
tumor-specific antigen presented through the MHC 
[6]. BiTEs are recombinant proteins made of two scFv 
from two different antibodies, one targeting a tumor-
specific antigen and the other targeting the effector 
T cell (mostly CD3). Thus, endogenous T cells are 
recruited at the tumor site and redirected to kill can-
cer cells in vivo [7].

Main characteristics and differences between CAR-T 
cells and BiTEs are summarized in Table  1. For both 
types of therapies, the first critical step is the selec-
tion of a tumor-specific antigen. The most frequently 
targeted antigens currently used for the development 
of these therapies in solid tumors are summarized in 
Table 2.

One of the major limitations of antigen selection in 
solid tumors is that some low-level expression is often 
found in normal tissue exposing the patient to a risk 
of “on-target, off-tumor” toxicity. This was for exam-
ple the explanation for one fatal case of early devel-
opment of HER2-targeting CAR-T cells, where HER2 
expression on normal lung epithelial cells was deemed 
responsible for cytokine release [8]. Furthermore, 
some antigens are restricted to some tumor types, 
while other have a broader spectrum across various 
tumors. Thus, solid tumors often require prior screen-
ing to ensure that the target is expressed.

Overall, both BiTEs and CAR-T cells have shown 
evidence of activity in solid tumors, but these results 
still need to be improved before entering clinical prac-
tice. Current evidence does not support one strategy 
over the other in solid tumors.

Current challenges with T cell directed therapies 
in solid tumors
A recent systematic review compared the results of 
CAR-T cells in hematologic versus solid tumors [9]. The 
pooled response rate was 71% in hematological malig-
nancies versus 29% in solid tumors. This review might 
still overestimate the efficacy because some negative tri-
als may not be reported. However, this review confirms 
that these therapies might be efficient in solid tumors, 
although responses seem to be more difficult to achieve 
compared to hematologic malignancies. The different 
challenges limiting the efficacy of T cell directed thera-
pies in solid tumors are presented in Fig. 1a.

Challenges faced by both CAR‑T cells and BiTEs
Tumor antigen specificity
As previously discussed, many tumor antigens found in 
solid tumors lack perfect specificity and are often found 
at low levels in normal tissue. An elegant demonstration 
of “on-target, off-tumor” toxicity was the development 
of CAR-T cells targeting carboxy-anhydrase-IX (CA IX) 
[10]. CA IX is expressed by many renal cell carcinomas, 
but low expression can also be found in normal tissue, 
including bile duct. In the phase 1 trial of CAR-T cells 
targeting CA IX, Lamers et  al.reported frequent high-
grade liver toxicities. They subsequently administered 
CA IX antibodies before CAR-T cell infusion which pre-
vented this toxicity. However, no response was seen, and 
one might question the consequences of this strategy on 
efficacy [11].

Similar limitations have also been seen with BiTEs such 
as Solitomab (MT110, AMG 110), a bispecific antibody 
targeting EpCAM (an antigen frequently overexpressed 
in solid tumors, but also expressed at lower levels in nor-
mal tissue, notably gastrointestinal tract). The phase 1 

Table 1  Comparison of the main characteristics of CAR-T cells and BiTEs

CAR-T cells BiTEs

Effector cell Ex vivo engineered T cells Unmanipulated T cells

Personalized Yes (at least for autologous CAR-T cells) No

Availability Delayed (weeks, for autologous CAR-T cells) Immediate (“off-the-shelf”)

Logistics  +  +  + 
(leukapheresis, transportation, genetic engineering, conservation…)

 + 

Half-life Long (weeks-months) Short

Dosing Single infusion (“one shot”) Repeat dosing

Efficacy Long-lasting (immunological memory) Suspensive

Administration Requires lymphodepleting chemotherapy prior to CAR-T infusion Requires multiple injections or 
continuous infusion over several 
months

Chronic toxicity Possible No

Cost  +  +  +   +  + 
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Fig. 1  Schematic representation of a the challenges encountered by CAR-T cells and BiTEs for their development in solid tumors and b some 
solutions proposed to overcome these challenges. Ag: antigen, Ab: antibody, ICI: immune checkpoint inhibitors
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could not determine an adequate dose, due to the occur-
rence of dose-limiting toxicities (DLTs), mostly transami-
nitis and diarrhea [12].

Some clinical trials testing CAR-T cells directed 
against CEA (CEACAM5) experienced lung toxicity 
[13]. Despite previous report suggesting no expression 
in normal lungs, the authors suggested that the CAR-T 
cells induced upregulation of CEA in the lung epithelium 
following infusion, due to cytokine production. They also 
found some expression of CEA in lung resection from 
non-cancer tissue, suggesting that the antigen is indeed 
present despite prior reports. Conversely, another prod-
uct targeting CEA (autologous T cells engineered to 
express a murine TCR targeting CEA) was associated 
with severe colitis due to expression of CEA in the large 
intestine [14].

The first patient treated with a CAR-T cell target-
ing HER2 died of lung toxicity [8]. It was thought to be 
related to a low expression of HER2 by the lung, along 
with a severe cytokine release syndrome.

Lastly, CAR-T cells target only membranes protein. 
Intracellular antigens can only be targeted through natu-
ral or artificial TCR [15].

Thus, the selection of surface antigens for solid tumors 
may be hindered by limited expression of the antigen in 
normal tissue but sufficient to induce toxicity.

Tumor antigen heterogeneity
One of the most frequent escape mechanisms to CAR-T 
therapy in hematologic tumors is the loss of the target 
antigen [16]. Similarly, in patients treated with EGFRvIII-
targeting CAR-T cells, 7 patients underwent surgery fol-
lowing treatment, due to clinical deterioration [17]. In 5 
patients, decrease of EGFRvIII expression was confirmed; 
and one subject was found to have heterogeneous expres-
sion of EGFRvIII between different regions of the tumor. 
This analysis clearly demonstrated that solid tumors also 
frequently escape under the pressure of CAR-T cells, and 
that heterogeneous expression of the target might limit 
the efficacy of the product. A similar down-regulation 
of the target has also been reported in one patient who 
underwent surgery after treatment with IL13Ra2-target-
ing CAR-T cells for glioblastoma [18].

Similar mechanisms are likely to occur with BiTEs, and 
has been documented in hematologic malignancies with 
blinatumomab, a CD19/CD3 bispecific antibody [19].

Local immune suppression
In solid tumors, tumor infiltrating T cells may be 
rendered dysfunctional due to immunosuppressive 
mechanisms in the tumor microenvironment. These 
mechanisms include extrinsic suppression by regu-
latory cell populations, inhibition by ligands such as 

programmed death ligand-1 (PD-L1), metabolic dysregu-
lation by enzymes such as indoleamine-2,3-dioxygenase, 
and the action of soluble inhibitory factors such as trans-
forming growth factor-beta (reviewed in [20]). In pre-
clinical models, CAR-T cells were found to have impaired 
functionality after reaching the tumor microenvironment 
[21]. In patients with glioblastoma treated with CAR-T 
cells targeting EGFRvIII, in situ evaluation of the tumor 
environment demonstrated increased expression of 
inhibitory molecules and infiltration by regulatory T cells 
[17].

Challenges faced only by CAR‑T cells or BiTEs
CAR‑T cell manufacturing
Ex vivo engineering of CAR-T cells is currently complex 
from a logistical point of view. Viral vectors (either lenti- 
or retroviruses) are used for the manufacturing [22], in 
a process that is time-consuming and requires special-
ized biosafety level 2 facilities and trained staff resources. 
These manufacturing issues hinder their availability 
in clinical routine, at least for autologous CAR-T cells 
(Table  1). Production failures of CAR-T cells have been 
observed in a small percentage of patients with hema-
tologic malignancies. The possibility to generate and 
expand CAR-T cells from patients with solid tumors who 
have been previously exposed to chemotherapy, and the 
rate of production failure are yet undetermined due to 
limited experience in these patients.

Exposure to the treatment
Exposure to the treatment represent different challenges 
for CAR-T cells and BiTEs.

CAR-T cells are injected after a lymphodepleting 
chemotherapy to facilitate their expansion and persis-
tence in  vivo. In hematologic malignancies, this expan-
sion and persistence have been shown to correlate with 
efficacy. This might be related to the fact that anti-
CD19 CAR-T cells directly encountered their target in 
the blood and could thus be immediately activated. In 
solid tumors, the expansion of CAR-T cells seems to be 
reduced. Expansion of anti-CEA CAR-T cells was shown 
to be limited [13]. Anti-HER2 CAR-T cells tested in the 
treatment of sarcomas persisted poorly with only low-
levels detected at 6 weeks, and, at 3 months, only 4 out 
of 12 patients had still detectable CAR-T cells [23]. Short 
persistence was also an issue in 2 trials using CAR-T cells 
targeting TAG72 for the treatment of colorectal metas-
tases [24]. CAR-T cells could only be detected during a 
short period (≤ 14  weeks). A similar observation was 
made with CAR-T cells targeting GD2 for the treatment 
of neuroblastoma [25]. There was no persistence even 
at higher doses and no CAR-T cells could be detected 
beyond Day45.
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Low exposure to BiTEs was mainly due to the short 
half-life of many constructs (scFv), including first-gener-
ation BiTEs (half-life = 2 to 3 h for blinatumomab). This 
short half-life required continuous infusion. Discontinu-
ous administration of a BiTE targeting CEA has been 
associated with low exposure, which may explain the lack 
of clinical activity in the phase I trial [26]. The admin-
istration was also associated with the development of 
anti-drug antibodies, which is also another cause of low 
exposure to drugs [27].

Moreover, T cell dysfunction is a hallmark of many 
cancer [28] and may negatively impact the results of both 
T cell-directed therapies. Albeit lack of clinical evidence, 
this should be an area of vigilance.

Trafficking to the tumors
In a phase I study of folate-receptor targeting cells, no 
specific trafficking to the tumors was seen, likely explain-
ing the lack of clinical activity [29]. Another important 
finding of the CAR-T cells targeting TAG72 trials was 
that even if the cells were able to traffic to the tumors, 
they seemed to be excluded from the center of the tumor 
mass [24]. Trafficking through the blood–brain barrier 
might also be challenging although responses have been 
seen in hematologic malignancies with central nervous 
system (CNS) involvement [30].

While BiTEs do not actively traffic to the tumor, their 
activity is based on trafficking of endogenous T cells that 
can encounter similar difficulties. Their ability to pen-
etrate in a tumor (for example through the blood–brain 
barrier, or in a hypovascular solid tumor) should also be 
confirmed.

Opportunities to overcome the challenges
The different opportunities to overcome the challenges 
for T cell-directed therapies efficacy in solid tumors are 
presented in Fig. 1b.

Improving antigen targeting
Selection of antigens with limited expression on normal 
tissue
Glypican-3 is a protein expressed in hepatocellular car-
cinoma with very limited expression on normal cells, 
and different trials have shown the feasibility and lack of 
toxicity of CAR-T cells targeting Glypican-3 [31]. A BiTE 
targeting Glypican-3 has also been developed [32]. Simi-
larly, PSMA seems a promising target for T cell-directed 
therapies. In addition to a CAR-T cell trial [33], posi-
tive results of the BiTE pasotuxizumab were presented, 
showing decrease of PSA by more than 50% in 3 patients 
out of 15 treated, with many other patients experiencing 
lower decrease [34].

Discovery of novel antigens
Proteomics approaches have been used to discover new 
tumor-associated antigens with better specificity [35]. 
The use of antigens for which circulating T cells will have 
limited access in normal cells may be the source of less 
toxic therapies. CAR-T cell targeting GUCY2C, a glyco-
protein expressed in normal tissue only on the luminal 
membranes but homogeneously on cancer cells, have 
been engineered to treat colorectal cancers [36]. Clau-
din 18.2 is a component of the tight junction, present 
only in gastric normal mucosa, and expressed in various 
solid tumors. Targeting of Claudin 18.2 by CAR-T cells 
has shown promising results [37], and a BiTE compound, 
AMG 910, has been developed and has now entered clin-
ical evaluation [38, 39].

Finally, an interesting approach was to use chlorotoxin, 
a peptide known to bind specifically to glioblastoma cells, 
even if the binding site is not well defined. CAR-T cells 
targeting chlorotoxin have been developed in a preclini-
cal model to treat glioblastoma [40].

Transient expression and safety switch
To mitigate toxicity, T cells with transient expression of 
the CAR have been designed. This would limit the off-
target toxicity, but with the caveat of requiring repeat 
infusion of the cells. This approach was proved feasible in 
a trial of CAR-T cells targeting mesothelin for the treat-
ment of pancreatic adenocarcinoma, with no toxicity 
reported, and stabilization in 2 out of 6 patients treated 
[41]. Another mechanism is the use of transcriptional 
activation in response to recognition of user-specified 
antigens, using synthetic Notch (synNotch) receptors [42, 
43]. This allows the activation of the CAR-T cells only in 
the context of the tumor. Other approaches include the 
inclusion in the construct of a safety switch which ena-
bles removal of CAR-T cells by inducing their apoptosis 
in case they become too toxic [44–46].

Targeting intracellular antigens through TCR‑directed 
therapies
Another important avenue is the use of TCR-directed 
therapies. One major advantage is to expand potential 
targeting to intracellular molecules, some of which can 
be found mutated in solid tumors. One caveat of the 
approach being that this kind of therapies will depend 
on MHC presentation and will thus be HLA-compatible. 
MHC expression downregulation by the tumor cells is 
a frequent immune escape mechanism and has also to 
be considered. Approaches similar to CAR-T cells have 
been used, in which a modified TCR is expressed, target-
ing the antigen of interest [47]. These types of construct 
has already been successful in targeting NY-ESO-1 for 
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the treatment of multiple myeloma and synovial sarcoma 
[6, 48]. Frequent responses were seen, including in syno-
vial sarcoma, with a similar product targeting MAGE-A4 
[49]. Two different products targeting alpha-feto-protein, 
an antigen frequently expressed in hepatocellular carci-
noma, have also been associated with responses [50, 51].

Similar strategies are pursed with BiTEs. The immune-
mobilizing monoclonal TCRs against cancer (ImmTACs) 
target TCR-presenting antigens, and recruits effector 
cells [52]. A proof of concept of this approach was given 
with tebentafusp, a TCR/Anti-CD3 bispecific fusion pro-
tein targeting gp100, which was able to induce responses 
in melanoma patients, including difficult to treat uveal 
melanoma [53].

Using tumor‑infiltrating lymphocytes
Another avenue for ACT in solid tumors consists in the 
use of endogenous T cells. TILs can be harvested from 
the tumor, then expanded in  vitro, and finally infused 
back into the patients. This way, efficacy might be found 
despite ignoring the actual target of the infused T cells. 
Positive results were shown in several types of tumors 
[54–59].

Thus, many new options are used to develop alternative 
ways to target tumor cells.

Combinational approaches to tackle tumor heterogeneity
Tumor heterogeneity could be bypassed by eliciting 
immunogenicity towards a broader range of antigens. 
This is the concept of epitope spreading, where the 
CAR-T cells express co-stimulatory molecules such as 
CD40L or 4-1BBL to stimulate endogenous immune 
responses [60, 61].

Antigen loss and tumor heterogeneity were shown to 
be an important escape mechanism to T cell-directed 
therapies. Targeting different tumor antigens is a theo-
retical approach to tackle tumor heterogeneity. Bicis-
tronics CAR-T cells targeting both CD19 and CD22 are 
being developed in the clinic [62, 63]. The same group 
described the first tandem CAR-T cells targeting HER2 
and IL13Ra2, then trivalent CAR-T cells targeting HER2, 
IL13Rα2 and ephrin-A2, and showed better results in 
preclinical models of glioblastoma compared to monova-
lent CAR-T cells [64, 65]. Another similar approach is to 
treat a patient with different CAR-T cells targeting differ-
ent antigens [66].

An elegant approach has been used to overcome 
EGFRvIII antigen loss, with EGFRvIII-targeting CAR-T 
cells which secrete a BiTE targeting wild-type EGFR [67]. 
With this product, CAR-T cells are directed to the tumor 
due to the specificity of the EGFRvIII mutation, secrete 
a BiTE that can target tumor cells expressing normal 
EGFR through tumor heterogeneity or antigen loss. The 

expression by the CAR-T cells avoid systemic exposure to 
the EGFR BiTE which would have resulted in “on-target, 
off-tumor” toxicity. This is also a fine example of how 
CAR-T cells and BiTEs can be combined.

Improving exposure, persistence and activity 
of the products
Extending BiTEs half‑life
New half-life extended BiTEs have been developed to 
improve the exposure of BiTEs, and to avoid continu-
ous infusion [68]. Initial BiTEs lack the Fc portion, and 
thus were not enable to recycle through neonatal crystal-
lizable fragment receptor-mediated (FcRn). Fusion with 
the Fc domain enables engineering of new BiTEs with 
extended half-life and discontinued administration.

Improving BiTEs activity
A further development is the use of trispecific antibodies 
(TriTE), targeting one antigen but using different T-cell 
engagement molecules. One example is the anti-mye-
loma compound SAR442257 which targets CD38, and 
recruits T cells via CD3 and CD28 [69, 70]. Efforts are 
currently conducted to develop such molecules for the 
treatment of solid tumors, but none have reached clinical 
stage yet [71].

Improving persistence and tackling exhaustion of CAR‑T cells
Persistence and activity of CAR-T cells were improved 
in second- and third-generation CAR-T cells, where the 
products also contain additional costimulatory domains 
(4-1BB, CD28, OX40 and/or ICOS) [2, 72]. It is also 
important to use an adequate lymphodepleting regi-
men, which has been shown to improve results of HER2-
targeting CAR-T cells for the treatment of sarcoma [73, 
74]. Moreover, it was shown that different types of T cells 
might have different killing potency, the naïve and cen-
tral memory T cells having higher activity than effector 
memory T cells, suggesting that the selection of a correct 
proportion of the different cells might improve the over-
all results [75]. This process might be automated [76]. A 
deep analysis of a responding patient showed that a single 
clone, in which the CAR was inserted randomly within 
the TET2 gene, was responsible for the response [77]. 
The disruption of TET2 induced a central memory phe-
notype, which was probably responsible for its increased 
activity. While modification of TET2 might be too risky, 
modifications of other parameters related to exhaustion, 
such as NR4a or Jun might augment CAR-T activity [78, 
79].

Improving trafficking
The delivery of the drug to the tumor site might be 
improved by different ways. A platform to enable 
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bispecific biologics to cross the blood–brain barrier has 
been developed [80].

For CAR-T cells, multiple trials investigated local 
injection. This could be done in an anatomical cav-
ity (pleura, peritoneum), via a device placed surgically 
(for CNS tumors) or via intra-arterial delivery (such 
as hepatic artery catheterization), or by direct intra-
tumoral injection. The described response of a glioblas-
toma to IL13Rα2-targeted CAR-T was achieved after 
intracranial delivery [81]. Intra-tumoral injection of 
cMET targeting CAR-T cells was shown to be feasible 
in metastatic breast cancer [82]. Feasibility of intra-
pleural injection of CAR-T cells targeting mesothelin 
was also demonstrated [83]. Intra-arterial hepatic infu-
sion of CEA-targeting CAR-T cell was done in different 
clinical trials, with one patient showing response [84, 
85].

Another strategy to improve trafficking is to make the 
CAR-T cells express chemokine receptors that can redi-
rect the CAR-T cells into the tumors. CCR2-expressing 
CAR-T cells targeting GD2 were shown to have bet-
ter activity in  vivo [86]. There is however controversy 
about the best chemokine receptor to use for improved 
trafficking [87].

Reversing the immunosuppressive microenvironment
Combination with immune checkpoint inhibitors
With the advent of ICI, their use in combination with 
CAR-T cells and BiTEs become an evident avenue of 
research. First evidence of potential additive effects 
was shown in a phase 1 trial of a BiTE targeting CEA 
in patients with metastatic colorectal cancer [88]. The 
trial had 2 cohorts, with or without the addition of the 
anti-PD-L1 antibody atezolizumab. The response rates 
without and with atezolizumab were 6% vs 18% (only 
1 patient was MSI, all other responders were MSS) 
respectively, while the disease control rates were 45% 
vs 82%, respectively. Combination trials of CAR-T 
cells and ICI have also been presented, with a sugges-
tion that ICI improved responses in patients treated 
with intra-pleural infusion of mesothelin-targeting 
CAR-T cells [83]. Conversely, a small phase 1 trial of 
combinations based on GD2 CAR-T cells showed that 
the lymphodepletion regimen had huge impact, but 
the addition of the anti-PD-1 antibody pembrolizumab 
did not clearly improve the results (but the number of 
patients was very limited and the follow-up was short) 
[89]. Several clinical trials are ongoing using such 
combination. A derived approach is to develop BiTE 
targeting PD-L1 expressing cells (so called checkpoint-
inhibitory T cell engagers (CiTEs)) that will target the 
cells promoting immunosuppression [90].

Expression of cytokines
Another approach to tackle the immunosuppressive 
microenvironment is to make the CAR-T cells secrete 
stimulatory cytokines. In a preclinical model of pancre-
atic cancer, IL-18 expressing CAR-T cells targeting CEA 
improved results over conventional CAR-T cells [91].

Finally, some authors proposed the combination of 
local treatment with CAR-T cell administration. For 
example, radiation was suggested to have the potential to 
improve Immuno-Oncology results, and combination of 
intra-arterial hepatic infusion of CEA-targeting CAR-T 
cells with selective internal radiation therapy was dem-
onstrated feasible and associated with responses in liver 
metastases [92].

Improving CAR‑T cell manufacturing
Autologous CAR-T cells are patient-derived personalized 
products, thus associated with the absence of allogeneic 
rejection, which enables long-term persistence. Nonethe-
less, this bespoke manufacturing process presents many 
disadvantages, such as a delay in the availability of the 
treatment (2 to 4 weeks), a complex manufacturing pro-
cedure and an increase cost. Current CAR-T cell engi-
neering mainly uses viral vectors, that should be handled 
in specialized facilities. Alternative insertion strategies 
are under development, such as sleeping beauty or piggy-
bac transposons, that could facilitate the manufacturing 
processes [22]. Another strategy to potentially address 
these issues is the development of universal CAR-T 
cells [93]. The principle is to use allogeneic T cells from 
healthy donors in order to produce “off-the-shelf” alloge-
neic CAR-T cells. This approach has the potential to sim-
plify and scale-up the manufacturing processes, allowing 
for an immediate delivery of the treatment at reduced 
costs [94]. In order to produce allogeneic CAR-T cells 
with no potential for graft-versus-host disease (GVHD), 
the endogenous TCR should be disrupted through gene 
editing (zinc finger nuclease, transcription activator-like 
effector nuclease (TALEN) or CRISPR/Cas9 methods) 
[22, 95]. However, allogeneic CAR-T cells may be rapidly 
eliminated by the host immune system, thus limiting their 
persistence and clinical efficacy. Application of TALEN-
based universal CAR-T cells targeting CD19 (UCART19) 
was recently reported for 21 patients with relapsed/
refractory B cell acute lymphoblastic leukemia [96]. 
Despite high rates of complete remission among patients 
who received the most immunosuppressive conditioning 
regimen, a short duration of response and limited CAR-T 
persistence were observed, and a majority of patients had 
to undergo allogeneic stem cell transplantation. These 
results emphasize the need to decrease allogeneic rejec-
tion of universal CAR-cells. Regarding solid tumors, a 
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preclinical model of universal EGFRvIII CAR-T cells has 
been developed [97]. Phase 1 clinical trials with universal 
CAR-T cells targeting mesothelin (NCT03545815) and 
NKG2D (NCT03692429) are ongoing.

Conclusion and perspectives
CAR-T cells and BiTEs both represent promising 
approaches of immunotherapy and are still at the begin-
ning of their clinical development in solid tumors. The 
last generations of such T cell-directed therapies have the 
potential to overcome the challenges they are facing and 
have shown promising preclinical results. None can now 
predict how CAR-T cells and/or BiTEs will be used in 
the future treatment strategies and large clinical studies 
are eagerly awaited. At this point, it is difficult to spec-
ulate which cancers will benefit most from these thera-
pies since clinical results in solid tumors are limited. One 
may expect that tumors which are more likely to benefit 
from CAR-T cells and BiTEs are: i) tumors which do not 
respond to checkpoint inhibitors because they lack pre-
existing antitumor T cells (“cold tumors”), ii) tumors with 
a targetable surface antigen (either a surface neoantigen 
or an overexpressed antigen which can be targeted with 
limited organ toxicity) which is expressed homogene-
ously by all tumor cells (to avoid immune escape), and iii) 
tumors with a permissive and poorly immunosuppressive 
microenvironment.

To date, the development of CAR-T cells and BiTEs has 
focused on chemo-refractory/relapsed patients. How-
ever, these immunotherapies may be more efficient if 
given earlier in the therapeutic strategy, as suggested in 
lymphoma patients [98]. In the future, these immuno-
therapies could also be combined with standard chemo-
therapy and/or targeted therapies: these treatments could 
reduce the tumor burden and/or modulate the immune 
response [99, 100].

Finally, the question may be not to compare CARs ver-
sus BiTEs, or how these innovative immunotherapies will 
compare to standard chemotherapy, but whether how to 
combine all therapeutic modalities.
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