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Abstract 

Despite considerable progress has been achieved in the treatment of acute myeloid leukemia over the past decades, 
relapse remains a major problem. Novel therapeutic options aimed at attaining minimal residual disease-negative 
complete remission are expected to reduce the incidence of relapse and prolong survival. Natural killer cell-based 
immunotherapy is put forward as an option to tackle the unmet clinical needs. There have been an increasing num-
ber of therapeutic dimensions ranging from adoptive NK cell transfer, chimeric antigen receptor-modified NK cells, 
antibodies, cytokines to immunomodulatory drugs. In this review, we will summarize different forms of NK cell-based 
immunotherapy for AML based on preclinical investigations and clinical trials.
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Background
Acute myeloid leukemia (AML) is a clinically and geneti-
cally heterogeneous disease with unsatisfactory out-
comes. Over the last few years, considerable progress has 
been achieved in the treatment of AML with the devel-
opment and implementation of new drugs [1, 2]. How-
ever, allogeneic hematopoietic cell transplantation (HCT) 
has been recognized as the only way to cure AML so far 
and relapse remains a major problem. Novel therapeu-
tic options aimed at attaining minimal residual disease 
(MRD)-negative complete remission (CR) are expected 
to reduce the incidence of relapse and prolong survival. 
Thus, immunotherapy becomes an option to tackle 
unmet clinical needs in AML [3, 4].

Immunotherapy has been recognized as an incredibly 
promising therapeutic strategy for numerous cancers 
[5]. The adoption of this treatment modality is based on 
mechanisms of immune surveillance/response and can-
cer escape [6]. Under physiological conditions, immune 

cells and substances in the immune system play pivotal 
roles in detecting and destroying pathogen-infected or 
neoplastically transformed cells. But they become less 
potent in cancer elimination when malignant cells dis-
play the loss of antigenicity and/or immunogenicity and 
are surrounded by an immunosuppressive microenvi-
ronment [6]. Thus, immunotherapy with strategies of 
reboosting patients’ own immune system or initiating 
new immune response to fight cancers has been demon-
strated with the capacity of producing sustainable clinical 
benefits against both solid and hematological malignan-
cies [7–9].

Natural killer (NK) cell-based immunotherapy rep-
resents one of the novel immunotherapeutic strategies 
recently, unleashing immune suppression of NK cells 
to attack various cancers [10–12]. With the progressive 
elucidation of NK cell immunobiology and the develop-
ment of manipulative techniques, the field of NK cell-
based immunotherapy in hematological malignancies 
has been expanding and accelerating over the past years, 
including adoptive NK cell transfer [13–16], chimeric 
antigen receptor (CAR)-modified NK cells [17–22], anti-
bodies [23–25], cytokines [26, 27] and drug treatment 
[28–31]. Despite remarkable progress has been made, 
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the application in AML is still at the initial stage. Firstly, 
clinical trials with results showing the efficacy and safety 
of these therapeutic approaches are limited, most of 
which are currently still in progress. Secondly, preclinical 
studies of NK cell-based immunotherapy are constantly 
emerging, in the aspect of new methodologies to utilize 
NK cells and strategies to enhance the response [32, 33].

Herein, in this review, we provide an overview of NK 
cell biology, the pathology of NK cells in AML and the 
recent advances in NK cell-based immunotherapy for 
AML based on preclinical investigations and clinical 
trials.

Biology of NK cells
NK cells belong to innate lymphoid cells that contribute 
to immune system’s first-line defense against infections 
and malignant diseases [34]. They can be categorized 
into two subsets on the basis of surface expression lev-
els of CD56 and CD16, as measured by the intensity of 
immunofluorescence. The canonical  CD56dimCD16+ 
NK cell subset comprises around 90% of the total popu-
lation in peripheral blood and exerts strong cytolytic 
activity through releasing cytotoxic granules containing 
perforin and granzymes. The rest 10% of NK cell popu-
lation, known as  CD56brightCD16−, is a potent producer 
of immunoregulatory cytokines including interferon 

(IFN)-γ, tumor necrosis factor (TNF)-α/β and interleukin 
(IL)-10 [35].

The cytotoxic function of NK cells is finely regulated 
by a complex array of surface inhibitory receptors [e.g., 
inhibitory killer immunoglobulin-like receptors (KIRs), 
leukocyte immunoglobulin-like receptors (LIRs) and 
CD94/natural killer group 2A (NKG2A)] and activating 
receptors [e.g., activating KIRs, CD94/NKG2C, NKG2D 
and natural cytotoxicity receptors (NCRs)] that deliver 
suppressive and stimulatory signals, respectively (Fig. 1) 
[36, 37]. In line with the diversity of major histocompati-
bility complex (MHC) molecules in populations, KIRs are 
genetically determined and display a high level of poly-
morphism. There are two main groups of KIR haplotypes, 
termed as “A” and “B”, as classified by the distinct gene 
content. KIR A haplotypes mainly contain inhibitory 
KIR genes and only one activating KIR gene KIR2DS4, 
whereas KIR B haplotypes carry, besides inhibitory KIR 
genes, various numbers and combinations of activating 
KIR genes [38, 39]. The considerable differences of both 
allelic polymorphism and KIR gene content account for 
the high variability of KIR gene family among different 
individuals.

NK cell-mediated cytotoxicity is based on the notion 
of “missing self-recognition” and “induced self-recogni-
tion” [40]. During NK cell development, inhibitory KIR 
receptors encounter with MHC class I (MHC-I) ligands 
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Fig. 1 Mechanisms of immune escape from NK cell-mediated recognition in AML. Dysfunctional NK cells exhibit an imbalanced receptor 
expression with the overexpression of inhibitory receptors and the underexpression of activating receptors. AML cells display a defective expression 
of cognate ligands for NK cell activating and inhibitory receptors. The tumor microenvironment consisting of Treg cells and MDSCs can interfere 
with the function of NK cells through the secreting of cytokines. MDSC myeloid-derived suppressor cell, NK natural killer cell; Treg regulatory T cell
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on their own hematopoietic cells, leading to the acquisi-
tion of functional competence and self-tolerance [41, 42]. 
Both the reduction/absence of MHC-I molecules and the 
upregulation/de novo expression of ligands for activat-
ing receptors on tumor cells can elicit NK cell immune 
response against “non-self,” through releasing cytotoxic 
granules, secreting cytokines and inducing death recep-
tor-dependent apoptosis [36, 43]. Apart from the direct 
receptor-based recognition between NK cells and tumor 
cells that potentiates the anti-tumor function of NK cells, 
they can kill tumor cells by antibody-dependent cell-
mediated cytotoxicity (ADCC) as well, which is mediated 
by the IgG Fc receptor CD16 [44].

In addition, the activation of NK cells can be induced 
by other immune cells such as macrophages and den-
dritic cells (DCs) as well, either through direct cell-to-cell 
contacts or the release of cytokines such as IL-12, IL-15, 
IL-18 and IFN-ɑ/β, promoting NK cell cytotoxicity and 
IFN-γ production [45, 46].

Dysfunction of NK cell‑mediated anti‑leukemia 
responses in patients with AML
In AML, leukemia cells can escape from NK cell-medi-
ated recognition as a consequence of NK cell abnor-
malities, immunosuppressive properties of AML cells or 
interactions between NK cells and other immune cells in 
favor of immune escape (Fig. 1) [47].

Since the function of NK cells is tightly regulated by 
their sophisticated repertoire of inhibitory and activating 
receptors, imbalanced receptor expressions can lead to 
NK cell dysfunction. Studies evaluating the expression of 
these molecular receptors on NK cells showed the under-
expression of activating receptors such as NKG2D, NCRs 
and DNAX accessory molecule-1 (DNAM-1) as well as 
overexpression of inhibitory receptors such as KIR2DL2/
L3 and NKG2A in AML patients as compared with 
healthy controls [48–52]. Direct contact between AML 
cells and NK cells, high expression of CD200 on AML 
cells, soluble NKG2D ligands (NKG2DLs) in the sera and 
suppressive tumor microenvironment are factors that 
lead to defective receptor expression changes [49, 53, 54].

In addition to NK cell abnormalities, leukemia cells 
themselves displaying a defective expression of ligands 
for NK cell activating/inhibitory receptors give rise to the 
attenuation of NK cell-mediated anti-leukemia responses 
as well. For instance, the low expression of NKG2DLs 
[MHC class I chain-related proteins (MIC) and UL16-
binding proteins (ULBP)], NCR ligands and DNAM-1 
ligands (CD112 and CD155) on AML cells can render 
them resistant to NK cell killing [55, 56]. The deficient 
NKG2DL expression on AML cells may be caused by 
aberrant epigenetic mechanisms or the release of solu-
ble forms from the cell surface by metalloproteinases [57, 

58]. Whereas, upregulation of inhibitory immune check-
point molecules programmed cell death ligand-1 (PD-L1) 
and PD-L2 is observed in AML blasts [59].

The tumor microenvironment, which possesses immu-
nosuppressive cells, such as regulatory T cells (Tregs), 
myeloid-derived suppressor cells (MDSCs), tumor-asso-
ciated macrophages (TAMs) and tolerogenic DCs as 
well as immunosuppressive factors such as transforming 
growth factor (TGF)-β, IL-10 and indoleamine 2,3 dioxy-
genase (IDO), is another major limitation to the effective-
ness of NK cells in AML [60, 61].

It is worth noting that expressions of NK receptors 
and their cognate ligands on leukemic cells as well as 
the signals deriving from tumor microenvironment are 
deemed to impact clinical outcomes and relapse in AML 
patients [47]. These NK cell function-related adverse 
prognostic parameters including hypomaturation NK 
cell profile  (CD56bright and  KIR−/CD57−), increased 
NKG2A and decreased NCR on NK cells, increased 
CD200 and decreased ULBP1 on AML cells [49, 51, 53, 
62–66]. Moreover, persistence of dysfunctional NK cells 
was found even in patients who achieve first CR after 
intensive chemotherapy [67]. Thus, the presence of dys-
functional NK cells in AML and their prognostic rele-
vance provide the rationale for the use of NK cell-based 
immunotherapy to restore impaired NK cell cytotoxicity 
against AML.

NK cell‑based immunotherapy in AML
Adoptive NK cell transfer
The strategy of adoptive NK cell transfer was put for-
ward based on beneficial effects of NK cell alloreactiv-
ity in the setting of allogeneic HCT (allo-HCT). NK cell 
alloreactivity is triggered by the mismatch between KIRs 
on donor NK cells and human leukocyte antigen (HLA) 
class I molecules on recipient cells, the effectiveness 
of which in leukemia was initially described by Perugia 
group [68, 69]. Alloreactions mediated by donor NK cells 
can kill leukemia through graft-versus-leukemia (GvL) 
effect, promote engraftment through ablation of recipi-
ent T cells and protect against graft-versus-host disease 
(GvHD) through depleting recipient antigen-present-
ing cells and producing IL-10 [70, 71]. Transplantation 
from NK alloreactive donors is considered as a strong 
independent factor predicting survival in allo-HCT 
recipients, especially from donors with more KIR B gene-
content motifs [72–75]. Besides, rapid NK cell recovery 
post-HCT is associated with improved outcomes, while 
impaired NK function may be the cause of relapse [76–
79]. Taken together, given the basic notions of NK cell 
alloreactivity and the prognostic effects of functional 
NK cell counts, adoptive transfer of NK cells for the 
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management of AML has been explored in clinical appli-
cations (Fig. 2a).

Despite HCT has yielded a high rate of curability for 
AML, it is associated with transplant-related morbidity 
and mortality. Besides, not every patient is a candidate 
for HCT and relapse after HCT remains the most fre-
quent cause of treatment failure. Therefore, adoptive NK 
cell transfer seems to be an ideal option as adjuvant and 
alternative treatment, and it has already been performed 
in the context of HCT as well as in the non-HCT setting.

Adoptive NK cell transfer in the context of HCT
Donor-derived NK cells are most commonly obtained 
from donor leukapheresis products using a magnetic 
cell sorting (MACS) system by CD3 depletion with 
or without CD56 enrichment [80–84]. They can also 
be generated by ex  vivo differentiation from donor 
CD34 + hematopoietic progenitor cells [85]. NK cell 
transfer after HLA-haploidentical HCT is well tolerated 

and consolidates engraftment [80, 86]. Remarkably, a 
phase I study investigating the clinical effect of IL-15 
plus IL-21 stimulated CD3-depleted NK cells given 2 and 
3 weeks after HCT demonstrated that leukemia progres-
sion reduced compared with historical patients who have 
undergone HCT after the same conditioning regimen 
without NK cell infusion (hazard ratio 0.527, p = 0.042) 
[81]. Another phase I study showed that multiple doses of 
NK cells (days—2, 7 and 28 post-HCT) expanded ex vivo 
with K562-mbIL21-41BBL feeder cells, which were 
genetically modified K562 leukemia cell line express-
ing membrane-bound IL-21 and the 41BB ligand, could 
be effective in controlling leukemia relapse as well [82]. 
However, another study showed that compared with NK 
cell transfer at weeks 2 and 3 post-HCT, additional early 
transfer (days 6 and 9 post-HCT) was associated with 
significant cytokine release syndrome (CRS)-related tox-
icity and was not associated with less leukemia progres-
sion in patients with relapsed/refractory (R/R) AML [83]. 
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Notably, high expression of NKp30 on donor NK cells 
was an independent predictor of high CR and low leuke-
mia progression [83].

In addition, NK cells are also safe and feasible to be 
infused prior to HCT. A phase I study infusing escalat-
ing doses of donor-derived NK cells as a component 
of the preparative regimen for allo-HCT (day—8 pre-
HCT) demonstrated that relapse-free survival was highly 
associated with the number of NK cells delivered [87]. 
Besides, NK cell transfer can also be applied as a bridge 
to HCT in R/R AML, which is useful in the reduction in 
disease burden to make patients eligible to proceed to 
HCT [84].

Adoptive NK cell transfer in the non‑HCT setting
Since the limitations of HCT make it not applicable to 
all patients, it is conceivable to propel the development 
of adoptive NK cell transfer outside the transplantation 
setting.

Miller et al. was the first to conduct NK cell transfer in 
adult AML patients without prior HCT, reporting that 
haploidentical NK cell transfer with the intense high-dose 
cyclophosphamide and fludarabine immune suppression 
regimen, CD3 depletion and IL-2 administration both 
ex  vivo and in  vivo was a safe treatment with success-
ful NK cell proliferation and activation in R/R AML (CR 
5/19) [88]. Over the years, modifications to this approach 
have led to remarkable progress, ranging from donor 
selection according to KIR-ligand mismatch to improve 
outcomes, NK cell purification using CD3 depletion fol-
lowed by CD56 enrichment to avoid side effects caused 
by residual cells, to milder conditioning regimens and 
lower dose of IL-2 in vivo to make it a well-tolerated regi-
men. Adoptive NK cell transfer is a feasible strategy for 
AML not only to induce remission, but also to maintain 
CR [89–93]. The combination of consolidation therapies 
of NK cell transfer and chemotherapy contributed to the 
further remission with decreased MRD and the reduc-
tion in long-term recurrence in AML patients at CR [94]. 
Though a phase II trial reported that NK cell transfer as 
a consolidation therapy for pediatric AML in first CR 
did not decrease relapse and increase overall survival 
(OS), the result of another just concluded phase II trial 
(NCT02763475) with a higher number of NK cell admin-
istration is worth the wait [95, 96].

Since the higher number of donor alloreactive NK cells 
correlates with better outcomes, ex vivo generation and 
in  vivo expansion of an adequate number of donor NK 
cells with robust anti-leukemia potential are highly war-
ranted [92]. In terms of ex  vivo manipulating methods, 
Miller et  al. demonstrated the superiority of CD3 and 
CD19 depletion method compared with CD3 depletion 
alone and CD3 depletion followed by CD56 enrichment 

methods, with no cause of negative effects by co-infused 
monocytes [97]. NK cell expansion and functional activ-
ity can be significantly enhanced by co-culturing donor’s 
peripheral blood mononuclear cells (PBMC) with 
cytokines (mainly IL-2 and IL-15) or feeder cells bear-
ing membrane-bound cytokines (such as K562-mbIL15-
41BBL or K562-mbIL21-41BBL) [94, 98–100]. The 
feeder-free approach of using plasma membrane particles 
derived from K562-mbIL15-41BBL feeder cells resulted 
in great expansion of NK cells as well and avoided tumor-
derived feeder cells being injected into patients [101]. 
Two phase I studies demonstrated NK cells primed with 
the lysate of CTV-1 leukemia cell line could prolong CR 
in high-risk AML patients [102, 103]. Despite IL-2 has 
the effect of stimulating NK cells, it stimulates host Treg 
cells in the meanwhile, which can inhibit NK cell pro-
liferation and expansion in  vivo. IL-15 was proposed as 
an alternative to IL-2 without such drawback [104, 105]. 
The first-in-human trial of using in  vivo recombinant 
human IL-15 to potentiate haploidentical NK cell trans-
fer in R/R AML showed better rates of NK cell expan-
sion and remission compared with previous trials with 
IL-2, but CRS was observed when IL-15 was adminis-
tered subcutaneously [106]. Furthermore, Miller et  al. 
proposed a method of incorporating Treg depletion with 
IL-2 diphtheria toxin (IL2DT) into adoptive transfer plat-
form. IL2DT was delivered to patients 1 or 2 days before 
NK cell transfer and it improved CR rate (53% versus 
21%; P = 0.02) and disease-free survival (33% versus 5%; 
P < 0.01) for R/R AML patients [97]. It was showed that 
the use of IL2DT or low-dose irradiation as part of condi-
tioning resulted in increased NK cell homing and persis-
tence in the bone marrow, which correlated with better 
leukemia control [107].

Apart from quantity demands for NK cells, alternative 
sources for NK cells can facilitate their clinical applica-
tions as well. A phase I clinical trial evaluated the feasi-
bility and safety of transferring activated human NK-92 
cell lines to patients with R/R AML. NK-92 cells possess 
advantages of easy cultivation and expansion and can 
be repeatedly infused in the context of lymphodepletion 
[108]. Its derivative cell line NK-92MI without the pres-
ence of surface sialic acid-binding immunoglobulin-like 
lectins (siglec)-7 exhibited high and sustainable cyto-
toxicity against NK-92MI-resistant leukemia cells [109]. 
Besides, a study established the proof-of-concept of the 
feasibility of NK cells generated from CD34 + hemat-
opoietic stem and progenitor cells (HSPC) isolated from 
cryopreserved umbilical cord blood (UCB) in a pre-
clinical AML xenograft model [110]. The first-in-human 
study exploiting UCB-derived HSPC-NK cells in the 
treatment of elderly AML patients in morphologic CR 
found NK cell expansion and further maturation in vivo 
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as well as a reduction in MRD without the induction of 
NK cell-related toxicity [111]. Another study evaluat-
ing placental-derived HSPC-NK cells (PNK-007) in R/R 
AML demonstrated an encouraging safety profile, but 
larger scale studies are needed to assess clinical out-
comes [112]. A clinical trial investigating the feasibility 
of CYNK-001, the cryopreserved successor product to 
PNK-007, has recently been initiated (NCT04310592). 
Moreover, FT516, a NK cell product derived from a 
clonal master engineered induced pluripotent stem cell 
(iPSC) line, as a monotherapy for R/R AML is in clini-
cal investigation (NCT04023071). These “off-the-shelf” 
products have significant benefits over primary NK cells 
from adult donors in the aspect of low costs, high thera-
peutic dosages, immediately application, choosing appro-
priate KIR B haplotype alloreactive donors and doing 
genetic modifications.

Further clinical trials are underway to evaluate the 
safety and efficacy of adoptive NK cell transfer, with the 
exploration of optimal NK cell dosages and resources, 
the optimal time points in relation to HCT and potential 
combination therapies. A list of currently ongoing clini-
cal trials of NK cell transfer is provided in Table 1.

CAR‑NK cell therapy
In adoptive NK cell transfer, the ability of NK cells to 
mount an immune response against AML cells is largely 
dependent on the interactions between NK cell activat-
ing/inhibitory receptors with their cognate ligands on 
target cells. In order to augment the specificity and cyto-
toxicity, genetically modified NK cells such as CAR-mod-
ified-NK cells are designed (Fig.  2b). Since the success 
of CAR-T therapy in the treatment of B-lineage acute 
lymphoblastic leukemia and B-cell lymphoma has not yet 
been translated into the treatment of AML and its wide 
applications are limited by adverse effects such as CRS 
[113, 114], NK cells with short lifespan are being consid-
ered as promising alternatives to modified T cells with 
favorable toxicity profiles and low manufacturing costs 
[115]. Nowadays, the actions of CAR-NK cells are being 
extensively studied in a variety of tumor models, but the 
applications in AML are relatively limited and mainly at 
the preclinical stage.

The optimal choice of leukemia specific markers that 
can be targeted by CAR-NK cells is a major obstacle, 
since AML shares some phenotypic markers with normal 
hematopoietic stem cells (HSCs). Myeloid differentia-
tion antigen CD33 is detected on blasts of > 85% of AML 
patients and also on leukemia stem cells (LSCs) [116]. A 
preclinical investigation ascertained the targeting effect 
of NK cell line YT with gene transfer of a CD33-spe-
cific immunoglobulin-based humanized chimeric T cell 
receptor (cIgTCR) to CD33 + AML cell lines [117]. The 

first-in-man reported phase I trial of CAR-NK cells dem-
onstrated the safety of irradiated CD33-CD28-4-1BB-
CD3ζ CAR-NK-92 cells infusion in 3 patients with R/R 
AML, but it did not demonstrate obvious clinical efficacy 
[118]. Larger-scale clinical trials are warranted to deter-
mine the effects (NCT02944162). CD4 is another antigen 
present on AML blasts without ubiquitous expression 
on HSPCs and non-hematopoietic cells. Salman et  al. 
established the role of CD4-CD28-4-1BB-CD3ζ CAR-
NK-92 cells in robustly eliminating CD4 + AML cells 
ex vivo and in mouse xenografts  [119]. CD7 is detected 
in approximately 30% of AML cases and also presents as 
an attractive target [120, 121]. CD7-CD28-4-1BB-CD3ζ 
CAR-NK-92MI cells have significantly improved killing 
efficiency against CD7 + AML cells as compared with 
NK-92MI cells without genetic modifications, which pro-
vides a basis for clinical investigation (NCT02742727) 
[122].

As for the sources of CAR-NK cells, a preclinical study 
showed that CD123-CAR-NK-92 cell lines represented 
better CAR effector cells than primary human donor 
CD123-CAR-NK cells in terms of cytotoxic activities 
[123].

The lessons learned from CAR-T and CAR-NK cells in 
the treatment of other cancers are worthy to be exploited 
in CAR-NK cell therapy in AML in the future, including 
optimizing targets and structures of CAR-NK cells as 
well as investigating the ideal patient populations for this 
type of immunotherapy.

Antibodies
In the normal physiologic setting, the interaction of 
receptors-ligands and the process of ADCC are involved 
in the NK cell activation. Taking advantage of this func-
tionality, monoclonal antibodies become another method 
of boosting patients’ NK cells against AML. On the one 
hand, antibodies targeting tumor-associated antigens 
endow NK cells with the power of activation via ADCC 
effects. On the other hand, antibodies targeting NK 
cell inhibitory receptors have the potential to weaken 
inhibitory signals and let activating signals dominate the 
process. Great progress has been made in the field of 
antibody therapies, and the overview of ongoing clinical 
trials concerning novel antibodies for AML is presented 
in Table 2.

Antibodies targeting tumor‑associated antigens
Antibodies targeting tumor-associated antigens are 
attractive means of immunotherapy for cancers, the 
mechanisms of which are in great part the induction of 
ADCC via NK cells (Fig. 2c). The outcomes of unconju-
gated antibodies were generally poor when used alone 
[124–126]. The effects could be enhanced by engineering 
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antibodies’ Fc parts to increase affinity to CD16 or inte-
grating with other therapies [127–129]. Preclinical 
studies investigating the efficacy of novel Fc-optimized 

antibodies targeting various potential antigens such as 
CD133, CD33, CD157 and IL-1 receptor accessory pro-
tein (IL1RAP) as well as new regimens of antibodies 

Table 1 Overview of ongoing clinical trials of adoptive NK cell transfer in AML

AE adverse event, AML acute myeloid leukemia, CBT cord blood transplantation, CML chronic myeloid leukemia, CMV cytomegalovirus, HCT hematopoietic 
cell transplantation, HSPC hematopoietic stem and progenitor cell, IL interleukin, iPSC induced pluripotent stem cell, MDS myelodysplastic syndrome, MPN 
myeloproliferative neoplasm, MRD minimal residual disease, MTD maximum tolerated dose, NA not applicable, NK natural killer cell, PBMC peripheral blood 
mononuclear cell, R/R relapsed/refractory, UCB umbilical cord blood

Identifier Phase Indication In vivo cytokine Transplantation Outcome measure

PBMC-derived NK cell infusion

 NCT04221971 I R/R AML None No AE, response, NK cell metabolism, 
migration and reconstruction, 
cell count recovery, relapse

 NCT04220684 I R/R AML or MDS None No MTD, AE, response, survival, cell 
count recovery, number of 
patients able to proceed to HCT

 NCT04209712 I AML with MRD IL-2 No MRD, AE

 NCT02890758 I AML, MDS, et al ALT-803 No AE, response, survival, in vivo NK 
level

 NCT01787474
NCT02809092

I/II R/R AML None No MTD, response, NK cell expansion

 NCT03300492 I/II AML or MDS None Days + 10, + 15 and + 20 post-
HCT

AE, survival, response, NK cell dose

 NCT01823198 I/II High-risk AML or MDS IL-2 Day -8 pre-HCT Optimal NK cell dose, survival, AE

 NCT01904136 I/II AML, MDS or CML None Days 7 and 28–90 post-HCT MTD, AE, survival, time to engraft-
ment

 NCT04395092 II High-risk AML or MDS None Days—2, + 7 and + 28 post-HCT Relapse, AE, survival

 NCT04166929 II AML or MDS None Day + 7 post-HCT Relapse

 NCT03050216 II R/R AML ALT-803 No Response, NK cell expansion, AE

 NCT03955848 NA AML in remission IL-2 No Survival

Placental-derived HSPC-NK cell (CYNK-001) infusion

 NCT04310592 I AML None No MTD, AE, MRD, survival

UCB-derived HSPC-NK cell infusion

 NCT01619761 I AML, MDS, et al None Day-2 pre-CBT AE, survival

 NCT04347616 I/II R/R AML IL-2 No AE, MRD, NK cell lifespan, expan-
sion and functional activity, 
plasma cytokine concentration, 
number of patients able to 
proceed to HCT

 NCT02727803 II AML, MDS, et al None Days 30–180 post-CBT Survival, AE

iPSC-derived NK cell (FT516) infusion

 NCT04023071 I R/R AML or B-cell lymphoma IL-2 No AE, response, pharmacokinetic 
data

Cytokine-induced memory-like NK cell infusion

 NCT03068819 I Relapsed AML after HCT None No AE, response, survival

 NCT04024761 I Relapsed AML, MDS or MPN after 
HCT

IL-2 No AE, response, survival

 NCT01898793 I/II R/R AML or MDS IL-2 No MTD, response, AE, survival

 NCT04354025 II R/R AML IL-2 No Response, number of patients 
able to proceed to HCT, survival, 
MRD, AE

 NCT02782546 II R/R AML ALT-803 Day + 7 post-HCT Survival, response

CMV-induced memory-like NK cell (FATE-NK100) infusion

 NCT03081780 I R/R AML IL-2 No MTD, response, NK cell expansion, 
AE, MRD, survival
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Table 2 Overview of ongoing clinical trials of antibodies for AML

Antibody Target Regimen Indication Phase Identifier

Antibodies targeting tumor-associated antigens

 BI 836858 CD33 BI 836858 + decitabine AML II NCT02632721

 GO CD33 GO + CPX-351 Relapsed AML I NCT03904251

GO + venetoclax R/R CD33 + AML I NCT04070768

GO + pracinostat R/R CD33 + AML I NCT03848754

GO + allo-HCT Average-risk CD33 + AML or MDS or 
JMML

I NCT01020539

GO, midostaurin, cytarabine and dau-
norubicin

Newly diagnosed FLT3 mutated AML I NCT03900949

GO + talazoparib R/R CD33 + AML I/II NCT04207190

GO, midostaurin, cytarabine and dau-
norubicin

Newly diagnosed AML I/II NCT04385290

GO, PF-04518600, venetoclax, avelumab, 
glasdegib and azacitidine

R/R AML I/II NCT03390296

GO, G-CSF, cladribine, cytarabine and 
mitoxantrone

Newly diagnosed AML I/II NCT03531918

GO CD33 + AML II NCT03737955

GO + allo-HCT Average-risk CD33 + AML or MDS II NCT02117297

GO + azacitidine Newly diagnosed elderly AML II NCT00658814

GO + bortezomib R/R AML II NCT04173585

GO + CPX-351 R/R CD33 + AML or high-risk MDS II NCT03672539

GO + DLI R/R AML II NCT03374332

GO, mitoxantrone and etoposide Refractory CD33 + AML II NCT03839446

GO, cyclophosphamide, busulfan and 
allo-HCT

High-risk CD33 + AML or MDS II NCT02221310

GO, fludarabine, cytarabine, filgrastim-
sndz and idarubicin

Newly diagnosed AML or high-risk MDS II NCT00801489

GO, daunorubicin, cytarabine and 
glasdegib

Newly diagnosed AML II NCT04168502

GO + standard chemotherapy Pediatric AML II NCT04326439

GO + cytarabine Newly diagnosed AML II/III NCT02473146

GO + daunorubicin + cytarabine Elderly AML II/III NCT02272478

GO Newly diagnosed AML III NCT04093505

GO + standard chemotherapy Newly diagnosed NPM1 mutated AML III NCT00893399

GO + standard chemotherapy + HCT AML III NCT00049517

GO, CPX-351, gilteritinib and standard 
chemotherapy

Newly diagnosed AML III NCT04293562

GO, liposomal daunorubicin, mitox-
antrone, fludarabine, cytarabine, 
busulfan and cyclophosphamide

Pediatric AML III NCT02724163

GO R/R CD33 + AML IV NCT03727750

 Lintuzumab Ac-225 CD33 Lintuzumab Ac-225, cladribine, cytara-
bine, mitoxantrone and G-CSF

R/R CD33 + AML I NCT03441048

Lintuzumab-Ac225 + veneto-
clax + spironolactone

R/R CD33 + AML I/II NCT03867682

Lintuzumab-Ac225 + venetoclax + azac-
itidine

R/R CD33 + AML I/II NCT03932318

 Daratumumab CD38 Daratumumab R/R AML or high-risk MDS II NCT03067571

Daratumumab + DLI Relapsed AML after HCT I/II NCT03537599

 Isatuximab CD38 Isatuximab + standard chemotherapy Pediatric R/R ALL or AML II NCT03860844

 Magrolimab CD47 Magrolimab + atezolizumab R/R AML I NCT03922477

Magrolimab + azacitidine AML or MDS I NCT03248479

Magrolimab + azacitidine + venetoclax AML I/II NCT04435691
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Table 2 (continued)

Antibody Target Regimen Indication Phase Identifier

 Cusatuzumab CD70 Cusatuzumab, azacitidine and veneto-
clax

AML I NCT04150887

Cusatuzumab + azacitidine Newly diagnosed AML or high-risk MDS I NCT04241549

Cusatuzumab + azacitidine Newly diagnosed AML or high-risk MDS I/II NCT03030612

Cusatuzumab + azacitidine Newly diagnosed AML II NCT04023526

 SEA-CD70 CD70 SEA-CD70 AML or MDS I NCT04227847

 IMGN632 CD123 IMGN632 R/R CD123 + AML or other hematologic 
malignancies

I/II NCT03386513

IMGN632, venetoclax and azacitidine CD123 + AML I/II NCT04086264

 ASP1235 FLT3 ASP1235 AML I NCT02864290

 FLYSYN FLT3 FLYSYN AML I/II NCT02789254

 Atezolizumab PD-L1 Atezolizumab + magrolimab R/R AML I NCT03922477

Atezolizumab + gilteritinib R/R FLT3 mutated AML I/II NCT03730012

Atezolizumab + guadecitabine R/R AML, CML or MDS I/II NCT02935361

 Avelumab PD-L1 Avelumab, GO, PF-04518600, venetoclax, 
glasdegib and azacitidine

R/R AML I/II NCT03390296

 Durvalumab PD-L1 Durvalumab + azacitidine Newly diagnosed MDS or elderly AML II NCT02775903

Antibodies targeting NK cell inhibitory receptors

 Pembrolizumab PD-1 Pembrolizumab Relapsed AML or MDS after HCT I NCT03286114
NCT02981914

Pembrolizumab + decitabine AML or MDS I NCT03969446

Pembrolizumab + AMG 330 R/R AML I NCT04478695

Pembrolizumab Non-favorable risk AML II NCT02771197

Pembrolizumab Elderly AML in remission II NCT02708641

Pembrolizumab + cytarabine R/R AML II NCT02768792

Pembrolizumab + azacitidine NPM1 mutated AML II NCT03769532

Pembrolizumab + azacitidine R/R AML or newly diagnosed elderly 
AML

II NCT02845297

Pembrolizumab, azacitidine and vene-
toclax

Elderly newly diagnosed AML II NCT04284787

Pembrolizumab, cytarabine, idarubicin, 
daunorubicin and HCT

Newly diagnosed AML II NCT04214249

 Nivolumab PD-1 Nivolumab High-risk AML or MDS after HCT I NCT04361058

Nivolumab Relapsed AML after HCT I NCT01822509

Nivolumab + ipilimumab AML or MDS I NCT02846376

Nivolumab + ipilimumab High-risk R/R AML or MDS I NCT03600155

Nivolumab, CDX-1401, poly ICLC and 
decitabine

AML or MDS I NCT03358719

Nivolumab + azacytidine Pediatric R/R AML I/II NCT03825367

Nivolumab AML in remission at high-risk for relapse II NCT02532231

Nivolumab AML in remission II NCT02275533

Nivolumab, azacitidine and ipilimumab AML II NCT02397720

Nivolumab, azacitidine, midostaurin, 
decitabine and cytarabine

Elderly newly diagnosed AML or high-
risk MDS

II/III NCT03092674

 Tislelizumab PD-1 Tislelizumab, DNA hypomethylating 
agent and chemotherapy

AML II NCT04541277

 Spartalizumab PD-1 Spartalizumab, MBG453 and decitabine AML or high-risk MDS I NCT03066648

 Ipilimumab CTLA-4 Ipilimumab Relapsed AML after HCT I NCT01822509

Ipilimumab + nivolumab High-risk R/R AML or MDS I NCT03600155

Ipilimumab + nivolumab AML or MDS I NCT02846376

Ipilimumab + decitabine R/R AML or MDS I NCT02890329

Ipilimumab + DLI Relapsed AML, MDS or MPN after HCT I NCT03912064
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combined with NK cell transfer exhibited promising 
results and these strategies can be valuable to be con-
ducted in future clinical trials [130–136]. Antibody-drug 
conjugates (ADCs) and antibody-radio conjugates are 
promising strategies to enhance the antibody potency 
as well, and they yield superior clinical impacts on AML 
patients [137–141]. Gemtuzumab ozogamicin (GO), the 
combination of anti-CD33 antibody with anti-neoplastic 
agent calicheamicin, is currently the only ADC approved 
by the Food and Drug Administration (FDA) for the 
treatment of newly diagnosed and R/R CD33 + AML 
[142–144]. Latest preclinical findings of more novel 
ADCs targeting CD33, CD37, FLT3, C-type lectin-like 
molecule 1 (CLL-1; also known as C-type lectin domain 
family 12, member A, CLEC12A) and leukocyte immu-
noglobulin-like receptor subfamily B4 (LILRB4) high-
light their clinical potential for the treatment of AML 
[145–151].

In addition, ligands of NK cell inhibitory or activat-
ing receptors on AML cells can also be the targets of 
antibodies. It was reported that NK-resistant feature 
of mixed lineage leukemia (MLL)-rearranged leukemia 
could be overcome by anti-CD19 antibody and anti-
CD33 antibody-induced ADCC, and the effects could be 
further amplified with pan-MHC-I antibodies, suggest-
ing the utilization of a triple immunotherapy approach, 
including KIR-mismatched NK cell transfer, antibodies 
against tumor-associated antigens and inhibitory KIR 
blockade, for the treatment of MLL-rearranged leuke-
mia [152]. The expression level of inhibitory immune 
checkpoint molecule PD-L1 on AML blasts is an impor-
tant negative prognostic factor [153]. Hypomethyl-
ating agents, while enhancing anti-tumor immune 
response, can concurrently dampen immune response 
by upregulating PD-1 and PD-L1 expression, providing 
the rationale of combination therapies of PD-L1 inhibi-
tors and hypomethylating agents [154, 155]. Other anti-
bodies targeting TNF family members on AML cells, 

such as glucocorticoid-induced TNFR-related protein 
ligand (GITRL) and receptor activator for NF-κB ligand 
(RANKL), were manifested against primary AML cells in 
preclinical studies through the prevention of inhibitory 
signals into NK cells as well as the induction of ADCC 
[156–158]. Despite the inevitable reduction in activat-
ing signals upon antibodies binding to ligands of activat-
ing receptors, NKG2D-Fc and NKp80-Fc fusion proteins 
were shown to be able to compensate for it by inducing 
ADCC to potentiate NK cell killing of AML cells [159, 
160].

Antibodies targeting NK cell inhibitory receptors
Inhibitory receptors in NK cells serve as the sources of 
cancer immune escape, making them ideal targets for 
immunotherapy (Fig.  2d). Over the past decades, the 
number of inhibitory receptors identified in NK cells has 
been increasing. Apart from MHC-I-specific inhibitory 
receptors KIRs, LIRs and CD94/NKG2A, other immune 
checkpoints on NK cells have been shown to cause dys-
function such as programmed cell death-1 (PD-1), cyto-
toxic T lymphocyte-associated antigen-4 (CTLA-4), 
T-cell immunoglobulin domain and mucin domain-3 
(TIM-3), T-cell immunoglobulin and immunorecep-
tor tyrosine-based inhibitory motif domain (TIGIT), 
siglec-7/9 and CD200R [161].

Just as the benefit of KIR-ligand mismatch between 
donors and recipients in improving the outcome of HCT, 
pharmacologic KIR blockade by anti-KIR antibodies can 
prevent the KIR-HLA-C interaction and augment NK 
cell function as well. IPH2101 and IPH2102 (lirilumab) 
are antibodies targeting KIR2D and both were reported 
to be safe in the treatment of elderly patients with AML 
in first CR, though the leukemia-free survival with liri-
lumab did not compare favorably to placebo in a phase 
II study [162–164]. The combination of lirilumab with 
azacitidine also did not display significant improvement 
in R/R AML in terms of response rate (overall response 

Table 2 (continued)

Antibody Target Regimen Indication Phase Identifier

Ipilimumab, nivolumab and azacitidine AML II NCT02397720

 MBG453 TIM-3 MBG453, HDM201 and venetoclax AML or high-risk MDS I NCT03940352

MBG453, spartalizumab and decitabine AML or high-risk MDS I NCT03066648

MBG453, azacitidine and venetoclax Newly diagnosed AML II NCT04150029

BiKE or TriKE

 GTB-3550 CD16/IL-15/CD33 GTB-3550 CD33 + R/R AML or high-risk MDS I/II NCT03214666

ALL acute lymphoblastic leukemia, allo-HCT allogeneic hematopoietic cell transplantation, AML acute myeloid leukemia, BiKE bi-specific killer cell engager, CML 
chronic myeloid leukemia, CTLA-4 cytotoxic T lymphocyte-associated antigen-4, DLI donor lymphocyte infusion, FLT3 FMS-like tyrosine kinase 3, G-CSF granulocyte 
colony-stimulating factor, GO gemtuzumab ozogamicin, HCT hematopoietic cell transplantation, JMML juvenile myelomonocytic leukemia, MDS myelodysplastic 
syndrome, MPN myeloproliferative neoplasm, NPM1 nucleophosmin 1, PD-1 programmed cell death-1, PD-L1 programmed cell death ligand-1, R/R relapsed/refractory, 
TIM-3 T-cell immunoglobulin domain and mucin domain-3, Treg regulatory T cell, TriKE tri-specific killer cell engager
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rate,  ORR 14%) or survival (median OS 4.2  months), 
and the relevant clinical trial (NCT02399917) was ter-
minated early due to unsatisfactory results [165]. LIR-1 
or NKG2A blockade resulted in increased NK cell 
cytotoxicity against AML, suggesting that the cock-
tail consisting of anti-KIR, anti-LIR-1 and anti-NKG2A 
antibodies may be a necessary option for better efficacy 
[166, 167]. Anti-PD-1 antibody (nivolumab and pem-
brolizumab) and anti-CTLA4 antibody (ipilimumab) are 
FDA-approved immune checkpoint inhibitors mainly for 
the treatment of various solid tumors, while their appli-
cations in the field of AML are still at the exploratory 
stage. Nivolumab in combination with idarubicin and 
cytarabine produced an encouraging response rate (ORR 
80%) and OS (median OS 18.5 months) in patients with 
newly diagnosed AML [168]. The combination therapy of 
nivolumab and azacitidine was feasible in patients with 
R/R AML, and the addition of ipilimumab further upreg-
ulated the clinical efficacy (ORR 33% vs 44%; median OS 
6.4 vs 10.5  months) [169, 170]. And nivolumab mainte-
nance was safe and feasible in high-risk AML patients in 
CR (1-year CR duration 71%; 1-year OS 86%) [171]. The 
outcomes of pembrolizumab administered in combined 
with decitabine or following high-dose cytarabine in R/R 
AML (ORR 10% and 46%; median OS 7 and 8.9 months, 
respectively) suggested that immune checkpoint inhibi-
tors after intensive cytotoxic chemotherapy may be a bet-
ter option [172, 173]. A phase I/Ib study demonstrated 
the safety and efficacy of ipilimumab monotherapy in 
AML patients with post-HCT relapse (ORR 32%; 1-year 
OS 49%) [174]. As for anti-TIM-3 antibody MBG453, 
the combination therapy with decitabine was safe and 
well-tolerated and exhibited encouraging preliminary 
response rates for AML in a phase Ib study (ORR 29% 
for both newly diagnosed and R/R AML) [175]. How-
ever, caution should be paid to checkpoint inhibitors, 
since exposure can lead to a significantly increased risk of 
GvHD [168, 174, 176, 177]. Furthermore, the prognostic 
effect of TIGIT in the bone marrow post-HCT as well as 
the involvement of CD137-CD137L and CD200-CD200R 
interactions in immune evasion raise the possibility of 
attacking other inhibitory receptors with antibodies as 
potent immunotherapeutic strategies in the near future 
[53, 178–180].

BiKE and TriKE
Bi-specific killer cell engager (BiKE) and tri-specific killer 
cell engager (TriKE) are the recombinant agents of biva-
lent and trivalent single-chain variable fragments (scFv), 
serving as immunologic synapses between NK cells and 
tumor cells. They retain the specificity of original anti-
bodies and, at the same time, minimize the size of anti-
bodies to increase distribution. CD16-directed BiKE and 

TriKE trigger NK cell activation through CD16 signaling 
and against tumor cells with target antigens in a highly 
efficient manner (Fig. 2c) [181].

Wiernik et  al. designed a novel full humanized 
BiKE that specifically binds to both CD16 and CD33 
(CD16 × 33 BiKE). NK cell cytotoxicity and cytokine 
release were specifically triggered by CD16 × 33 BiKE 
when cultured with CD33 + AML cell lines and primary 
AML cells, and the effector functions of NK cells were 
further enhanced when combined with adisintegrin and 
metalloprotease-17 (ADAM17) inhibitor which pre-
vents CD16 shedding [182]. Lately, the same research 
group designed a TriKE by incorporating a novel modi-
fied human IL-15 crosslinker into CD16 × 33 BiKE, 
which provided a signal for NK cell self-sustaining pro-
liferation and activation [183]. A phase I/II clinical trial 
of CD16 × 33 × IL-15 TriKE (GTB-3550) for the treat-
ment of CD33 + R/R AML is underway (NCT03214666). 
TriKEs of linking anti-CD16 scFv to either two scFv 
against the same antigen (such as CD16 × 33 × 33 TriKE) 
or two scFv against two different antigens (such as 
CD16 × 33 × 123 TriKE) displayed greater binding affinity 
and superior NK cell cytotoxic potency toward AML cells 
compared to BiKE [184, 185]. Since CD33 is abundantly 
expressed on healthy myeloid cells as well, NKG2DLs, 
which are leukemia cell-restricted expressed, become 
promising targets. CD16 × NKG2D BiKE displayed 
increased affinity to CD16 and induced superior leuke-
mia cell killing compared to the engineered NKG2D-Fc 
fusion protein [186]. Besides, CD16 × CLL-1 × IL-15 
TriKE displayed robust NK cell activity against AML 
in  vitro and in  vivo [187]. These molecules constitute 
attractive candidates for personalized immunotherapy 
for AML based on preclinical findings.

Cytokines
Cytokines, including IL-2, IL-12, IL-15, IL-18 and IL-21, 
play an important role in NK cell proliferation, activa-
tion and effector function (Fig.  2e). Ex  vivo stimulation 
with 10 ng/mL IL-2 or 50 ng/mL IL-15 was reported to 
be optimal for NK cell expansion and enable NK cells of 
AML patients with recovered function through upreg-
ulating activating receptors such as NKp30, NKp46, 
NKG2C and NKG2D [188–190]. IL-2 monotherapy may 
not be clinically efficacious in AML patients [191–194]. 
But, IL-2 in conjunction with histamine dihydrochlo-
ride has been proposed as a maintenance therapy in 
AML, resulting in improved leukemia-free survival [195, 
196]. The mechanism of this therapy may partially be 
the induction of a striking expansion of immunocompe-
tent  CD56bright NK cell subpopulations [197]. A phase I 
study identified IL-15 superagonist complex ALT-803 as 
a safe agent in the treatment of elderly AML patients who 
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relapsed after HCT and the potential efficacy is expected 
to be reported (NCT01885897) [198]. And the feasibil-
ity of using ALT-803 as an relapse prophylaxis for AML 
patients after HCT is under assessment (NCT02989844). 
Furthermore, genetically engineered AML cells with 
DNA encoding IL-12 or IL-15 have been constructed to 
reduce toxicities associated with systemic administration 
of cytokines [199, 200]. A clinical trial (NCT02483312) is 
ongoing to test engineered AML cells expressing IL-12 in 
AML patients that cannot have HCT.

Cytokines have also been widely incorporated in the 
NK cell transfer as a process of ‘priming or arming’ in 
order to increase NK cell proliferation and expansion. 
However, the effect is short-lasting and the short-term 
NK cell persistence within patients might limit their 
clinical use. Remarkably, NK cells preactivated with a 
cocktail of cytokines (IL-12, IL-15 and IL-18) exhibited 
augmented anti-leukemia responses to restimulation 
for weeks to months regardless of inhibitory KIR-KIR 
ligand interactions [201–203]. Those cytokine-induced 
memory-like (CIML) NK cells with adaptive immune 
properties represent a promising approach to enhanc-
ing adoptive NK cell transfer. The first-in-human trial 
of adoptive transfer of CIML NK cells in elderly patients 
with R/R AML showed successful induction of remis-
sion (ORR 67%) without the cause of CRS, GvHD or 
neurotoxicity [204, 205]. Patient outcomes were nega-
tively associated with the frequency of CD8α + donor 
NK cells and the expression of NKG2A on CIML NK 
cells within patients [205]. Encouraging preliminary data 
give us confidence on more ongoing early phase clinical 
trials of CIML NK cells for R/R AML (NCT04354025, 
NCT02782546, NCT01898793, NCT03068819) [206, 
207].

Drugs with immunomodulatory function
Many anti-tumor drugs have been illustrated with immu-
nomodulatory properties to enhance endogenous NK 
cell function against AML in recent years (Fig. 2f ). Since 
AML cells resist to NK cell-mediated killing by chang-
ing the expression of their surface ligands for various NK 
cell receptors and these phenotypic defects correlate with 
clinical outcomes, drugs that are capable of restoring 
ligand expressions on AML cells can render them more 
susceptible to NK cell killing [64].

Firstly, hypomethylating agents azacitidine and decit-
abine can upregulate the expression of NKG2DL on 
AML cells by reversing epigenetically silenced genes, 
resulting in enhanced NK cell-mediated immunity 
through the immune recognition mediated by NKG2D-
NKG2DL engagement [208]. They concurrently increase 
the expression of tissue inhibitor of metalloprotein-
ases-3 (TIMP3), an ADAM17 inhibitor, thus reducing 

the shedding of soluble NKG2DLs from AML cells [209]. 
Histone deacetylase inhibitors (trichostatin A and valp-
roic acid), differentiation-promoting drugs (vitamin D3, 
bryostatin 1 and all-trans-retinoic acid) and hydroxyu-
rea all somehow show the potential of upregulating the 
expression of NKG2DLs on AML cells, while dinaciclib-
treated AML is associated with the downregulation of 
inhibitory NK ligand HLA-E on AML cells, consequently 
inducing potent NK cell anti-tumor immunity [208, 
210–213]. Then, immunomodulatory drugs lenalido-
mide and pomalidomide exert anti-leukemia effects both 
directly and via NK cell-mediated immunostimulatory 
activities along with downregulation of HLA-class I on 
AML blasts [214]. The combination therapies contain-
ing the aforementioned drugs for AML are widely used 
in clinical practice and also in clinical trials. Besides, 
natural compounds or their derivatives such as safrole, 
α-phellandrene, casticin and ouabain can also promote 
NK cell activity against AML cells [215–218]. In addi-
tion, novel agents with immunomodulatory function 
were proposed in fundamental researches, providing 
therapeutic implications in AML. For instance, vascular 
endothelial growth factor receptor (VEGFR)-3 antagonist 
restored NK cell cytotoxicity with an increased IFN-γ 
level [219, 220], and the therapeutic efficacy of adoptive 
NK cell transfer could be enhanced by a TGF-β receptor 
kinase inhibitor galunisertib [221]. With the clarification 
of mechanisms of anti-tumor drugs, combining pharma-
cological approaches with other NK cell-based immu-
notherapies may strengthen the efficacy and provide a 
clinical benefit for AML patients.

Conclusions and perspectives
Results from current preclinical studies and clinical tri-
als highlight the significant contribution of numerous NK 
cell-based immunotherapies in activating the reconstitu-
tion of NK cells against AML. Adoptive NK cell transfer 
has expanded the option of cellular immunotherapy as a 
feasible strategy to induce and maintain remission. Strat-
egies of manipulating adoptively transferred NK cells, 
such as CAR modification and cytokine induction, may 
further enhance the therapeutic efficacy. Other strate-
gies, such as immune checkpoint inhibitors, BiKE/TriKE 
and immunomodulatory drugs, can reverse endogenous 
NK cell anergy, contributing to an increasing dimensions 
of utilizing NK cells to fight AML.

There are several advantages in NK cell-based immu-
notherapy. Firstly, NK cells detect tumor cells through 
native receptors in a non-MHC-restricted manner and 
also mediate ADCC, expanding their clinical applica-
tions. Secondly, as compared with T-cell therapy, NK-
cell therapy has better safety profiles with rare instances 
of GvHD and CRS due to limited lifespan and distinct 
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cytokines produced [71]. Thirdly, NK cells have the 
advantage of “off-the-shelf” manufacturing, making it 
easy to be prepared under good manufacturing practice 
standards and convenient to universally treat patients 
with increased speed of administration [222–225]. How-
ever, the field of NK cell-based immunotherapy still faces 
several challenges. In fact, short lifespan of NK cells nar-
rows the therapeutic window, leading to a relatively short 
duration of response in most patients [88, 90, 95, 226]. 
Besides, tumors can escape from NK cell cytotoxicity 
via immunosuppressive tumor microenvironment or by 
shedding soluble ligands that activate NK receptors [54, 
60]. Finally, transduction efficiency of CAR-NK cells is 
another aspect needed to be improved [227].

In the future, the efficacy of NK cell-based immuno-
therapy is waiting to be confirmed in large sample sizes 
and in great detail. The optimal dosage and schedule of 
adoptive NK cell transfer as well as the feasible sources 
and manipulation methods for NK cells have yet to be 
evaluated [228]. It seems logical to combine various NK 
cell-based immunotherapies to utilize the full poten-
tial of NK cells, such as stimulating both target-specific 
lysis and ADCC effects as well as simultaneously boost-
ing endogenous NK cells and receiving exogenous NK 
cells [131, 135, 136, 229, 230]. Also, it is reasonable to 
integrate them with well-established AML treatments 
or novel agents which may provide synergistic effects 
and improve clinical response [94]. As for preclinical 
researches, a better knowledge of the mechanisms of 
NK cell dysfunction and NK cell-based immunotherapy 
in AML could broaden the application of NK cells and 
help the discovery of additional new therapeutic oppor-
tunities, including new targets and potential combination 
therapies. Strategies of wisely using cytokines, such as 
CMIL NK cells and the transduction of genes encoding 
cytokines into NK cells, seem to prolong the duration of 
NK cell persistence in some degree, but more efforts are 
warranted to figure out approaches to enhance tumor-
immune surveillance long term [17, 183, 206, 231]. 
Taking advantage of multi-omics and information tech-
nology, investigation of both donor NK cell-intrinsic and 
host factors which may contribute to treatment response 
or resistance can provide an array of biomarkers in donor 
and patient selection. Overall, there is a bright future in 
NK cell-based immunotherapy for AML.
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GvHD: Graft-versus-host disease; GvL: Graft-versus-leukemia; HCT: Hematopoi-
etic cell transplantation; HLA: Human leukocyte antigen; HSC: Hematopoietic 
stem cell; HSPC: Hematopoietic stem and progenitor cell; IDO: Indoleamine 
2,3 dioxygenase; IFN: Interferon; IL: Interleukin; IL1RAP: IL-1 receptor accessory 
protein; IL2DT: IL-2 diphtheria toxin; iPSC: Induced pluripotent stem cell; JMML: 
Juvenile myelomonocytic leukemia; KIR: Killer immunoglobulin-like receptor; 
LILRB4: Leukocyte immunoglobulin-like receptor subfamily B4; LIR: Leukocyte 
immunoglobulin-like receptor; LSC: Leukemia stem cell; MACS: Magnetic cell 
sorting; MDS: Myelodysplastic syndrome; MDSC: Myeloid-derived suppressor 
cell; MHC: Major histocompatibility complex; MIC: MHC class I chain-related 
protein; MLL: Mixed lineage leukemia; MPN: Myeloproliferative neoplasm; 
MRD: Minimal residual disease; MTD: Maximum tolerated dose; NA: Not appli-
cable; NCR: Natural cytotoxicity receptor; NK: Natural killer cell; NKG2A: Natural 
killer group 2A; NKG2C: Natural killer group 2C; NKG2D: Natural killer group 
2D; NKG2DL: NKG2D ligand; NPM1: Nucleophosmin 1; ORR: Overall response 
rate; PBMC: Peripheral blood mononuclear cell; PD-1: Programmed cell death-
1; PD-L1: Programmed cell death ligand-1; PD-L2: Programmed cell death 
ligand-2; RANKL: Receptor activator for NF-κB ligand; R/R: Relapsed/refractory; 
scFv: Single chain variable fragment; Siglec: Sialic acid-binding immunoglob-
ulin-like lectin; TAM: Tumor-associated macrophage; TGF: Transforming growth 
factor; TIGIT: T-cell immunoglobulin and immunoreceptor tyrosine-based 
inhibitory motif domain; TIM-3: T-cell immunoglobulin domain and mucin 
domain-3; TIMP3: Tissue inhibitor of metalloproteinases-3; TNF: Tumor necrosis 
factor; TNFR: Tumor necrosis factor receptor; Treg: Regulatory T cell; TriKE: 
Tri-specific killer cell engager; UCB: Umbilical cord blood; ULBP: UL16-binding 
protein; VEGFR: Vascular endothelial growth factor receptor.
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