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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a malignancy characterized by a poor prognosis and high mortality
rate. Genetic mutations and altered molecular pathways serve as targets in precise therapy. Using next-generation
sequencing (NGS), these aberrant alterations can be identified and used to develop strategies that will selectively
kill cancerous cells in patients with PDAC. The realization of targeted therapies in patients with PDAC may be
summarized by three approaches. First, because oncogenes play a pivotal role in tumorigenesis, inhibition of
dysregulated oncogenes is a promising method (Table 3). Numerous researchers are developing strategies to target
oncogenes, such as KRAS, NRG1, and NTRK and related molecules, although most of the results are unsatisfactory.
Accordingly, emerging strategies are being developed to target these oncogenes, including simultaneously
inhibiting multiple molecules or pathways, modification of mutant residues by small molecules, and RNA
interference. Second, researchers have attempted to reactivate inactivated tumour suppressors or modulate related
molecules. TP53, CDKN2A and SMAD4 are three major tumour suppressors involved in PDAC. Advances have been
achieved in clinical and preclinical trials of therapies targeting these three genes, and further investigations are
warranted. The TGF-β-SMAD4 signalling pathway plays a dual role in PDAC tumorigenesis and participates in
mediating tumour-stroma crosstalk and modulating the tumour microenvironment (TME); thus, molecular subtyping
of pancreatic cancer according to the SMAD4 mutation status may be a promising precision oncology technique.
Finally, genes such as KDM6A and BRCA have vital roles in maintaining the structural stability and physiological
functions of normal chromosomes and are deficient in some patients with PDAC, thus serving as potential targets
for correcting these deficiencies and precisely killing these aberrant tumour cells. Recent clinical trials, such as the
POLO (Pancreas Cancer Olaparib Ongoing) trial, have reported encouraging outcomes. In addition to genetic event-
guided treatment, immunotherapies such as chimeric antigen receptor T cells (CAR-T), antibody-drug conjugates,
and immune checkpoint inhibitors also exhibit the potential to target tumours precisely, although the clinical value
of immunotherapies as treatments for PDAC is still limited. In this review, we focus on recent preclinical and clinical
advances in therapies targeting aberrant genes and pathways and predict the future trend of precision oncology
for PDAC.

Keywords: Therapeutic targets, Precision oncology, Pancreatic ductal adenocarcinoma, Oncogenes, Tumour
suppressors, Epigenetics, Synthetic lethality, Immunotherapy

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: yuxianjun@fudanpci.org; liuchen@fudanpci.org
†Yunzhen Qian, Yitao Gong and Zhiyao Fan contributed equally to this work.
1Department of Pancreatic Surgery, Fudan University Shanghai Cancer
Center, NO.270 DongAn Road, Shanghai 200032, China
Full list of author information is available at the end of the article

Qian et al. Journal of Hematology & Oncology          (2020) 13:130 
https://doi.org/10.1186/s13045-020-00958-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13045-020-00958-3&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:yuxianjun@fudanpci.org
mailto:liuchen@fudanpci.org


Background
Pancreatic cancer is a well-known lethal disease with simi-
lar mortality and morbidity rates. Its incidence continues
to increase, while its 5-year relative survival rate remains
the lowest (9%) [1] among all cancers. Furthermore, most
patients with pancreatic cancer experience recurrence and
metastasis, even after curative resection. Despite advances
in surgical approaches and the emergence of various
chemotherapy regimens, its poor prognosis has not im-
proved in the last several decades. Studies exploring new
therapeutic methods are urgently needed.
Targeted therapy highlights the association between

neoplastic characterization and individual therapeutic re-
sponses. It is based on genomics and biomarker expres-
sion, suggesting that genomic mutations along with their
altered downstream pathways are potentially useful
pharmacological targets or prognostic indicators. Ad-
vances in genome sequencing have enabled researchers
to rapidly identify the genetic differences between
tumour cells and normal cells [2].
Currently, many other types of tumours, such as breast

and ovarian cancers, are treated in a precise manner.
However, the only precise therapeutic agent approved for
pancreatic ductal adenocarcinoma (PDAC) is erlotinib,
which only slightly prolongs survival [3, 4]. Precision on-
cology is also expected to be applied to PDAC to increase
therapeutic efficacy and reduce toxicity, hence facilitating
more cost-effective medicine. In this review, we
summarize recent advances in targeted therapy for PDAC.

Role of next-generation sequencing (NGS) in
targeted therapy
Screening and typing patients with PDAC
Advanced technologies facilitate the diagnosis of PDAC
and the detection of tumour mutations. In addition to
tumour biopsies, NGS has been performed using mul-
tiple types of specimens, such as pancreatic cyst fluid
[5], secretin-stimulated juice [6], and cell-free DNA col-
lected from the blood [7]. The use of more easily ac-
quired specimens not only facilitates PDAC screening
[8] but also obviates complications and costs.
Whole-genome sequencing reveals the mutational land-

scape of PDAC, and PDAC has been divided into four sub-
types according to the variations in chromosomal structure:
stable, locally rearranged, scattered, and unstable, each of
which has its own distinctive mutational signatures [9, 10].
Researchers have also attempted to combine transcriptomic
and genomic analysis to define PDAC subtypes because the
mutational and transcriptional profiles do not overlap and
an integrated genomic and transcriptomic analysis may re-
veal PDAC heterogeneity more thoroughly [11, 12].
The categorization of PDAC into various subtypes has

potential clinical applications, as the basis of precision
oncology is differentiating patients who may respond to

a certain treatment from others and recognizing promis-
ing therapeutic targets [13]. Inspiringly, The Know Your
Tumour programme revealed that 26% of the PDAC
profiles harboured actionable molecular alterations, and
molecularly matched precise therapy for patients with
PDAC substantially improved their overall survival (OS)
(hazard ratio (HR) = 0.42, P value = 0.0004) [14].

Detecting early mutations and guiding targeted therapy
Tumorigenesis mainly results from genetic aberrations
[15, 16]. As the amount of information about the genetic
events involved in PDAC increases, the identification of
ideal therapeutic targets is becoming possible. The aber-
rant genetic events in PDAC are generally divided into
oncogene activation and tumour suppressor inactivation,
and the four major genetic mutations observed in PDAC
occur in KRAS, TP53, CDKN2A and SMAD4. These
four commonly mutated major genes have been used to
characterize PDAC and provided a pleiotropic roadmap
for identifying ideal targets that may benefit most pa-
tients [17]. PDAC develops through a stepwise progres-
sion, and the progression from preneoplastic lesions to
PDAC is a process characterized by the accumulation of
genetic mutations. Early-stage precancerous lesions
already appear to harbour mutations that are required
for PDAC progression [18, 19]. For example, the most
common KRAS and TP53 mutations are detected in
early-stage intraepithelial neoplasia [20], suggesting that
they play an important role in tumour onset.
In addition to the four major canonical genes involved

in PDAC, genes involved in stabilizing chromatin, remod-
elling chromatin or editing point mutations in cancer
cells, e.g. BRCA, APOBEC and KDM6A, also warrant in-
vestigation. Their low mutation frequencies in PDAC raise
doubt about their clinical importance. Nonetheless, the
poor prognosis of patients with PDAC suggests that any
target, even if few people benefit from a treatment target-
ing that gene, is encouraging and merits investigation.
Based on the aforementioned genetic events, researchers
have attempted to therapeutically target these genetic
variants and the altered pathways. In general, targeted
treatment has been implemented using three ap-
proaches: inhibiting the dysregulated activation of on-
cogenes, interfering with the inactivation of tumour
suppressors and exploiting the biological functional
deficiency of certain genes, such as BRCA. Recent
genetic-based explorations of precise targets in PDAC
are shown in Table 1.

Oncogenes in PDAC and potential targets
Oncogenic KRAS is responsible for tumorigenesis in most
patients with PDAC
The most well-known oncogene involved in PDAC is
RAS. RAS plays important roles in the signalling
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pathways regulating cell growth and differentiation to
promote cell proliferation and differentiation and inhibit
apoptosis. RAS switches between the inactive GDP-
bound state and the active GTP-bound state, and re-
cruited RAS guanine nucleotide exchange factors [21]
and GTPase-activating proteins [22] are responsible for
managing the transient activation of RAS.

KRAS mutations are the most common mutations
identified in human solid tumours, and approximately
90% of patients with PDAC harbour the G12 mutation
in KRAS [23–26]. The most frequent point mutations at
G12, G13 and Q61 [22] inhibit the intrinsic GTPase ac-
tivity of RAS, thus sustaining the GTP-bound state of
the RAS protein, which is established to be oncogenic

Fig 1 ERBB family comprises four receptor tyrosine kinases including the epidermal growth factor receptor (EGFR). Activation of EGFR recruits RAS
guanine nucleotide exchange factors (GEFs) such as son-of-sevenless (SOS). GEFs and GTPase activating proteins (GAPs) switch RAS between the
GTP-bound and GDP-bound states. The constitutive GDP-bound state activates multiple downstream molecules in PDAC. Gene fusions such as
NRG1 fusions can also initiate PDAC via ectopic ERBB receptor signalling pathway. IGF-1R has crosstalk with EGFR and produces tumour resistance
to EGFR inhibitors. Various inhibitors could inhibit RAS signalling pathway molecules by targeting corresponding molecules such as EGFR,
MEK, PI3K
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[27, 28] (Fig. 1). Constitutively activated KRAS subse-
quently upregulates the endogenous expression of the
upstream protein epidermal growth factor receptor
(EGFR) and induces its hyperactivation [29, 30], and in-
creased RAS levels and EGFR activity induce robust in-
creases MEK/ERK activity, leading to intraepithelial
neoplasia [31]. Furthermore, the overexpressed CA19-9
modifies fibulin-3 and enhances its interaction with
EGFR, suggesting that CA19-9 and EGFR play intricate
roles in PDAC tumorigenesis [32].
None of the direct KRAS inhibitors have reached clin-

ical application, despite more than three decades of in-
tensive effort; hence, KRAS was once considered an
undruggable therapeutic target [33]. This frustrating fact
is partially due to the multiple alternative signalling
pathways of KRAS [34–36]. Aberrantly activated RAS
triggers downstream signalling by the RAF/MEK/ERK
pathway, the PI3K/PDK1/AKT/mTOR pathway, RALG
DS, TIAM1, and RIN1 [21]. These molecules further
translocate to the nucleus and function as transcriptional
modulators.

Targeting KRAS and upstream EGFR
KRAS G12C provides a specific cysteine for drugs to
bind, and thus small molecules have been designed to ir-
reversibly bind this specific mutant target. By screening
cysteine-reactive compounds, two fragments (6H05 and
2E07) were chosen as KRAS G12C-specific inhibitors
[37, 38]. ARS853 was efficacious in KRAS G12C mutant
cancer cells through the trapping mechanism [39], and
ongoing phase I/II trials (NCT03785249 and
NCT04330664) are assessing the efficacy of MRTX849, a
small molecule that selectively modifies the mutant cyst-
eine residue in KRAS G12C [40]. The relative frequency
of the KRAS G12C mutation in PDAC is approximately
3% [25], suggesting that a certain subgroup of patients
with PDAC may benefit from this type of treatment. In
addition to small molecule inhibitors, RNA interference
has been applied to target KRAS directly. Advances in
endoscopic ultrasonography have assisted with the ac-
curate placement of RNA interference molecules, such
as siG12D-LODER™, into the parenchyma of patients
with PDAC, and phase I/IIa trials have confirmed that
this therapeutic strategy is well tolerated [41]. Engi-
neered exosomes facilitate RNA interference efficiency
as well [42] and may be applied as treatments for KRAS-
mutant PDAC.
First-generation EGFR inhibitors, such as gefitinib and

erlotinib, show little efficacy (median disease-free sur-
vival of patients treated with erlotinib: HR = 0.94, 95%
confidence interval (CI) 0.76–1.15, P value = 0.26) [3, 4],
partly due to the resistance caused by the non-EGFR
members of the ERBB family [43, 44]. Irreversible tyro-
sine kinase inhibitors, such as afatinib and neratinib,

have been developed to prevent the activation of the en-
tire ERBB family. According to the results of previous
clinical trials, afatinib is a more promising choice when
selecting treatment for patients with KRAS-mutant lung
cancer compared with gefitinib [45] or erlotinib [46],
and a clinical trial of the efficacy of afatinib in patients
with PDAC is ongoing (NCT02451553). Another EGFR
inhibitor, nimotuzumab, improved the OS of patients
with locally advanced or metastatic pancreatic cancer in
a phase II trial (the median OS was 8.6 months vs 6.0
months, HR = 0.69, P value = 0.03), and patients with
KRAS wild-type PDAC appear to benefit more from
nimotuzumab than patients with KRAS mutant PDAC
(the median OS was 11.6 months vs 5.6 months, P value
= 0.03) [47]. In contrast, vandetanib failed to show effi-
cacy (the median OS was 8.83 months vs 8.95 months,
HR = 1.21, P value = 0.303) [48]. Another clinical trial
indicated no benefit of cetuximab in the recruited pa-
tients either (the median OS was 6.3 months vs 5.9
months, HR = 1.06, P value = 0.23) [49]. These unsatis-
factory outcomes suggest the presence of other potential
resistance mechanisms that probably exist in PDAC to
circumvent the inhibition of EGFR and imply that an al-
ternative treatment strategy, i.e. the combination of
EGFR inhibitors with other pharmaceuticals, may be
more effective. For example, the combined inhibition of
EGFR and C-RAF led to complete tumour regression in
murine PDAC models and human patient-derived xeno-
grafts [50]. A phase II trial (NCT01222689) revealed
modest antitumour activity following the application of
erlotinib plus selumetinib to patients with locally ad-
vanced or metastatic PDAC (the median OS was 7.3
months, 95% CI 5.2–8.0 months) [51]. IGF-1R exhibits
crosstalk with EGFR and mediates tumour resistance to
EGFR inhibitors, and a phase II clinical trial
(NCT00769483) showed that MK-0646, an IGF-1R an-
tagonist, synergistically improved OS when applied with
gemcitabine (10.4 months vs 5.7 months, P value = 0.02)
[52]. In addition, nanoparticles (C18-EEG-GE11) have
been developed to target EGFR and precisely deliver
drugs to PDAC cells [53].

Inhibiting downstream molecules of KRAS
Proteins downstream of KRAS, such as the RAF/MEK/
ERK pathway or the PI3K/PDK1/AKT/mTOR pathway,
have also attracted increasing interest [54, 55]. MEK is
required for the viability and proliferation of tumours
[23]; thus, diverse MEK inhibitors have been developed.
No significant difference was observed in the clinical

trials performed to verify the efficacy of MEK inhibitors
applied as a monotherapy, i.e. selumetinib and trameti-
nib, in patients with advanced PDAC (selumetinib HR =
1.03, 80% CI 0.68–1.57, P value = 0.92; trametinib HR =
0.98, 95% CI 0.67–1.44, P value = 0.453) [56, 57]. The

Qian et al. Journal of Hematology & Oncology          (2020) 13:130 Page 6 of 20



failures of trametinib and selumetinib appear to be due
to the activation of receptor tyrosine kinases (RTKs)
[58]. Accordingly, multidrug combinations of MEK in-
hibitors are being tested in clinical trials. High-
throughput screening revealed the highest relative effi-
cacy of AZD6244 (selumetinib) in PDAC cell lines.
When applied together with AZD6244, BKM120, a PI3K
inhibitor, leads to robust apoptosis in PDAC-derived
organotypic models or murine models, resulting in a
longer median survival (131.5 vs 71 days) [59] and indi-
cating that the combined inhibition of MEK and PI3K
may have clinical value. AKT inhibitors also produce po-
tent synergistic effects with MEK inhibitors on PDAC
[54]. Ulixertinib, an ERK inhibitor, exerts an inhibitory
effect on solid tumour xenograft models [60] and ap-
pears to prevent tumour growth to a greater extent
when combined with MEK inhibitors [61]. In summary,
interventions that simultaneous target the two major
downstream pathways of KRAS, i.e. RAF/MEK/ERK and
PI3K/PDK1/AKT, represent a direction for future ex-
ploration in KRAS-mutant PDAC treatment, and clinical
trials have been performed to verify the effectiveness of
this strategy [62].
In addition to the simultaneous inhibition of multiple

pathways, many other adjuncts to MEK inhibitors with
various mechanisms have been developed. ABT-263 re-
lieves the inhibition of BCL-XL to BIM; hence, the MEK
inhibitor-induced expression of the pro-apoptotic pro-
tein BIM increases cell apoptosis and reduces the
tumour volume in KRAS mutant cancer models [63].
Multiple members of the RTK/RAS/MAPK pathway
have a synthetic lethal interaction with MEK, as they in-
duce tumour resistance to MEK inhibitors by triggering
an adaptive reactivation of the MAPK pathway. There-
fore, the simultaneous blockade of MEK and its syn-
thetic lethal interactors may be another strategy for
KRAS mutant PDAC [58, 64–66]. SHP2 inhibition (by
SHP099) and SHOC2 suppression (by gene knockout)
were performed to confirm the effectiveness of this strat-
egy in murine models. The combined application of tra-
metinib and SHP099 or trametinib and SHOC2
knockout resulted in tumour stasis [67, 68]. In addition
to the direct cytostatic effect on the tumour, MEK inhib-
itors also exert an inhibitory effect on several immuno-
suppressive immune cells, indicating potential synergy
with immunotherapy. The application of GDC-0623
(cobimetinib), a MEK inhibitor, with an anti-CD40 anti-
body in murine models produced striking synergistic ef-
fects [69]. A strategy targeting both MEK and CDK4/6
not only delays tumour progression but also increases
T-cell infiltration and tumour sensitivity to immune
checkpoint inhibitors in xenograft models [70]. Interest-
ingly, in breast cancer, the combined application of tra-
metinib and rosiglitazone transforms cancer cells into

adipocytes. This combination exploits the plasticity of
cancer cells and destroys the resistance of cancer cells to
conventional chemotherapy [71]. Further clinical trials
assessing the efficacy of these combination therapies in
PDAC will be worthwhile.
Rigosertib, an inhibitor of PI3K and PLK1, failed to

improve the prognosis of patients with metastatic PDAC
(OS HR = 1.24, 95% CI 0.85–1.81) [72]. In addition,
paradoxically, activated AKT was observed after the in-
hibition of PI3K. Everolimus, an mTOR inhibitor [73],
failed equally against metastatic PDAC (the median
progression-free survival (PFS) was 1.8 months and the
median OS was 4.5 months) [74]. Recent studies also
aimed to combine PI3K inhibitors with other targeted
treatments, such as MK-2206 plus selumetinib (the OS
was shorter in the experimental arm, HR = 1.37, P value
= 0.15) [75], and GDC-0941 plus ulixertinib (synergistic
inhibitory activity in PDAC cell lines) [76].

Gene fusions as promising targets in KRAS wild-type
PDAC
Most patients with PDAC harbour KRAS mutations, as
described above. In the small group of patients with
KRAS wild-type PDAC, other mutations, such as NTRK
and NRG1, initiate PDAC tumorigenesis and represent
actionable targets.
Gene fusion is rare but oncogenic in KRAS wild-type

cell lines [77]. The frequency of NTRK fusion and
NRG1 fusion is 0.3% and 0.5%, respectively [78].
Chromosomal rearrangement of the NTRK gene family
promotes the expression of tropomyosin receptor ki-
nases with chimeric rearrangements, which are charac-
terized by ligand-independent constitutive activation
[77]. These chimeric proteins signal via the same MAPK
and PI3K-AKT pathway as normal TRK proteins, and
they participate in possible crosstalk with tyrosine ki-
nases [79].
In solid tumours with NTRK gene fusions, TRK inhibi-

tors such as larotrectinib showed significant and lasting
antitumour activity, regardless of the tumour types (the
overall response rate was 75%, 95% CI 61–85%) [80].
Hyperactivated chimeric TRK proteins also represent
potential targets in NTRK fusion-positive PDAC. A
pooled analysis of clinical trials (NCT02122913,
NCT02637687, NCT02576431, NCT02097810,
NCT02568267, EudraCT, and 2012-000148-88) revealed
that the selective TRK inhibitors larotrectinib and
entrectinib are effective against solid tumours that
harbour NTRK gene fusions, including PDAC (the laro-
trectinib response rate was 79%, 95% CI 72–85%; and
the entrectinib response rate was 57%, 95% CI 43.2–
70.8%), and larotrectinib and entrectinib have received
the FDA breakthrough designation of targeting NTRK
fusion-positive solid tumours [81, 82]. Next-generation
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TRK inhibitors, such as selitrectinib and repotrectinib,
are being developed to address on-target resistance [83].
NRG1 is a direct ligand of ERBB3 and ERBB4 recep-

tors; accordingly, various NRG1 fusions initiate PDAC
via the overactivation of ERBB receptor signalling path-
way [84].
The ectopic ERBB signalling pathway, including con-

stitutive activation of MEK, ERK, and PI3K, represents a
potentially promising target in NRG1 fusion-initiated
KRAS wild-type PDAC [85]. The anti-ERBB3 antibody
GSK2849330 and pan-ERBB inhibitors afatinib and nera-
tinib impaired cell proliferation in multiple cancer cell
lines with NRG1 rearrangements. An anti-ERBB3 anti-
body led to tumour regression in an ovarian cancer-
derived xenograft model, suggesting that the selective in-
hibition of ERBB3 may exert more potent antitumour ef-
fects than pan-ERBB inhibitors [86–88]. MCLA-128
(zenocutuzumab) docks on ERBB2 and blocks the bind-
ing of an NRG1 fusion protein to ERBB3. The effective-
ness of MCLA-128 has been confirmed in patients with
PDAC harbouring an NRG1 fusion [89]. Moreover, a
phase II clinical trial of MCLA-128 in patients with solid
tumours expressing an NRG1 fusion has been launched
(NCT02912949).

Tumour suppressors in PDAC and therapeutic
strategies
Dysfunctional TP53 and its reactivators
In contrast to the direct stimulation of oncogenes,
tumour suppressors were originally designed to restrain
tumorigenesis. Notably, p53 is a transcription factor that
regulates the expression of several genes, and its bio-
logical functions include the inhibition of cell prolifera-
tion by inducing p21 expression, promoting the
apoptosis of tumour cells by stimulating Bax expression,
maintaining genetic stability, and inhibiting tumour vas-
cularity [90, 91]. TP53 is the most commonly inactivated
tumour suppressor in PDAC. Approximately 70% of pa-
tients with PDAC harbour alterations in the TP53 gene
[23, 26].
TP53 reactivators include cys-targeting agents such as

CP-31398 and APR-246, Zn2+ chelators such as COTI-2,
and other proteins that potentially stabilize p53, help
p53 refold, or inhibit the aggregation of aberrant p53
[92]. APR-246 (PRIMA-1MET) performed well in block-
ing the growth of haematological malignancies, prostate
cancers and oesophageal adenocarcinomas [93, 94].
COTI-2 also exhibited potency in TP53-mutant squa-
mous cell carcinoma [95]. Further studies are needed to
verify whether these reactivators improve the prognosis
of patients with TP53 mutant PDAC, and a clinical trial
of COTI-2 is ongoing (NCT02433626). In addition to re-
activation, the inhibition of murine double minute 2
(MDM2) is another emerging tactic for targeting TP53-

mutant tumours. The p62-NRF2-MDM2 axis is involved
in tumour progression and programming [96], and
MDM2 antagonizes p53 through direct interaction or
ubiquitin-dependent degradation [97]; therefore, the in-
hibition of MDM2 may increase the activity of p53 and
restrain p53 mutant cancers [98]. Recent studies have
confirmed the efficacy of MDM2 inhibitors, such as
Nutlin, MA242, SP141 and MI-319, in vitro and in vivo
[99–102]. However, clinical trials of MDM2 inhibitors in
patients with PDAC are currently lacking.

Dysfunctional CDKN2A and CDK4/6 inhibitors
CDKN2A is a multifunctional gene that produces p16
and p19 to arrest the cell cycle at the G1/S checkpoint
through a CKD4/6-regulated mechanism [103], and the
proteins bind to MDM2 to block the reduction in p53
levels [16]. Approximately 60% of patients with PDAC
harbour CDKN2A mutations [23, 26], with an odds ratio
of 12.33, indicating that germline mutations in CDKN2A
are associated with a high risk of developing PDAC
[104].
CDK4/6 is a potential target in CDKN2A-deficient tu-

mours [105], [106]. Ribociclib and palbociclib have
already shown efficacy and safety in metastatic breast
cancer and liposarcoma [107, 108]. The efficacy of
CDK4 inhibitors has also been confirmed in PDAC pre-
clinical models [10–111], and related clinical trials
(NCT02501902) are underway. Researchers have postu-
lated that CDK4/6 inhibitors, which exert a limited anti-
tumour effect as a monotherapy, show greater promise
when combined with other targeted agents [112]. For in-
stance, CDK4/6 inhibitors block the DNA repair ma-
chinery, increasing the sensitivity of PDAC cells to
PARP inhibitors [113]. In addition, the combined inhib-
ition of CDK4/6 and MEK modulates the PDAC micro-
environment, increasing the sensitivity of PDAC cells to
immune checkpoint blockade [70]. The application of
abemaciclib and YAP1 or HuR inhibitors also exerts a
synergistic inhibitory effect on PDAC cell lines [114].

Dual role of SMAD4 in tumorigenesis and the tumour-
stroma interaction
Approximately 40% of patients with PDAC harbour
SMAD4 mutations [16, 23, 26]. SMAD4 mediates the
pleiotropic signalling network downstream of the trans-
forming growth factor-β (TGF-β) pathway and exerts
paradoxical effects on tumorigenesis. SMAD4 prevents
the tumour-promoting activity of proinflammatory cyto-
kines and induces cell cycle arrest and apoptosis in pre-
cancerous cells. In PDAC, however, SMAD4 mutations
interfere with the trimeric assembly of its C-terminal do-
main, which is important for its transduction activity
[115], therefore preventing the normal transduction of
TGF-β signals. Thus, its role switches from a suppressor
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to a promoter in precancerous cells [116]; moreover,
TGF-β activity in mast cells induces cancer resistance to
gemcitabine [117], and TGF-β suppresses the activity of
normal immune cells, helping cancer cells escape from
the immune system [118].
The TGF-β SMAD4 signalling pathway mediates the

tumour-stroma interaction. PDAC has two distinct
epithelial-mesenchymal transformation (EMT) subtypes,
the complete EMT and partial EMT, and the latter is
speculated to result in an increased metastasis rate via
the formation of clusters of circulating tumour cells
[119]. Cancer-associated fibroblasts secreting TGF-β
may induce the partial EMT and switch PDAC prolifera-
tion phenotypes, contributing to PDAC heterogeneity
[120]. PDAC with an impaired TGF-β-SMAD4 signalling
pathway per se may modulate the fibrotic response
and mechanophenotype [121], indicating that molecu-
lar alterations in tumours not only control PDAC
progression but also reprogram the metabolic pheno-
types of cells in the TME. Heterozygous mutation of
SMAD4 attenuates the metastatic potential of PDAC
cells while increasing their proliferation. Reportedly,
SMAD4 is also correlated with glucose transporter
expression and matricellular fibrosis. Clinical studies

have confirmed that SMAD4 inactivation is associated
with a poor prognosis [122, 123].
Because of the dual roles of SMAD4 in cancer cells,

agents have been designed to inhibit rather than activate
TGF-β in SMAD4-deficient tumours [124, 125]. Galuni-
sertib, a TGF-β inhibitor, showed efficacy in a preclinical
investigation [126]. Phase I/II trials showed that the
combined application of galunisertib and gemcitabine
prolonged OS (estimated HR = 0.796) [127, 128].

Roles of SMAD4 and related molecules in PDAC
subtyping
The RUNX3 expression level is strongly correlated with
the SMAD4 status. Accordingly, RUNX3 also functions
as both a tumour suppressor and promoter in PDAC
and regulates the balance between cancer cell prolifera-
tion and dissemination. RUNX3 combined with DPC4
helps distinguish PDAC subtypes and enables more pre-
cise clinical decisions [129]. In SMAD4-negative PDAC,
PGK1 is selected as the decisive gene to determine the
PDAC metabolic phenotype and balance metastasis and
proliferation. Nuclear PGK1 determines the metastatic
potential of PDAC cells, thus helping to predict

Fig 2 Various factors could cause DNA single-strand breaks (SSBs). SSBs are repaired by poly (ADP-ribose) polymerase (PARP) through the base
excision repair (BER) mechanism. Therefore, the application of PARP inhibitors will enable BER and cause many SSBs. These lesions will transfer to
DNA double-strand breaks (DSBs) during cell proliferation. DSBs are repaired by BRCA through the gene conversion (GC) pathway in normal cells.
However, in BRCA-loss cancer cells, DSBs cannot be repaired and will lead to fatal genomic instability
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metastatic patterns of PDAC cells and providing guid-
ance for precise therapy [130].

Role of epigenetics in PDAC
In a recent genomic analysis, the molecular features of
PDAC were reclassified into four subtypes, among which
the squamous subtype correlated with hyper-
methylation and concordant downregulation of genes
that regulate endodermal cell differentiation [131]. His-
tone methylation both induces and represses gene ex-
pression. Based on accumulating evidence, alterations in
histone methylation modulate multiple biological pro-
cesses. Polycomb repressive complex 2-mediated histone
H3 lysine 27 trimethylation (H3K27me3) is correlated
with transcriptional repression [132]. Dimethylases such
as KDM6A regulate endoderm differentiation by remov-
ing the aforementioned H3K27me3 methylation mark.
During endoderm differentiation, KDM6A upregulates
WNT3 expression in the early stage, while increasing
DKK1 expression in the late stage. Therefore, KDM6A
exerts dual effects on the WNT pathway and plays a cell
identity-safeguarding role [132].
The KMT2C(MLL3)-KDM6A(UTX)-PRC2 regulatory

axis modulates the expression of various downstream
tumour suppressor genes, and thus the inactivation of
KDM6A results in the activation of super-enhancers and
contributes to the squamous subtype of PDAC in fe-
males [133]. UTY compensates for the KDM6A defi-
ciency in males, and simultaneous inactivation of
KDM6A and UTY will also induce the formation of the
squamous subtype of PDAC. Accordingly, resetting the
balance of this axis represents a new approach for PDAC
therapy.
In vitro and in vivo trials have confirmed that

GSK126, an EZH2 inhibitor, rescues the expression of
downregulated genes in MLL3 knockdown cells, indicat-
ing that EZH2 represents a potential therapeutic target
for MLL3 mutant cancers [133]. A deficiency in KDM6A
also confers sensitivity to bromodomain and extra-
terminal domain (BET) inhibitors such as JQ1 in PDAC.
BET inhibitors restore the cell identity by reducing the
activity of the MYC pathway and decreasing p63 levels
[134]. Combined inhibition of BET and histone deacety-
lases exerted synergistic effects on reducing cell viability
[131]. Future investigations of therapeutics targeting
genes that regulate epigenetics are intriguing.

DNA damage repair and synthetic lethality
Cells with DNA damage may ultimately die or acquire
oncogenic potential; thus, multiple mechanisms have
been established to prevent such lethal or oncogenic
DNA lesions [135]. BRCA is implicated in assisting the
recombinase function of RAD51 in the gene conversion
(GC) pathway to repair DNA double-strand breaks

(DSBs) [136–138]. PARP-1 is involved in the base exci-
sion repair (BER) pathway to repair DNA single-strand
breaks (SSBs), and thus its inhibition will lead to a fail-
ure to repair these DNA lesions, which subsequently re-
sults in DSBs when a DNA replication fork is
encountered [139]. Thus, the application of PARP inhib-
itors to BRCA-deficient cells will cause significant lethal
effects (Fig. 2). PDAC has been divided into four sub-
types according to the structural rearrangements, and
the unstable subtype is most sensitive to DNA-damaging
agents [140].
Synthetic lethality was discovered in fruit flies and yeast

decades ago [141, 142]. If two genes have collaborative
biological functions, an organism in which either gene
alone is perturbed is viable, whereas the simultaneous per-
turbation of both genes causes a synthetic lethal effect.
Therefore, the identification of deletion mutations in
genes that are implicated in a certain synthetic lethality in
tumours and then inhibiting their counterparts is a feas-
ible treatment to selectively target tumour cells [143].
BRCA is an ideal synthetic lethal target. BRCA-

deficient cells repair DSBs through error-prone pathways
that contribute to genomic instability, resulting in cell
death or oncogenesis [144–146]. Individuals with BRCA
germline mutations have a remarkably increased risk of
pancreatic cancers [137], breast cancer, and ovarian can-
cer [147]. The frequency of BRCA mutations is approxi-
mately 5.9–7.2% in PDAC [148–150], suggesting that a
certain group of patients with PDAC may benefit from
PARP inhibitors.
PARP inhibitors have already shown notable efficacy

against other refractory BRCA mutant solid tumours
[151–154]. Olaparib, a PARP inhibitor, was efficacious
in a single-arm phase II trial [152]. More recently, a pro-
spective phase III trial (the POLO trial, Pancreas Cancer
Olaparib Ongoing, NCT02184195) was performed to
evaluate the efficacy of olaparib in patients with BRCA
mutant metastatic PDAC [155]. The PFS was apparently
increased in the olaparib group (7.4 months versus 3.8
months, HR = 0.53, P value = 0.004). Significant differ-
ences in other indicators, including OS, second PFS and
the objective response rate, were not observed between
the groups. The POLO trial also verified the safety of
olaparib [153, 156].
Considering the poor prognosis of patients with

PDAC, improving the OS may be more meaningful than
improving PFS; nevertheless, the prolonged PFS sug-
gested that a subgroup of patients with metastatic PDAC
carrying BRCA mutations may benefit from olaparib
maintenance therapy [157]. PARP inhibitors require
more rigorously designed trials to confirm their efficacy
against BRCA mutant PDAC.
Synthetic lethality exploits the intrinsic deficiency of

tumours, exhibits high selective toxicity and offers a
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wide therapeutic window. For example, SMARCA, MYC
and ARID also exert vital biological functions; therefore,
treatments exploiting their deficiency in tumour cells
will provide a new direction for precisely targeted ther-
apy in certain PDAC subgroups.

The immunosuppressive microenvironment and
immunotherapy in patients with PDAC
The human immune system recognizes and kills incipi-
ent tumour cells. Correspondingly, a critical point in
tumour formation is evading immune surveillance [158].
Cancer cells escape immune destruction through mul-
tiple approaches, including tumour-associated antigen
modulation, the acquisition of low immunogenicity, and
induction of an immunosuppressive TME. According to
a transcriptomics analysis, a proinflammatory immune
component already exists in low-grade preneoplastic le-
sions [19]. During PDAC progression, the TME trans-
forms into an immune-evading phenotype, and various
types of immune cells are induced to become anergic or
immunosuppressive [121, 159–161]. The major barrier
of immunotherapy in PDAC has been the fibrotic
stroma, which forms a physical barrier to prevent
lymphocyte infiltration [162]. As our understanding of
oncology and immunology improves, immunotherapy is
predicted to remove these tumour immune-resistant
mechanisms and restore the normal antitumour immune
response.

Chimeric antigen receptor T cells (CAR-T)
CAR-T is a hotspot of immunotherapy. The autologous
T cells of patients are isolated and reprogrammed to
precisely target tumour-associated antigens [163]. CAR-
T has already proven to be effective against haemato-
logical neoplasms [164], and the FDA has approved
Kymriah and Yescarta, two CAR-T drugs targeting
CD19-expressing cancer cells, for clinical application
[165, 166]. In addition to CD19, other characteristic sur-
face biomarkers of solid tumours also have the potential
to be designed as CAR-T therapeutic targets, as shown
in Table 2. For example, the diverse tumour-specific gly-
cosylated antigens provide a roadmap for CAR-T targets
[167, 168]. CAR-T targeting the abnormal O-
glycosylation site, i.e. the Tn and STn antigens on
MUC1, has already been shown to inhibit the growth of
PDAC cell lines [169] and control PDAC xenograft
growth in murine models [170]. The combination of
CEA-CAR-T with rhIL-12 exerted significant antitu-
mour effects in vitro and in vivo [171], and a phase II/III
trial (NCT04037241) to evaluate the efficacy of CEA-
CAR-T is recruiting patients. CD133 is a marker of can-
cer stem cells and is related to tumour metastasis and
recurrence; a phase I trial (NCT02541370) confirmed
the safety of CAR-T-133 in patients with advanced

metastatic malignancies [172]. Mesothelin (MSLN) is
implicated in tumour invasion and is widely overex-
pressed in solid tumours, including PDAC [173]. The
targeting of mesothelin by CAR-T controls the meta-
bolic active volume in murine models [174], and a phase
I trial (NCT02159716) suggested that MSLN CAR-T is
safe in patients with solid tumours, including PDAC
[175]. Moreover, dual-receptor CAR-modified T cells
that simultaneously recognize CEA and MSLN were de-
signed to attenuate the “on-target, off-tumour” toxicity
[176]. The appealing KRAS protein is also involved in
the exploration of CAR-T; experiments using CAR-T
targeting mutant KRAS G12D suggested that the loss of
heterozygosity at the HLA may reduce the efficacy of
immunotherapy, and a phase II trial (NCT01174121) of
this CAR-T is ongoing [177]. HER2/ERBB2 is a trans-
membrane protein that induces tumour initiation and
progression; therefore, HER2 potentially represents an
ideal target, and the safety of CAR-T-HER2 has been
confirmed in a phase I trial (NCT01935843) [178]. In
addition, a study used switchable CAR-T targeting
HER2 to increase its efficacy and reduce its toxicity
[179]. Programmed cell death protein-1 (PD-1) is a fam-
ous immune checkpoint receptor that is involved in
tumour immune evasion. In addition to small molecule
inhibitors, chPD1 T cells have been designed to target
PD1 precisely, and a preclinical study observed protect-
ive antitumour responses of chPD1 T cells in multiple
models of solid tumours [180]. B7-H3 overexpressed on
the PDAC cell surface is another attractive target, xeno-
graft PDAC models certified the effectiveness of CAR-T
targeting B7-H3, and 4-1BB co-stimulation enhanced
this antitumour activity [181].

Antibody-drug conjugates and bispecific T-cell engagers
In addition to CAR-T, antibody-drug conjugates (ADC) and
bispecific T-cell engagers (BiTE) are also designed to confer
selective toxicity to PDAC cells. ADC combine antibodies
against tumour-specific antigens with cytotoxic agents;
hence, cell toxins are able to precisely target cancer cells.
The most common cell toxins are microtubule-

disrupting agents. For example, DMUC5754A conjugates
an anti-MUC16 antibody to monomethyl auristatin E
(MMAE); however, it was ineffective at treating patients
with PDAC in phase I trial [182]. MLN0624 conjugates
anti-guanylyl cyclase C to MMAE, and it is reported to
have a limited benefit for patients with PDAC [183]. A
glypican-1 antibody has been conjugated to monomethyl
auristatin F (MMAF) and significantly inhibits the
growth of xenografts derived from patients with PDAC
[184]. Anetumab ravtansine conjugates an anti-
mesothelin antibody to the tubulin inhibitor DM4, and
it exhibited great tolerance in a phase I trial and war-
rants future investigation [185].
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In addition to cytoskeleton-disrupting agents, other
drugs have also been conjugated to antibodies, such
as DS-8201a, which conjugates a topoisomerase I in-
hibitor with HER-2 antibodies. A phase I trial sup-
ported the use of DS-8201a as a potentially promising
treatment [186].
BiTEs simultaneously bind tumour-associated antigens

and the CD3 epitope on the T cell surface, forming an
immune synapse and resulting in the targeted lysis of
tumour cells [187]. For example, MT110 (solitomab)
links EpCAM with CD3 and redirects T cells to select-
ively kill PDAC cells [188]. However, a phase I trial re-
vealed adverse events of solitomab and prevented dose
escalation to therapeutic levels [189].

Immune checkpoint inhibitors
Immune checkpoint inhibitors, such as ipilimumab and
nivolumab, also show potential in antagonising tumours
[190]. An increasing number of trials have been designed
to combine PD-1 or programmed cell death 1 ligand 1
(PD-L1) inhibitors with other treatments [191]. How-
ever, only a subgroup of tumours are sensitive to im-
mune checkpoint blockade; thus, indicators are required
to guide the treatment more efficiently [192]. The
tumour mutational burden exhibits a strong linear cor-
relation with the objective response rate to PD-1 inhib-
ition. PDAC with a low number of genomic mutations is
more resistant to PD-1 inhibitors than PDAC with a
high number of genomic mutations [193]. A high degree

Table 2 Tumour-associated antigens and corresponding CAR-Ts, ADCs or BiTEs

Tumour-associated
antigens (targets)

Biological function Agent Study phase Research tumour type Reference

Tn-MUC1
Sialyl-Tn-MUC1

Alter cancer cell
adhesion and motility

5E5 CAR T Mouse Model Leukemia, PDAC, Breast
cancer

2016, Immunity

B7-H3 T cell co-stimulatory
molecule

B7-H3. CAR T Patient derived
xenograft

PDAC, Ovarian cancer,
Neuroblastoma

2019, Cancer Cell

Mesothelin Tumour local invasion
and metastasis

MSLN CARs Phase I Mesothelioma,
Ovarian carcinoma,
PDAC

NCT02159716

Anetumab ravtansine Phase I Mesothelioma,
Ovarian carcinoma,
PDAC, etc

NCT03102320

CEA Tumour surface
biomarker

CEA-CAR-T Mouse models Colorectal cancer, Gastric
cancer, PDAC

2019, Cancer Medicine

Phase II/III PDAC NCT04037241

Mesothelin & CEA dCAR-T Cell models PDAC 2018, Journal of Hematology
and Oncology

KRAS G12D
HLA-C*08:02

Tumour formation
and progression

CTL targeting KRAS
G12D

Phase II Metastatic cancers
(Colorectal cancer,
Glioblastoma, PDAC, Ovarian
cancer, Breast cancer)

2016, New England Journal of
Medicine
NCT01174121

HER2/ERBB2 Tumorigenesis and
tumour proliferation

Switchable CAR T
against HER2

Xenograft model PDAC 2019, Gut

CART-HER2 Phase I Biliary tract cancer, PDAC NCT01935843

DS-8201a Phase I Solid tumors 2016, Clinical Cancer Research

CD133 Tumour stem cells
marker

CAR T-133 Phase I Hepatocellular carcinoma,
Colorectal carcinoma, PDAC

NCT02541370

PD-1 Immune checkpoint chPD1 T cells Mouse model Solid tumors (melanoma,
renal cancer, liver cancer,
PDAC, etc.)

2020, Immunology

MUC16 Tumour surface
biomarker

DMUC5754A Phase I Ovarian cancer, PDAC NCT01335958

Guanylyl cyclase C Membrane receptor MLN0624 Phase II PDAC NCT02202785

Glypican-1 Cell surface
proteoglycan

GPC-1-ADC Patient derived
xenograft

PDAC 2020, British Journal of Cancer

EpCAM Cell adhesion MT110 Phase I Colorectal cancer, Ovarian
cancer, Gastric cancer, Lung
cancer, Prostate cancer

NCT00635596

PDAC pancreatic ductal adenocarcinoma; CAR-T chimeric antigen receptor T cells; ADC antibody-drug conjugate; BiTE bispecific T-cell engager; MSLN Mesothelin;
CTL cytotoxic T lymphocytes; PD-1 programmed death-1 receptor
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of microsatellite instability (MSI-H) results in a high
tumour mutational burden [194]. Therefore, mismatch
repair deficiency (dMMR) and subsequent MSI-H are
good predictors of the efficacy of PD-1 or PD-L1 inhibi-
tors [195]. The latest phase II KEYNOTE-158 trial re-
vealed a benefit of PD-L1 inhibitors in combination with
pembrolizumab in patients with MSI-H/dMMR cancers
(the objective response rate in the pancreatic cancer sub-
group was 18.2%, 95% CI 5.2–40.3%) [196]. Approxi-
mately 1% of patients with PDAC exhibit dMMR/MSI-
H; therefore, the clinical value of applying PD-1 or PD-
L1 antibodies in PDAC is limited.

Conclusions and prospects
Targeted therapy aims to kill cancer cells with high se-
lectivity, and thus its key goals are recognizing certain
patient subgroups and identifying targets that are spe-
cific to tumours. Advances in NGS have facilitated the
PDAC diagnosis and contribute to the categorization of
PDAC into different subtypes. In PDAC, the four major
driver genes and their pleiotropic signalling networks
provide a framework for exploring ideal targets. Further-
more, low-frequency mutated genes with vital biological
functions help discriminate certain PDAC subtypes and
guide future precision oncology (Table 3).
KRAS is undoubtedly an attractive target in PDAC.

Specific KRAS mutant residues, such as the cysteine
residue in KRAS G12C, may be modified by small-
molecule compounds such as MRTX849 and ARS853.
Furthermore, RNA interference and exosomes are being
developed to directly target KRAS.
KRAS-related molecules and pathways are also re-

search hotspots. Researchers have attempted to target
related molecules, such as EGFR, MEK and PI3K.
With the exception of erlotinib and nimotuzumab,
EGFR inhibitors all failed in clinical trials, indicating
the presence of underlying mechanisms in PDAC to
resist EGFR inhibitors. Trials aimed at evaluating the
efficacy of pan-ERBB inhibitors, such as afatinib, in
PDAC are underway. In addition, the combination of
EGFR inhibitors with drugs targeting multiple mole-
cules may be a more promising approach. Monother-
apy with MEK inhibitors, such as selumetinib and
trametinib, did not improve the prognosis of patients
with PDAC in clinical trials. An emerging trend is to
combine MEK inhibitors with other agents, such as
ABT-263, BKM120, SHP099, and ulixertinib. MEK
also participates in modulating the TME and regulat-
ing the EMT in PDAC, and thus can be utilized in
various therapeutic strategies. Based on the aforemen-
tioned research outcomes, future studies targeting
KRAS-related pathways may focus on interventions
targeting multiple dysregulated molecules and eluci-
dating the resistance mechanisms.

Gene fusions, such as NRG1 and NTRK, are important
oncogenes in KRAS wild-type PDAC, and hyperactivated
chimeric TRK proteins and the ectopic ERBB signalling
pathway represent potential therapeutic targets in pa-
tients with PDAC presenting aberrant NTRK and NRG1
function, respectively.
Mutations in tumour suppressors, mainly alterations

in TP53, SMAD4 and CDKN2A, also contribute to
tumorigenesis in PDAC. These molecules are implicated
in sophisticated molecular networks and play intricate
roles in tumour initiation and progression; thus, many
possible strategies are potentially useful to target these
proteins. Agents have been developed to directly reacti-
vate tumour suppressors or target-related molecules,
such as MDM2, CDK4/6 and TGF-β. Their success in
other tumours are expected to be repeated in PDAC,
and their preclinical achievements in PDAC are also ex-
pected to transfer to clinical applications. Newly devel-
oped therapeutic strategies, such as gene editing and
synthetic lethality, are conceivable dark horses that are
potentially useful for targeting these intrinsically defi-
cient cancer cells, but further trials are required to con-
firm their potential.
Epigenetic genes regulate chromatin modulation, and

therefore control the expression of other genes, suggest-
ing that epigenetic genes are potential therapeutic tar-
gets. BET inhibitors and EZH2 inhibitors were designed
to rescue the dysregulated KMT2C(MLL3)-
KDM6A(UTX)-PRC2 regulatory axis and achieved pre-
liminary success in preclinical models. Cells that harbour
a deficiency in the DNA repair machinery have a higher
risk of becoming cancerous. Correspondingly, PARP in-
hibitors are designed to selectively kill BRCA mutant
cancer cells. Recently, partial efficacy of olaparib was
confirmed in clinical trials. Although the results were
not ideal, the associated controversies have prompted
more investigations to achieve synthetic lethality in
PDAC.
Immunotherapy remains a future breakthrough in the

treatment of PDAC. A growing number of CAR-T tar-
gets have been identified, such as mesothelin, CEA,
CD133, Tn/STn, B7-H3, KRAS G12D, PD-1 and HER2.
ADC and BiTEs have also been developed to target
PDAC cells precisely. The positive results of these treat-
ments in preclinical studies suggest promising applica-
tions, and many of these molecules are being
investigated in ongoing clinical trials. In addition to
CAR-T therapy, immune checkpoint blockade, such as
PD-1 or PD-L1 antibodies, also shows potential. The
tumour mutational burden has been suggested to be re-
lated to the objective response rate to PD-1 inhibitors,
and pancreatic cancer with a low number of genomic
mutations is generally resistant to PD-1 or PD-L1 inhibi-
tors. Notably, dMMR/MSI-H may predict the efficacy of
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PD-1 or PD-L1 inhibitors, but only 1% of patients with
PDAC exhibit dMMR/MSI-H. Nonetheless, the rapid
development of immunotherapy is still anticipated.
Targeted therapy will definitely provide diverse thera-

peutic strategies for PDAC and improve its poor prog-
nosis. The high frequency of mutations in the four
major driver genes indicates their great importance;
therefore, future directions of precise oncology in PDAC
will still focus on the four major driver genes and related
signalling pathways. Low-frequency mutant genes will
also help to distinguish curable subgroups of patients
with PDAC who harbour mutations in specific targets,
and they will thus be treated more accurately. Hopefully,
PDAC will be completely treatable using these
approaches.
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