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Noncoding RNAs (ncRNAs) are a large segment of the transcriptome that do not have apparent protein-coding
roles, but they have been verified to play important roles in diverse biological processes, including disease
pathogenesis. With the development of innovative technologies, an increasing number of novel ncRNAs have been
uncovered; information about their prominent tissue-specific expression patterns, various interaction networks, and
subcellular locations will undoubtedly enhance our understanding of their potential functions. Here, we
summarized the principles and innovative methods for identifications of novel ncRNAs that have potential
functional roles in cancer biology. Moreover, this review also provides alternative ncRNA databases based on high-
throughput sequencing or experimental validation, and it briefly describes the current strategy for the clinical
translation of cancer-associated ncRNAs to be used in diagnosis.
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Background

More than half a century after being considered as the
central component in the central dogma of biology,
RNA has been accepted to play various essential roles in
different biological processes [1-4]. With recent devel-
opments in sequencing methods and information ana-
lysis, an increasing number of novel ncRNAs have been
identified, including long noncoding RNAs (IncRNAs)
[5, 6], circular RNAs (circRNAs) [7, 8], and novel small
ncRNAs [9-11]. Growing studies have uncovered the
characteristics of these ncRNAs, including their origins,
mechanisms of generation, structures, and potential
functions [6, 8, 12], which can be summarized into a
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principle for the identification of known species of
ncRNAs or even novel ncRNA discovery. As many
ncRNAs exhibit highly tissue-specific expression pat-
terns and important roles in biological processes related
to cancer [13-19], ncRNAs have been considered as
ideal therapeutic targets for cancer diagnosis and treat-
ment [20-22]. Due to the enormous transcription poten-
tial of mammalian genomes and multiple mechanisms of
ncRNA generation [8, 9, 23, 24], the ncRNA world is
still full of infinite mysteries, in which unknown species
of RNAs could play important roles. Technological
innovation makes it possible to discover more novel
functional ncRNAs.

This review focuses on the principles and innovative
technologies currently available for the discovery of
novel ncRNAs or functional ncRNAs within specific sub-
cellular compartments. The particular classes of ncRNAs
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that are either novel transcripts or “old dogs” performing
“new tricks” are especially emphasized. Moreover, this
review also provides an overview of ncRNA-associated
databases and applications of cancer-related ncRNA
identification for therapeutic strategies.

Principle for novel ncRNA discovery

Early sequencing data revealed that the mammalian gen-
ome encodes many thousands of noncoding transcripts,
especially those that resemble message RNAs (mRNAs)
in length and splicing structure but cannot code for
proteins, revealing that the world of RNA genes is far
more complex than originally imagined [25]. Here, we
summarized the features into a principle that could be
used for the identification of known species of ncRNAs
or even for novel ncRNA discovery.

Chromatin signatures for novel ncRNA discovery

The definition of genes has become a major hurdle
following the sequencing of the human genome. As his-
tones can be modified in different ways that are indica-
tive of the underlying DNA functional state [26-29],
chromatin modifications of the corresponding genomic
region could represent important biological information
for the identification and classification of noncoding
transcripts. The increased occurrence of trimethylation
of lysine 4 of histone 3 (H3K4me3) at the promoter re-
gions of transcripts and trimethylation of lysine 36 of
histone 3 (H3K36me3) along the entire transcribed
region is a signature for active transcription; these oc-
currences are always found at active sites of mRNA
transcription [27, 28]. By searching for H3K4me3/
H3K36me3 signatures that failed to overlap with known
genes, there was the identification of approximately 2500
regions in the human genome and approximately 1600
regions in the mouse genome that were actively tran-
scribed [30, 31]. However, the vast majority of these
intergenic regions with H3K4me3/H3K36me3 signatures
produced multi-exonic RNAs that had a little capability
to encode a conserved protein; they were termed as long
intergenic ncRNAs (lincRNAs) (Fig. 1a) [30, 32]. A frac-
tion of genes encoding ncRNAs display monomethyla-
tion of lysine 4 of histone 3 (H3K4m1) and histone H3
acetylation at lysine 27 (H3K27ac), which cover their
initiation sites, indicating that they are transcribed from
activated enhancers as enhancer-derived RNAs (eRNAs)
(Fig. 1a) [29, 33]. Although both lincRNAs and eRNAs
are categorized as IncRNAs because of their lengths,
distinguishing different classes of ncRNAs based on
distinct chromatin modifications is necessary because
specific ncRNAs generated from given gene regulatory
elements could function in classic modes [34, 35]. For
example, eRNAs are thought to play an important role
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in regulating the 3D architecture of chromosomes near
their site of transcription [34].

With developments in sequencing technologies and
bioinformatics analysis, novel ncRNAs generated from
alternative splicing processing or degradation of their
parent RNAs have been discovered [8, 9, 36]. This kind
of ncRNA does not have independent genomic regions
or transcriptional regulatory elements and can be
produced following parent gene transcription or degrad-
ation. Therefore, it is unable to accurately identify and
describe the characteristics of these kinds of ncRNAs at
the level of chromatin modification. As a typical ex-
ample, circRNAs are mainly generated from alternative
splicing of precursor RNA (pre-RNA), and then, they
form covalently closed loop structures [8, 37]. Exonic
circRNAs are produced from back-spliced exons of pre-
cursor linear RNAs, including mRNAs and IncRNAs,
and they account for a major portion of the circRNA
family. In addition, the intron lariats escaping from deg-
radation can also form intronic circRNAs. Although
there are some other variant forms of circRNAs, such as
circular formats of small nucleolar RNAs (snoRNAs)
and P RNA [38], the majority of circRNAs in humans
are mainly produced from actively transcribed mRNA
and IncRNA genes with H3K4me3-H3K36me3 signa-
tures [39, 40]. Interestingly, the junction site sequences
of circRNAs, such as circSTATBI in mice, have been
discovered to be inserted into an enhancer with active
H3K4mel signatures (Fig. 1a) [41]. The H3K4mel modi-
fications suggest that the functions of circRNAs in the
regulation of enhancer and genome structure by forming
pseudogenes, which may provide evidence for further
classification of circSTATB1 as a retrotransposed
circRNA (Fig. 1a) [41]. Although chromatin modifica-
tions cannot be used in the discovery of circRNAs, the
modification signatures may be useful for more detailed
classification of circRNAs.

In addition to circRNAs, there are many other novel
ncRNAs that are generated from the degradation of
typical transcripts from well-known genomic regions [9,
11, 42]. The excised intron-derived IncRNAs with
snoRNA-like ends (sno-IncRNAs) are formed when one
intron contains two snoRNA genes [42]. After splicing,
the sequences between two snoRNAs escape degrad-
ation, resulting in the accumulation of certain IncRNAs.
Another example is novel functional small ncRNAs,
such as small ribosomal RNA-derived fragments (rRFs)
[11], tRNA-derived small RNAs (tsRNAs) [9], and
snoRNA-derived RNAs (sdRNAs) [10], which are
derived from “old dogs” including ribosomal RNAs
(rRNAs), transfer RNAs (tRNAs), and snoRNAs. An
increasing number of discoveries of novel ncRNAs have
indicated the limitation of chromatin modification
signatures in novel ncRNA identification. However,
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Fig. 1 Principle for novel ncRNA discovery. a Identification and classification of ncRNAs based on chromatin signatures. Most mRNA-like lincRNAs
are generated from genomic regions with H3K4me3/H3K36me3 signatures; eRNAs originate from activated enhancers with H3K4me1/H3K27ac
signatures; the junction site sequences of circSTATB1 were reverse transcribed and inserted into an enhancer with active H3K4me1 signatures. b
Sno-IncRNAs maintain their stability by their classical stem-loop structures of snoRNAs. ¢ Alternative splicing within circRNAs. d A number of
novel small ncRNAs derived from rRNAs (rRFs), tRNAs (tsRNAs), and snoRNAs (sdRNAs) have also been found to be enriched in RNA-induced

chromatin signatures are still an available tool of ncRNA
classification for efficient investigation of their functions.

Principles for evaluating coding potential
As ncRNAs, especially IncRNAs and circRNAs, are likely
to contain open reading frames (ORFs) purely by chance,
it has been a challenge to determine whether a transcript
is noncoding [43]. As a growing number of studies have
shown that several IncRNAs and circRNAs can produce
functional micropeptides [44—47], it is necessary to
evaluate the RNA coding potential of novel ncRNAs.
The lack of evolutionary conservation in identified
OREFs is evidence for the absence of coding potential of
ncRNAs [48, 49]. Novikova et al. reported that a human
IncRNA, SRA, has different isoforms that either function
at the ncRNA level or produce proteins, and there is
higher evolutionary stabilization of the RNA structural
core than that of the translational product under
evolutionary pressure [50]. Another example is Xist, a
IncRNA involved in X chromosome inactivation in

mammals that originates from the protein-coding gene
Lnx3 [51]. Interestingly, the Lnx3 gene is still a protein-
coding gene in opossum; however, it has been trans-
formed into a noncoding transcript with frame-shifting
mutations in later vertebrates [51]. In addition, the lack
of homology to known protein domains and the inability
to template significant protein production are the other
important factors that are needed to be considered [48,
49]. These principles have been generalized to classify
ncRNA coding potential by scoring conserved ORFs
across diverse species with computational methods [52,
53], by searching for homology using protein-domain
databases [54], and by sequencing ncRNAs associated
with polyribosomes [55].

However, the coding potential of some novel ncRNAs,
especially circRNAs, could fail to be determined with the
principle mentioned above. Most circRNAs derived from
mRNA back-splicing lose translational capacity because
of the lack of effective ORFs or ribosome entry
approaches, while a few circRNAs from coding or
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Table 1 Characteristics of diverse sequencing methods

Classification  Techniques Short description Strengths of the approach Weakness Ref

Microarrays  Tiling A method based on probes for This approach can provide in-depth  Suffer from potential noise as a result  [56]

arrays discovering transcripts from specific  analysis of transcripts from target re- of weak binding or cross-
genomic regions. gions of genome. hybridization of transcripts to probes.
Microarrays A method based on a large number  Small size and high-throughput This method is not able to discover  [57]
of oligonucleotide probes for capabilities. novel transcripts.
performing quick global or parallel
expression analysis of transcriptome.

RNA-seq RNA-seq A technique that is currently the The method provides a global high- Its standard procedure is not suitable  [58]
most widespread sequencing throughput detection amd identifi- ~ for detection of RNAs less than 200
technology for both detecting RNA  cation of RNAs greater than 200 nt.  nt. It also suffer from sequence errors
expression and discovering novel at the reverse-transcription step or
RNAs. primer bias.

RNA A derivative technology combining ~ The method can specifically elevate  Suffer from disadvantages of both [59]
capture RNA-seqg with tilling arrays. the sequencing depth of target tiling arrays and RNA-seq.
sequencing regions.

sCRNA-seq Smart-seq A scRNA-seq method based on a Provide a full-length cDNA amplifi- ~ The limitations are lack of strand- [60]
full-length cDNA amplification cation of polyadenylated RNAs. specific identification, inability to read
strategy. transcripts longer than 4 kb and only

for polyadenylated RNAs.
DP-seq A scRNA-seq method using hepta- Suitable for smaller size samples or ~ Captured RNAs are limited to [61]
mer primers. transcripts longer than 4 kb. this polyadenylated RNAs.
approach also suppresses highly
expressed rRNAs in the cDNA
library.
Quartz-seq A scRNA-seq method which reduces Reduce background noise by using  The method is limited to detecting [62]
back ground noise. specially suppression PCR primers to  polyadenylated RNAs.
reduce side products.
SUPeR-seq A single-cell universal polyadeny- Detect polyadenylated and Relatively low sensitivity for [63]
lated tail-independent RNA nonpolyadenylated RNAs. Minimal ~ nonpolyadenylated RNAs.
sequencing. rRNAs contamination.
RamDA- A full-length total RNA-sequencing High sensitivity for Unknown [64]
seq method for analyzing single cells. nonpolyadenylated RNAs. It can also
uncover the dynamics of recursive
splicing.

Small RNA-  Small RNA- A type of RNA-seq that discriminate  Specifically detect and discover Adapter ligation bias lead to reverse  [65]

seq seq small RNA from larger RNA to better small or intermediate-sized RNAs transcription bias or amplification
evaluate and discover novel small with target sizes. bias.

RNAs.

Single-cell Small-seq A method which detect small RNAs ~ The method can detect small RNAs ~ The limination may be similar to [66]

small-RNA in a single cell. in a single cell. small RNA-seq.

sequencing

Nascent GRO-seq A method labeling nascent RNAs Detect nascent RNAs and provide a  The method is confounded by [67]

RNA-seq with 5Br-UTP and immunoprecipitat- genome-wide view of the location,  contamination due to nonspecific
ing RNAs for sequencing. orientation, and density of Pol II- binding, which could possibly result

engaged transcripts. in experimental bias.

SLAM-seq A method distinguishing nascent It is an enrichment-free method The oxidation condition caused [68]
RNA from total RNA via s*U-to-C which can avoid contamination in-  certain oxidative damage to guanine,
conversion induced by nucleophilic  duced by affinity purification. which may impact the accurancy of
substitution chemistry. sequencing.

Timelapse- A method distinguishing nascent It is an enrichment-free method The oxidation condition caused [69]

seq RNA from total RNA via s*U-to-C which can avoid contamination in-  certain oxidative damage to guanine,
conversion induced by an oxidative  duced by affinity purification. which may impact the accurancy of
nucleophilic aromatic substitution sequencing.
reaction.

AMUC-seq A method distinguishing nascent More efficient and reliable because  Unknown [70]
RNA from total RNA via transforming it has a minimal influence on the
s*U into a cytidine derivative using  base-pairing manner of other
acrylonitrile. nucleosides.

Identification GRID-seq A method that aims to Use a bivalent linker to ligate RNA  Usable sequence length for mapping  [71]

of RNA-

comprehensively detect and

to DNA in situ and provide exact

RNA is 18-23 bp. However, short
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Table 1 Characteristics of diverse sequencing methods (Continued)
Classification  Techniques Short description Strengths of the approach Weakness Ref
chromatin determine the localization of all profiles of RNA-chromatin sequence length can result in
interaction potential chromatin-interacting interactome. ambiguity in mapping.
RNAs.
iIMARGI A method providing a in situ iMARGI needs less number of input  Unknown [72]
mapping of RNA-genome cells and is suitable for paired-end
interactome. sequencing.
ChAR-seq A chromatin-associated RNA sequen- Uncover chromosome-specific dos-  The method needs more than 100 [73]
cing that maps genome-wide RNA-  age compensation ncRNAs, and million input cells.
to-DNA contacts. genome-wide trans-associated
RNAs.
Identification  CLASH A relatively early method that uses ~ Avoid noise from protein This method only detects the RNA- [74]
of RNA-RNA UV cross-linking to capture direct intermediate-mediated interactions.  RNA interactions base on proteins.
interaction RNA-RNA hybridization.
RIPPLIT A transcriptome-wide method for The method can capture 3D RNP This method only detects the RNA- [75]
probing the 3D conformations of structural information independent  RNA interactions base on proteins.
RNAs stably associated with defined  of base pairing.
proteins.
MARIO A method identifying RNA-RNA in-  This method can identify RNA-RNA  The method only detects the RNA- [76]
teractions in the vicinity of all RNA-  interactions in the vicinity of all RNA interactions base on proteins.
binding proteins using a biotin- RNA-binding proteins.
linked reagent.
PARIS Psoralen analysis of RNA interactions  Directly measure RNA-RNA interac-  Unknown [77]
and structures with high throughput  tions independent of proteins in liv-
and resolution. ing cells.
LIGR-seq A method for the global-scale map-  Provide global-scale mapping RNA-  Unknown [78]
ping RNA-RNA interactions in vivo. RNA interactions independent of
proteins in vivo
SPLASH A method providing pairwise RNA-  Map pairwise RNA interactions Unknown [79]
RNA partnering information in vivo with high sensitivity and
genome-wide. specificity, genome-wide.
RIC-seq RNA in situ conformation The method performs RNA Unknown [80]
sequencing technology for the proximity ligation in situ and can
global mapping of intra- and facilitate the generation of 3D RNA
intermolecular RNA-RNA interactions. interaction maps.
RNA A method based on massive- This method can detect multiple Unknown [81]
proximity  throughput RNA barcoding of parti-  RNAs in proximity to each other
sequencing cles in water-in-oil emulsion without ligation and is fit for
droplets. studying the spatial organization of
RNAs in the nucleus.
RNAs in FISSEQ A method that offers in situ Provide information of RNAs at Unknown [82]
protein information of RNAs at high- high-throughput levels.
complexes or throughput levels. Visualization.
xiiiljlfelzr Cefra-seq A method that physically isolates The methods have high sensitivity ~ The method is limited to isolation [83]
subcellular compartments and for low-abundance transcripts. protocols and the purity of resulting
identifies their RNAs. isolates.
APEX-RIP A method can map organelle- The technique can offer high Unknown [84]

associated RNAs in living cells via
proximity biotinylation combined
with protein-RNA crosslinking.

specificity and sensitivity in
targeting the transcriptome of
membrane-bound organelles.

noncoding transcripts could also obtain novel ORFs and
may be translated into new proteins [47, 85]. The defi-
ciency of coding-potential evaluation could be due to
the incomplete circRNAs databases across diverse
species, the complex mechanism of ribosome entry and
translational initiation of circRNAs [86], and the lack of
databases that document the information of new
peptides or proteins transcribed from novel templates

containing the sequences of circRNA junction sites.
Ribosome profiling has provided a strategy to identify
ribosome occupancy on RNA, which has been proposed
to be an available method for distinguishing noncoding
transcripts from coding ones [55]. Nevertheless, some
transcripts playing clear roles as ncRNAs have been de-
tected in ribosomes, indicating that an association of
RNA with a ribosome alone cannot be taken as evidence
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of protein-coding potential [87, 88]. These ribosome-
associated ncRNAs may serve as translational regulators
or may produce nonfunctional translation noise [89, 90].
Thus, experimental technologies such as mass spectrom-
etry proteomics have been used to improve the accuracy
of noncoding transcript definition [91].

Characteristics of known ncRNAs

With the development of sequencing methods and infor-
mation analysis, a vast number of diverse types of
ncRNAs have been identified, such as microRNAs (miR-
NAs), IncRNAs, circRNAs, and novel small ncRNAs
derived from well-known RNAs. Understanding the
characteristics of the known ncRNAs would be helpful
for novel ncRNA discovery.

NcRNAs are very heterogeneous in terms of their
length and conformation [92]. They can be separated
into 3 categories: (1) small ncRNAs (< 50 nt), including
miRNAs (19-25nt) [93], small interfering RNAs (siR-
NAs, 19-29nt) [94], piwi-interacting RNAs (piRNAs,
25-31 nt) [95], and other functional small RNAs such as
transcription initiation RNAs (tiRNAs, 17-18 nt) [96],
tsRNAs (14-36nt) [9], sdRNAs (17-24nt or > 27 nt)
[10], and sectional rRFs (15-81 nt) [11]; (2) intermediate-
sized ncRNAs (50-500 nt), including 55 rRNAs (~120
nt) [97], 5.8S rRNA (~150nt) [98], tRNAs (76—90 nt)
[99], snoRNAs (60-300nt) [100], and small nuclear
RNAs (snRNAs, ~150 nt) [101]; (3) long noncoding tran-
scripts greater than 500nt, including linear IncRNAs
[30] and circular circRNAs [40].

Most large ncRNAs, including IncRNAs and circRNAs,
have been reported to be tissue-specific and expressed at
relatively low levels [24, 102-104]. Different types of
ncRNAs have distinct structures that maintain their sta-
bility. The most abundant IncRNAs are transcribed by
RNA polymerase II (Pol II), and then, they undergo
mRNA-like posttranscriptional processes, leading to 5'-
caps and polyadenylated tails at their 3 ends [30].
However, studies of novel ncRNA identification that
were not based on polyadenylated tails have shown the
existence of nonpolyadenylated ncRNAs such as sno-
IncRNAs with snoRNA-like ends and circRNAs (Fig. 1b,
c) [42]. Several sno-IncRNAs have been reported to
stabilize their structures by interacting with classical
snoRNA binding proteins (snoRBPs) via the classical
stem-loop structures of snoRNAs (Fig. 1b) [105]. In
addition, circRNAs are processed to form covalently
closed loop structures without open terminals, which
makes them resistant to degradation by exonucleases,
causing them to have relatively high stability (Fig. 1c)
[8]. In contrast, most eRNAs are nonpolyadenylated
transcripts that have shorter half-lives than polyadeny-
lated IncRNAs and are difficult to discover according to
their even lower levels in organisms [24, 106].
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Intermediate-sized and small ncRNAs possess specific-
ally structural features as well, such as the conversed
stem-box structures of snoRNAs (C/D box or H/ACA
box) [100], unique 5'-caps of snRNAs (5'-trimethylgua-
nosine caps or 5’-monomethylphosphate caps) [101,
107], the cloverleaf-like secondary structure of tRNA
[99], and hairpin loop of miRNA precursor. Most types
of intermediate-sized and small ncRNAs do not have
specific modification at the 5" or 3’ ends, and they
maintain their stabilities via binding specific proteins to
form complexes. For example, snoRNAs stabilize their
structures by interacting with classical snoRBPs via the
classical stem-loop structures [108]. Another example is
miRNA, whose precursor yileds a miRNA:miRNA du-
plex with Dicer processing [109]. In most cases, only
one strand of the deplex is usually incorporated into the
RNA-induced silencing complex (RISC) to exist and
function, and the other free strand is normally degraded.
Together, RNA structures could affect their expression
levels in cells, which always influences the discovery of
potential novel ncRNAs.

Principle and strategy for identification of novel ncRNAs
Nowadays, increased types of ncRNAs have been de-
tected and identified by the development of next-
generation sequencing (NGS) [58], which can be roughly
divided into the process sections of sample preprocess-
ing, library preparation, sequencing, and bioinformatics.
Importantly, it shoud be noted that the ways of RNA
isolation and library preparation greatly affect the detec-
tion of target species of ncRNAs.

Organic reagent method using isothiocyanate/phenol/
chloroform or Trizol (Invitrogen) is an universial RNA
extraction way to obtain total RNA containing small and
intermediate-sized RNA. However, it has been reported
that phenol contamination has influences on RNA yields
and subsequent sequencing [110]. Spin column chroma-
tography using commerial kits without phenol can avoid
this contamination and obtain relatively high-quality
RNA from the same samples. However, silica-based spin
column chromatography fails to efficiently capture RNA
shorter than 200 nt, which leads to massive loss of small
and intermediate-sized ncRNAs and makes the way un-
suitable for small RNA-seq [111, 112]. In contrast, the
ways using spin column that can capture all RNA
greater than 10nt can be selected when we aim to
obtain total ncRNAs or specifically enrich small
ncRNAs. Choosing appropriate ways of RNA extraction
is important for identification of novel ncRNAs with a
specific size.

Library with appropriate RNA selection/depletion is
also pivotal in the detection of specific types of ncRNAs.
In library preparation for mRNA sequencing, RNAs with
polyadenylated tails are specifically isolated by
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hybridization with poly(dT) oligomers from nonpolyade-
nylated RNAs which include a vast number of rRNAs.
As a part of IncRNAs do not have polyadenylated tails,
polyadenylated tail selection can only capture mRNA-
like IncRNAs [113]. As for total IncRNA sequencing,
library preparation is generally dependent on rRNA de-
pletion methods. Next, the filtered RNAs are fragmen-
ted, reverse transcribed into cDNA by random primers,
and undergo end repair, sequencing adaptor ligation,
and size selection for subsequent sequencing. In this
way, not only IncRNA but also mRNA, circRNA, and a
part of intermediate-sized ncRNAs can be detected.
However, reverse transcription (RT) by random primer-
ing and size selection leads to the deficiency of small
ncRNAs such as miRNAs [114]. Depletion of linear
RNAs by Rnase R treatment for circRNA sequencing
and separation of RNAs with specific size by gel electro-
phoresis can specifically enrich target types of ncRNAs
for RNA-seq, which are as far as possible to reduce
interference signal from other transcripts. In addition,
due to the shortened size, small RNA is hard to be
successfully acquired through cDNA synthesis (first or
second cDNA synthesis) by random priming and be
always removed by size selection after sequencing
adaptor ligation [114]. Thus, in small RNA-seq, both
ends of the RNA fragments are firstly ligated to the
adapters and followed by the cDNA synthesis and library
construction. We also need to pay attention to the
effects of RNA modifications on library preparation,
which usually influence adapter ligation. For example, 5
caps of snRNAs shoud be removed before adapter
ligation. Selecting appropriate methods of library prepar-
ation is also important for identification of novel
ncRNAs [101, 107].

It is worth noting that alternative splicing processes
enable great complexity in transcripts from the same
genomic regions [115]. For linear ncRNAs, various
isoforms can be relatively easy to identify by RNA-seq.
Nevertheless, despite the identification of circRNAs
based on the junction site, extra sequence identification
is still needed to determine the actual sequences of
circRNAs because of potential circRNA variants being
generated from a single gene locus [116]. This issue re-
sults from alternative splicing that occurs within
circRNAs with multiple exons (Fig. 1c) [116]. All four
basic types of canonical alternative splicing were found
to occur in circRNAs as well: cassette exon, intron re-
tention, alternative 5" splicing and alternative 3" splicing
(Fig. 1c) [116]. For example, the human XPOI gene
locus has been demonstrated to contain a circRNA-
predominant cassette exon, the CAMSAPI gene locus
generates two cirRNA isoforms with or without a
retained intron, and the human EIF3] and PAIP2 gene
loci can also produce circRNAs containing both exon

Page 7 of 27

and intron sequences [104, 117, 118]. Other factors, such
as read-through transcription and the fusion of genes
derived from chromatin rearrangement, also generate
read-through circRNAs and fusion circRNAs, respect-
ively, which increase the diversity of ncRNAs [119, 120].

Traditionally well-known small noncoding RNAs,
including miRNAs, siRNAs, and piRNAs, function in
concert with the Argonaute (Ago) family of proteins to
regulate gene expression at the level of transcription,
mRNA stability, or translation [121, 122]. Interestingly,
sdRNAs were initially discovered from an analysis of
small RNAs associated with human Agol and Ago2
revealed by immunoprecipitation and RNA-seq (Fig. 1d)
[10]. In addition, a number of novel small ncRNAs de-
rived from both rRNAs (rRFs) and tRNAs (tsRNAs) have
also been found to be enriched in RNA-induced silen-
cing complexes (RISCs), and they function in a miRNA-
like pathway (Fig. 1d) [9, 11, 36]. Immunoprecipitation
of members of the Ago family proteins followed by small
RNA-seq has revealed a series of novel small ncRNAs
that play roles in RNA-induced target gene silencing.
These data suggested that functional ncRNAs in well-
known complexes should have more extensive sources
and that transcripts derived from canonical DNA re-
gions could have functions in addition to their classical
ones by interacting with nonclassical RNA binding pro-
teins (RBPs) or being located in novel complexes. This
method of identifying RNA found in specific complexes
or associating with subcellular components followed by
RNA-seq represents an ideal way to discover new species
of functional small ncRNAs. For example, the Vault
complex, a novel ribonucleoprotein that probably func-
tions in the nuclear export of large molecules, was iso-
lated and characterized in 1986 [123]. By analyzing the
components of Vaults, researchers discovered a novel
and single species of small ncRNAs that is 86-141 nt in
length, which was termed Vault RNAs (VRNAs) [124].
VRNAs that are derived from VTRNA genes by RNA
polymerase III (Pol III) have been reported to be associ-
ated with multidrug resistance and, interestingly, also be
the origin of miRNA-like small ncRNAs processed by
Dicer [125]. Another example of identification or RNAs
in complexes is snoRNAs, whose canonical functions are
generally considered to guide the pseudouridylation and
2'-O-methylation of rRNA in the nucleolus [126].
However, in situ global RNA interactions with DNA
identified by immunoprecipitation and RNA-seq showed
that snoRNAs represent a vast population and a high
enrichment in the chromatin-bound fractions, suggest-
ing the other potential functions of these well-known
small ncRNAs located in the nonclassical complexes
[71, 127, 128].

Lack of sequence conservation, low level or high
tissue-specific expression pattern, or derivation from
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canonical DNA sequences are potential factors that
make the discovery and identification of novel ncRNAs
difficult. We provided the identification principle of re-
cently discovered functional ncRNAs, which would be a
referential principle for novel ncRNA discovery. Import-
antly, recent technological developments, especially
specific sequencing technological developments, have
provided multiple approaches for the discovery and
study novel ncRNAs.

Approaches for discovering ncRNAs

Most ncRNAs, such as IncRNAs and circRNAs, have the
characteristics of spatiotemporal specificity and low
expression levels, which make it difficult to identify them
[24, 102-104]. Therefore, it is necessary for us to
purposefully choose the appropriate methods in sample
preparation and sequencing techniques. Here, we will re-
view innovative and novel sequencing methods that sig-
nificantly improve the process of RNA identification and
investigation, placing special emphasis on their advan-
tages and limitations (Table 1).

Tiling arrays and microarrays

Tiling array is an alternative and classic method for
discovering RNA [56]. This approach hybridizes comple-
mentary DNAs (cDNAs) to microarray slides containing
tiled oligonucleotide probes that are designed to
hybridize with nonrepetitive sequences of specific
genomic regions or the entire genome [56]. For example,
tiling arrays were used to specifically identify the poten-
tial transcripts from four human HOX gene clusters with
400,000 probes, leading to the discovery of intergenic
ncRNAs, including the well-known IncRNA HOX anti-
sense intergenic RNA (HOTAIR) [129]. Tiling arrays
can also provide in-depth analysis of alternative splicing,
polymorphism, and novel transcription site identification
by elevating the resolutions of designed probes [56, 130].
Nevertheless, because microarrays suffer from potential
noise as a result of weak binding or cross-hybridization
of transcripts to probes, tiling arrays have been replaced
by NGS technologies and now preferably serve as a sup-
plemental step for RNA-seq to increase the sequencing
depth of target regions.

Microarray is an important method for performing
quick global or parallel expression analysis of the tran-
scriptome in different cell/tissue types, experimental
systems, developmental stages, or pathological condi-
tions [57]. This classic method consists of a large num-
ber of oligonucleotide probes spotted on a solid surface
that are then allowed to hybridize to target sequences
from samples, which are further detected by fluores-
cently labeled target sequences. The intensity of fluores-
cence is used to quantify target sequences. Their small
size and high-throughput capabilities have brought
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microarrays to the forefront of RNomic research. How-
ever, this approach can only detect RNAs whose
sequences are known and have specific hybridization
probes; this method is not able to discover novel
transcripts.

RNA-seq

RNA-seq is currently the most widespread sequencing
technology for both detecting RNA expression and dis-
covering novel species of ncRNAs (Fig. 2a) [24, 58]. In
addition, this approach can also be used to identify
single nucleotide polymorphisms, alternative splicing
isoforms, gene fusion events, and novel splice junctions
[131-134]. RNA-seq is based on the conversion of RNA
into a pool of cDNA with either oligo (dT) primers or
random primers, depending on the purpose of the se-
quencing. However, because cDNA libraries prepared
with oligo (dT) selectively enrich for polyadenylated
RNA and simultaneously deplete nonpolyadenylated and
partially degraded transcripts, RNA-seq with random
primers for c¢DNA synthesis on rRNA-depleted
transcripts is currently a more widely used approach.
Analysis of human or mouse cell types using RNA-seq
revealed the presence of more than 8000 human and
over 1000 mouse long intergenic ncRNAs (lincRNAs),
the majority of which had not been previously identified
[32, 135]. Interestingly, in one study using RNA-seq for
the specific identification of nonpolyadenylated RNA, a
novel species of IncRNAs with snoRNA-like ends was
discovered to be produced from excised introns [42,
105]. Moreover, the first identification of large numbers
of circRNAs in humans and mice occurred following the
combination of RNA-seq and RNase R treatment, which
uncovered the effective presence of 1950 human and
1903 mouse circRNAs in human cell lines (HEK293 and
leukocytes) and mouse tissues such as the brains and
fetal heads [7]. In addition, RNA-seq with specific prep-
aration for small RNA identification is also the primary
approach for discovering and detecting miRNAs, snoR-
NAs, piRNAs, and other novel small ncRNAs, including
IRFs, tsRNA, and sdRNAs [10, 126, 136—139].

There is a derivative technology based on RNA-seq,
RNA capture sequencing, which is combined with tiling
arrays to elevate the sequencing depth of target regions
[59]. In brief, tiling arrays are performed first with
specific oligonucleotide probes to enrich ¢cDNAs from
specific genomic regions. Second, the hybridized cDNAs
are eluted and then sequenced by RNA-seq. RNA
capture sequencing increases the sequencing depth in
specific genomic regions compared to RNA-seq and has
uncovered multiple unannotated isoforms of both
mRNAs and ncRNAs, including a novel alternative spli-
cing transcript of HOTAIR that lacks the binding do-
main for the polycomb repressive complex (PRC2) [59].
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Fig. 2 Technologies for novel ncRNA discovery. a Process diagrams of RNA-seq. RNA-seq with purposeful experimental treatments can be used
to detect diverse species of ncRNAs, including IncRNAs, circRNAs, and small ncRNAs. b Process diagrams of scRNA-seq. (1) The schematic of
single-cell RNA-seq. Single cells are isolated and lysed to release total RNAs. RNAs are then reverse transcribed into first-strand cDNAs using
designed primers followed by amplification for RNA-seq. (Il-IV) The detailed schematic of innovative and novel methods such as Smart-seq (Il),
SUPeR-seq (Ill), and RamDA-seq (IV). In Smart-seq, polyadenylated RNAs are reverse transcribed into a pool of cDNAs by oligo (dT) primers
followed by adding nontemplate C nucleotide tails to the 3" ends (Il); however, SUPeR-seq uses random primers with fixed anchor sequences for
cDNA synthesis, followed by adding poly(A) tails to the 3" ends (Ill). (IV) RamDA-seq uses both oligo (dT) and random primers for cDNA synthesis.
cDNA is synthesized by the RNA-dependent DNA polymerase activity of RNase H minus reverse transcriptase (RTase). DNase | selectively nicks the
cDNA of the RNA:cCDNA hybrid strand. The 3’ cDNA strand is displaced by the strand displacement activity of RTase mediated by the T4 gene 32

not-so-random primer

protein (gp32), starting from the nick randomly introduced by DNase |. cDNA is amplified and protected by gp32 from DNase I. NSR:

Over the years, many technologies based on basic
RNA-seq have been developed to identify RNAs at the
transcriptome scale, some of which will be discussed in
the following sections. It is inferred that advanced algo-
rithms for analysis of sequencing data are also likely to
promote transcriptome analysis. Nevertheless, RNA-seq
may suffer from disadvantages such as the introduction
of sequence errors at the reverse-transcription step or
primer bias, which require further optimization [140].

Small RNA-seq and single-cell small-RNA sequencing
Because sample preparation for RNA-seq is not suitable
for small RNAs, such as reverse transcription with ran-
dom priming (short RNA species yield even shorter
cDNAs that are not long enough for efficient alignment),
small RNA-seq with modified library preparation, such
as miRNA-seq, was developed [65, 114, 141]. Small
RNA-seq is a type of RNA-seq that discriminate small
RNAs from larger RNAs to better evaluate and discover
novel small RNAs [65]. In this method, small RNAs are
fractionated by gel electrophoresis, and then, universal
adapters are ligated to the both ends of RNA fragments,
which are acted as primer binding sites during reverse
transcription and PCR amplification. Previous studies
using small RNA-seq detect specific expression profiles
of miRNAs in various biological processes and cancer;
reveal asymmetric processing of small RNAs from
rRNAs, snoRNAs, snRNA, and tRNAs; and even provide
evidence for human miRNA-offset RNAs [65, 142, 143].
Although adapter ligation bias which lead to reverse
transcription bias or amplification bias still need to be
optimized [144, 145], small RNA-seq currently remains
a high-efficiency way to detect and discover novel small
ncRNAs.

A recent study provided a method to detect small
ncRNAs in a single cell and the method was named as
Small-seq [66]. In brief, single cell is lysed, and 5.8S
rRNA is masked with a complementary oligonucleotide
during adapter ligation. Then 3’ adapters are ligated to
small RNAs, and unligated adapters are subsequently
digested. The 5" adapters containing a unique molecular

identifier (UMI) are ligated, and reverse transcription is
carried out. In the original article, the method captured
a complex set of small RNAs, including miRNAs, frag-
ments of tRNAs, and snoRNAs [66].

Single-cell RNA sequencing (scRNA-seq)

The fundamental unit of an organism is a single cell.
Along with in-depth studies on development and disease
occurrence, there is a growing sense that some single
cells possess nonnegligible abilities that can affect
organic growth or lead to the downfall of the entire
organism [146]. It is helpful for researchers to further
understand the mechanisms of growth or disease pro-
gression by revealing the gene expression pattern of spe-
cific single cells. However, the sample sizes from a single
cell are insufficient for general RNA-seq, which has led
to the development of scRNA-seq methods (Fig. 2b(I)).
In addition, scRNA-seq techniques are also appropriate
for other small samples, such as limited clinical patient
samples or cells sorted with fluorescence-activated cell
sorting (FACS) [61, 147].

Previous scRNA-seq techniques include Smart-seq [60,
148], designed primer-based sequencing (DP-seq) [61],
and Quartz-seq [62], and each of them exhibits promin-
ent advantages and disadvantages. Smart-seq is a
method based on a full-length cDNA amplification strat-
egy (Fig. 2b(I)) [60]. In this approach, polyadenylated
RNAs are reverse transcribed into a pool of cDNAs by
oligo (dT) primers and Moloney murine leukemia virus
reverse transcriptase (MMLV RT). As a result, the ter-
minal transferase activity of MMLYV can add several non-
template C nucleotides to the 3" ends of the reverse
transcribed products when the reverse transcription re-
action reaches the 5 end of a template transcript during
first-strand ¢cDNA generation (Fig. 2b(II)). Then, the
poly-cytidine overhangs are used to complete the
double-strand cDNA generation, which ensures that the
prepared library for scRNA-seq only contains full-length
cDNAs. However, the lack of strand-specific identifica-
tion and inability to read transcripts longer than 4 kb
partly limit the application of this method [149].
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Compared to Smart-seq, DP-seq shows the advantage of
being to amplify RNAs from smaller size samples, as low
as 50 pg, or from transcripts longer than 4 kb [61]. DP-
seq uses a defined set of heptamer primers, which target
regions less likely to form secondary structures and
reside upstream of the unique regions on certain tran-
scriptomes, and they amplify the majority of expressed
transcripts from a limited number of RNAs [61]. In the
original study, preparation of a DP-seq library success-
fully amplified over 80% of the mouse transcriptome
with 44 heptamer primers. Moreover, this approach can
also suppresse highly expressed rRNAs in the cDNA li-
brary and is able to detect transcripts at relatively low
levels [61]. In addition, Quartz-seq is an alternative
scRNA-seq method with reduced background noise that
utilizes specially designed suppression polymerase chain
reaction (PCR) primers to reduce the generation of un-
wanted side products [62].

Recent studies on scRNA-seq methods preferably fo-
cused on total RNA sequencing, which provided rich in-
formation on biological systems in addition to the
abundance of mRNAs. Thus far, much efforts have been
made to develop scRNA-seq techniques with full-length
coverage or sensitivity to nonpolyadenylated RNAs.
There are several scRNA-seq methods, such as Smart-
seq, that can provide full-length coverage of transcripts
[60]. Nevertheless, these methods fail to measure nonpo-
lyadenylated transcripts due to oligo (dT) priming [60].
Single-cell universal poly(A)-independent sequencing
(SUPeR-seq), which uses random primers with fixed an-
chor sequences to replace oligo (dT) primers for cDNA
synthesis, has been reported for the detection of nonpo-
lyadenylated RNAs, especially circRNAs, in a single cell
with robust precision and accuracy (Fig. 2b(III)) [63]. In
the original study, researchers discovered 2891 circRNAs
and 913 novel linear RNAs in mouse preimplantation
embryos using SUPeR-seq and deciphered regulation
mechanism of circRNA during early embryonic develop-
ment [63]. However, SUPeR-seq also exhibits relatively
low sensitivity for nonpolyadenylated RNAs [64].

Random displacement amplification sequencing
(RamDA-seq) is a full-length total RNA-sequencing
method for analyzing single cells, but it has a high sensi-
tivity for nonpolyadenylated RNAs [64]. This approach
can measure not only polyadenylated but also nonpolya-
denylated RNAs, including nascent RNAs, IncRNAs,
circRNAs, and eRNAs, and it can uncover the dynamics
of recursive splicing [64]. Furthermore, it can provide
full-length coverage for extremely long transcripts (more
than 10kb). RamDA-seq simplifies the experimental
procedure to amplify cDNA as early as possible by using
a novel RT technology, RT with random displacement
amplification (RT-RamDA), which aims to obtain higher
capture efficiency of RNAs and global cDNA
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amplification for further sequencing (Fig. 2b(IV)).
Moreover, not-so-random primers (NSRs) are used to
enable random priming while preventing the synthesis of
¢DNA from rRNAs [64]. Analysis of mouse embryonic
stem cells undergoing differentiation using RamDA-seq
revealed the cell state-dependent expression of known
and novel nonpolyadenylated RNAs, including nonpolya-
denylated isoforms of the IncRNA Neatl, and the
specific genome-wide eRNA expression patterns in
single cells [64].

Nascent RNA-seq

RNA-seq is a revolutionary tool for transcriptome profil-
ing that provides information on the dynamic changes of
gene expression against different conditions or after ex-
posure to different stimuli [58]. However, the traditional
RNA-seq technique is generally performed to determine
steady-state RNA levels, and changes in RNA transcrip-
tion and decay rates cannot be easily distinguished [150].
Moreover, common RNA-seq also fails to provide
efficient temporal information on RNA kinetics [150].
To address these issues, new sequencing methods for
measuring nascent transcripts, as opposed to total
RNAs, have been developed [151].

Nascent RNA-seq can reveal the temporal information
of gene expression changes. Metabolic labeling and affin-
ity purification of labeled nascent RNAs followed by
RNA-seq is a well-known approach for analyzing nas-
cent RNAs [151]. For example, global run-on sequencing
(GRO-seq) labels nascent RNAs with 5Br-UTP, enabling
labeled nascent RNAs to be immunoprecipitated with
the antibody anti-Br-UTP; the isolated RNAs subse-
quently undergoes deep sequencing (Fig. 3a) [67]. By
sequencing nascent RNAs, GRO-seq can also provide a
genome-wide view of the location, orientation, and dens-
ity of Pol II-engaged transcripts, revealing divergent
transcription at active promoters that yield antisense
ncRNAs [152]. In recent studies, labeling/purifying RNA
analysis has also been used to detect nascent ncRNAs,
including nascent circRNAs. Nevertheless, the conven-
tional purification assay in GRO-seq is confounded by
contamination due to nonspecific binding, which could
possibly result in experimental bias [70].

Recently, innovative enrichment-free methods for nas-
cent RNA detection have been developed, which avoid
contamination induced by affinity purification [153].
These methods directly distinguish nascent RNA from
total RNA in single-base resolution by marking the map-
ping reads of nascent RNAs with introduced base muta-
tions. In brief, nascent transcripts are labeled by adding
a thiol-labeled nucleoside (s*U or s°G) to cell culture
media, and these newly synthesized RNAs can then be
isolated and treated with specific chemical reagents,
leading to a change in the base-pairing manner of
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Fig. 3 Process diagrams of representative nascent RNA-seq methods. a Schematic of GRO-seq. In this approach, nascent RNAs are labeled with
5Br-UTP and immunoprecipitated with the antibody anti-Br-UTP; the isolated RNAs subsequently undergoes deep sequencing. b Schematic of
methods based on base mutation for nascent RNA detection. Nascent RNAs are labeled with a thiol-labeled nucleoside (s*U or s°G), and these
newly synthesized RNAs can then be isolated and treated with specific chemical reagents, such as thiol (SLAM-seq) and acrylonitrile (AMUC-seq),

leading to a change in the base-pairing manner of metabolically incorporated nucleosides

metabolically incorporated nucleosides (Fig. 3b) [153].
For example, SLAM-seq uses nucleophilic substitution
chemistry to induce s*U-to-C conversion in an RT-
dependent manner [68], and TimeLapse-seq employs
s*U-to-C conversion via an oxidative nucleophilic aro-
matic substitution reaction (Fig. 3b) [69]; however, this
oxidation condition caused certain oxidative damage to
guanine [69]. A recent study reported an improved
method, AMUC-seq, which transformed s*U into a cyti-
dine derivative using acrylonitrile (Fig. 3b) [70].
Compared to other enrichment-free methods for nascent
RNA detection, AMUC-seq has been reported to be
more efficient and reliable because it has a minimal in-
fluence on the base-pairing manner of other nucleosides
and can quantitatively analyze RNA at the transcriptome
scale [70].

Innovative techniques based on RNA location and
interactome for functional ncRNA discovery

As discussed above, the vast majority of the human
genome can be transcribed into ncRNAs; thus, it is im-
portant to reveal potentially functional ncRNAs that
may play a role in certain biological processes, especially
in cancer occurrence and development. It has been
shown that ncRNAs are commonly folded into highly
ordered structures that play a role within their interac-
tome [154, 155]. Therefore, in this section, we will
discuss the discovery and identification of functional
ncRNAs based on their interaction networks and subcel-
lular location levels, and we will provide some novel

techniques that can be used to screen purposefully for
functional ncRNAs.

RNA-chromatin interaction

An increasing number of studies have reported that di-
verse species of ncRNAs show regulatory functions in
different layers of and gene expression. Many cnRNAs
perform direct actions on chromatin, some of which
may mediate genomic interactions predominantly in cis,
whereas others are capable of acting extensively in trans
[156-158]. These findings suggest a common role of
specific RNA-chromatin interactions in modulating gene
expression. Global RNA interactions with DNA by deep
sequencing (GRID-seq) is a method that aims to com-
prehensively detect and determine the localization of all
potential chromatin-interacting RNAs [71]. This ap-
proach uses a bivalent linker to ligate RNA to DNA in
situ in fixed nuclei (Fig. 4a). Briefly, cells are fixed with
disuccinimidyl glutarate (DSG) and formaldehyde first to
stabilize RNAs on chromatin. Then, nuclei are extracted,
and DNA is digested in situ by the frequent 4-base cut-
ter Alul. A specifically designed bivalent linker labeled
by biotin that consists of single-stranded RNA (ssRNA)
portions, to ligate RNA, and a double-stranded DNA
(dsDNA) portion, to ligate DNA, is used to link RNAs to
Alul-digested genomic DNAs. Then, the DNA-RNA
complexes are purified, filtered, and sequenced. In the
original article, GRID-seq performed in human, mouse,
and Drosophila cells revealed a large set of tissue-
specific coding and noncoding RNAs that bind to active
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Fig. 4 Technologies for discovery of RNA-chromatin interaction. a Process diagrams of GRID-seq. Cells are fixed with disuccinimidyl glutarate
(DSG) and formaldehyde. Then, nuclei are extracted, and DNA is digested in situ by the frequent 4-base cutter Alul. A specifically designed
bivalent linker labeled by biotin that consists of single-stranded RNA (ssRNA) portions, to ligate RNA, and a double-stranded DNA (dsDNA)
portion, to ligate DNA, is used to link RNAs to Alul-digested genomic DNAs. DNA ligation to Alul-digested genomic DNA are performed in situ
followed by affinity purification on streptavidin beads. Then, ssSDNA are released from the beads, generated into dsDNA, cleaved by a type |I
restriction enzyme Mmel and sequenced. b Overview of the ChAR-seq method. RNA-DNA contacts are preserved by crosslinking, followed by in
situ ligation of the 3" end of RNAs to the 5' end of the ssDNA tail of a bivalent linker containing biotin and a Dpnll-complementary overhang on
the opposite end. After generating a strand of cDNA complementary to the RNA, the genomic DNA is then digested with Dpnll and then re-
ligated, capturing proximally associated bridge molecules and RNA. The chimeric molecules are reverse transcribed, purified, and sequenced

promoters and enhancers, especially super-enhancers
[71]. Interestingly, the study also exhibited a large num-
ber of snoRNAs interacting with chromatin, suggesting
possibly important roles of snoRNAs at the chromatin
level [71].

Other alternative techniques based on the ligation of
RNA to DNA have been reported for detecting genome-
wide RNA-chromatin interactions, including MARGI
and its improved version iMARGI [72, 159], and
chromatin-associated RNA sequencing (ChAR-seq) [73].
Analysis of chromatin-associated RNA (caRNA) sequen-
cing by MARGI and iMARGI revealed that caRNAs not
only are associated with genomic regions where they are
generated (proximal interactions) but also are attached
to distal genomic regions (distal interactions) on the
same chromosomes or on other chromosomes (inter-
chromosomal interactions) [72, 159]. Interestingly,
transcription star sites (TSSs) were identified as the
preferred genomic regions targeted by chromatin-
associated ncRNAs through distal or interchromosomal
interactions. ChAR-seq also uncovered a range of
chromatin-associated RNAs, especially chromosome-
specific dosage compensation ncRNAs, and genome-
wide trans-associated RNAs, which are involved in
cotranscriptional RNA processing (Fig. 4b) [73].

In addition to the sequencing methods for identifica-
tion of global RNA-chromatin interactomes mentioned
above, various techniques were developed to detect
specific localization on chromatin of target RNAs [160-
162]. These techniques use hybridization of complemen-
tary oligonucleotides to pull down a single target RNA,
and then NGS or mass spectrometry is performed to
identify its DNA- or protein-binding partners.

RNA-RNA spatial interactions

Structured RNAs such as duplexes represent a feature
that is critical for most steps in the gene expression
pathway. Numerous characterized ncRNAs function via
base pairing with target RNAs to control their biological
activities, such as dynamic interactions involving
snRNA-snRNA and snRNA-pre-mRNA during the
assembly and disassembly of spliceosomes, interactions
between snoRNAs and their target RNAs to guide RNA

modification, and interactions between ncRNAs and
mRNAs that regulate transcript turnover and translation.
Thus far, an increasing number of sequencing tech-
niques have been developed for global mapping of RNA-
RNA interactions (Fig. 5).

RNA proximity ligation is a set of molecular biological
techniques that can be used to analyze the conformation
and spatial proximity of RNAs in cells [74]. The typical
first steps in these approaches involves cross-linking bio-
logical samples with UV light or psoralen, which is
followed by partial fragmentation of RNA, RNA-RNA
ligation, library preparation, and high-throughput se-
quencing. UV light and psoralen are two widely used
methods for sample preparation prior to proximity
ligation: UV light treatment stabilizes and enriches the
RNA duplexes that are bound to a specific protein or
protein complex; however, psoralen is used to stabilize
and enrich RNA-RNA interactions. Studies on RNA
conformation have shown different emphases, as some
approaches identified pairs of RNAs that are in direct
contact or in close proximity with each other, while
others recovered pairs of RNAs that are part of the same
protein complex or subcellular compartment [163].
Alternative cross-linking methods provide alternative
treatments for diverse purposes (Fig. 5). Cross-linking
ligation and sequencing of hybrids (CLASH) is a rela-
tively early method that uses UV cross-linking to capture
direct RNA-RNA hybridization [74]. Compared to
chemically cross-linking methods, which also induce
extra protein-protein cross-linking, CLASH has the
advantage of avoiding noise from protein intermediate-
mediated interactions, and has been used to identify
novel snoRNA-rRNA interactions in yeast [74], miRNA-
mRNA interactions in human HEK293 cells [164], and
piRNAs interactomes [164]. In another method, RNA
immunoprecipitation and proximity ligation in tandem
(RIPPLIT), sequential pull-down of components of exon
junction complexes showed a mapping of mRNA con-
formations when bound to this complex [75]. Moreover,
another approach, mapping the RNA interactome
in vivo (MARIO), has identified RNA-RNA interactions
in the vicinity of all RNA-binding proteins using a
biotin-linked reagent [76].
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Methods for identifying RNA-RNA interactions at the
transcriptome scale by cross-linking with psoralen have
been reported since 2016 [77, 79, 165]. Unlike CLASH,
psoralen-based approaches do not depend on the pull-
down of RNA-RNA interactions with a specific protein,
and in principle, they can yield transcriptome-wide RNA
interactomes. The methods using this principle of cross-
linking RNAs are combined with different means to
enrich cross-linked fragments, such as two-dimensional
gel electrophoresis in PARIS (psoralen analysis of RNA
interactions and structures) [77], digestion by RNase R
in LIGR-seq (ligation of interacting RNA followed by
high-throughput sequencing) [78], and biotin-strept
avidin enrichment in SPLASH (sequencing of psoralen
cross-linked, ligated, and selected hybrids) [79]. The

psoralen cross-linking methods uncovered general prop-
erties of RNA-RNA interactomes in mammalian cells
(Fig. 5). For example, PARIS uncovered alternative base
pairing in intramolecular interactions, which suggests
substantial structural heterogeneity in cells, and it also
elucidated the structure produced by a repeat of adeno-
sines in Xist in vivo [77]. LIGR-seq in HEK293 cells
detected novel snRNA-snRNA and snoRNA-rRNA inter-
actions [78]. More importantly, this approach also re-
vealed that SNORDS83B can regulate gene expression by
binding to target mRNAs, revealing an unexpected func-
tion of these snoRNAs [78]. Psoralen cross-linking
methods such as PARIS and SPLASH were also applied
to detect dense networks of RNA-RNA interactions
within viral genomes inside infected cells [166, 167].



Sun and Chen Journal of Hematology & Oncology (2020) 13:109

A recent study reported a novel method, RNA in situ
conformation sequencing (RIC) technology, for the glo-
bal mapping of intra- and intermolecular RNA-RNA in-
teractions (Fig. 5) [80]. Compared to the RNA ligation
induced in vitro in previous methods, RIC-seq performs
RNA proximity ligation in situ, and it enriches chimeric
reads using a biotinylated cytidine phosphate (pCp-bio-
tin) [80]. Briefly, the cells are cross-linked by formalde-
hyde, and then, RNA is randomly cut with micrococcal
nuclease and dephosphorylated at 3" overhangs. The 3’
ends are labeled with pCp-biotin and ligated to proximal
5" overhangs under in situ and nondenaturing condi-
tions. Total RNAs are fragmented in vitro, and RNAs
containing C-biotin are enriched followed by conversion
into cDNA libraries for sequencing. In the original art-
icle, RIC-seq was used to facilitate the generation of 3D
RNA interaction maps in human cells, and it revealed
global noncoding RNA targets, RNA topological do-
mains, and trans-interacting hubs [80].

In addition to the sequencing methods using RNA
proximity ligation, there are some other approaches
without ligation that have been developed because of the
possible limitation in efficiency of enzymatic ligations
affected by short-range distances between RNA ends
[81]. RNA proximity sequencing is a method based on
massive-throughput RNA barcoding of particles in
water-in—oil emulsion droplets [81]. In brief, this ap-
proach uniquely barcodes RNA in millions of subnuclear
particles in parallel by a rapid vortexing step that com-
bines fragmented nuclear particles with barcoded beads
in a water-in-oil emulsion; then, the cDNA is sequenced.
The detection of multiple RNAs in proximity to each
other by RNA proximity sequencing distinguished RNA-
dense and RNA-sparse compartments, and this tech-
nique is an alternative approach for studying the spatial
organization of transcripts in the nucleus, including
ncRNAs and their functional relevance.

RNAs in protein complexes or subcellular structures
The location of ncRNAs in cells is the primary deter-
minant of their molecular functions. NcRNAs, especially
IncRNAs, are often considered as chromatin-restricted
modulators of gene transcription and chromatin struc-
ture [157, 158]. In addition, a rich population of cyto-
plasmic ncRNAs, such as extra IncRNAs and exonic
circRNAs, have been reported to play roles in diverse
biological processes, including translational regulation
and signal transduction [8, 168]. Elution-based methods
promise to detect RNAs at the transcriptome scale asso-
ciated with all organelles of mammalian cells, and RNA
maps of increasing resolution reveal a subcellular world
of highly specific localization patterns.

In situ hybridization (ISH) is the most widely used
method of RNA localization using labeled complementary
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oligonucleotide probes to visualize target RNAs [169,
170]. Single-molecule fluorescence ISH (smFISH) uses
multiple probes to amplify the fluorescent signal for the
detection of target RNAs at low levels, and it is thought of
as the gold-standard technique for single-gene studies
[169, 171]. In contrast to RNA smFISH, fluorescent in situ
RNA sequencing (FISSEQ) offers in situ information at
high-throughput levels [82]. In this approach, RNA is re-
verse transcribed in situ into ¢cDNA in cross-linked cells
and tissue samples, which is then analyzed by sequencing
(Fig. 6a). However, compared to standard RNA-seq, FISS
EQ also comes at the expense of lower read coverage,
which reduces sensitivity for lowly expressed RNAs, espe-
cially ncRNAs [82]. Another alternative related technique,
spatially resolved transcript amplicon readout mapping
(STARmap), provided 3D locational information of RNA
expression in intact tissue samples [172].

Biochemical cell fractionation is a fractionation-based
method that physically isolates subcellular compart-
ments and identifies their RNAs (Fig. 6b). These types of
methods can be based on protein immunoprecipitation,
intact organelle purification, or partitioning through su-
crose gradients [173]. Then, RNA-seq (biochemical cell
fractionation combined with RNA-seq, CeFra-seq) was
performed to detect specific RNAs at the transcriptome
scale [83]. Fractionation-based methods have high sensi-
tivity for low-abundance transcripts due to aggregation
across many cells; however, they are restricted by isola-
tion protocols and the purity of resulting isolates, which
possibly induce technical noise by contamination across
fractions [24, 174, 175].

Recently, innovative techniques have been developed
to overcome the deficiencies of conventional methods. A
new fractionation-based method, APEX-RIP [84], was
developed, and it combines APEX (engineered ascorbate
peroxidase)-catalyzed proximity biotinylation [176] and
RNA immunoprecipitation (RIP) [177] to map RNAs at
vastly improved spatial resolution (Fig. 6c¢). In brief,
APEX-catalyzed proximity biotinylation is targeted by
genetic fusion to proteins from various subcellular com-
partments of interest. This is followed by protein-RNA
crosslinking and RIP to pull down the biotinylated sub-
cellular fraction for further high-throughput sequencing.
Using this method, thousands of ncRNAs have been
mapped to specific compartments without the need for
purification of specific organelles, and it offers high spe-
cificity and sensitivity in targeting the transcriptome of
membrane-bound organelles [84]. Moreover, in a recent
study, a transcriptome-wide subcellular RNA atlas was
generated by APEX-RIP [178].

NcRNA database
Various sequencing methods have provided systematic
expression profiling of ncRNAs in diverse cells, tissues,
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and organisms, and they have mapped the interaction
networks or subcellular localization of ncRNAs, which
inform their potential biological functions. Databases
provide important references based on theoretical
analysis, sequencing data, and even experimental verifi-
cation, which play a guiding role in the identification
and functional investigation of ncRNAs. Here, we will
introduce a series of ncRNA databases that emphasize
basic ncRNA information, cancer-associated ncRNA
expression patterns, or specific ncRNA interaction

networks based on experimental techniques followed by
high-throughput sequencing.

The correlations between ncRNA expression and can-
cer progression provide important hints whether a
ncRNA could play a role in certain cancers. There are
an increasing number of databases providing compre-
hensive associations between ncRNAs and human
cancers, which are supported by sequencing data or even
experiments, such as TANRIC [179], Lnc2Cancer 2.0
[180], InCaNet [181], and LncRNADisease [182] for
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IncRNAs, CSCD [183], Circ2Traits [184], CircR2Disease
[185], and MiOncoCirc [119] for circRNAs, miRCancer
[186], SomamiR 2.0 [187], OncomiR [188], miRCancerdb
[189], and dbDEMC 2.0 [190] for miRNAs and
YM500v3 [191], tRF2Cancer [192], and MINbase v2.0
[193] for other small ncRNAs, as summarized in Table 2.
A recently reported MiOncoCirc is the first database that
mainly consists of circRNAs directly detected in tumor tis-
sues [119]. It was established by detecting and characteriz-
ing circRNAs across more than 2000 cancer samples with
an exome capture RNA sequencing protocol. In the article
that originally described the process, candidate circRNAs
identified from MiOncoCirc were determined to be useful
as biomarkers for prostate cancer and were found to be
detected in urine, suggesting that MiOncoCirc could be
an alternative tool to uncover novel diagnostic biomarkers
for clinical translational strategies [119]. Another interest-
ing, recently reported database is SELER, which collects
specific super-enhancer-associated IncRNA profiles from
different cancers [195]. In addition, some databases docu-
ment the basic annotation and functional information on
ncRNAs, including IncRNA-associated resources LNCipe-
dia [199], LNCediting [200], IncRNAdb v2. 0[201],
circRNA-associated ones circAtlas [206], circBase [207],
CIRCpedia v 2[208], TSCD [209], miRNA-associated ones
starBase v2.0 [210], miRTarBase [211], miRmine [212],
EVmiRNA [213], miRGate [214], miRBase [215], and even
other small ncRNA-associated ones DASHR 2.0 [217]. A
growing number of databases have undoubtedly played
important roles in the discovery and investigation of novel
functional ncRNAs.

Several specific RNA-seq datasets have revealed the
subcellular locations and potential interactomes of
ncRNAs, which provide more real information than
what is learned from bioinformatics prediction. There
are some databases that provide high-quality RNA sub-
cellular location resources in accordance with the results
of subcellular compartment sequencing, such as RNALo-
cate [218] and LncATLAS [219]. RNALocate documents
more than 37,700 manually curated RNA subcellular lo-
cation entries with experimental evidence, and it has
data on 65 organisms, 42 subcellular locations (such as
cytoplasm, nucleus, endoplasmic reticulum), and 9 RNA
categories, such as IncRNAs [218]. However, thus far,
few interactome database of ncRNAs except miRNA
[210, 211, 216], has been established based on experi-
mental techniques and sequencing. NPInter v3.0 is a
database of ncRNA-associated interactions based on
experimental techniques followed by high-throughput
sequencing, such as crosslinking and immunoprecipita-
tion followed by deep sequencing (CLIP-seq) [220], and
chromatin isolation by RNA purification followed by
high-throughput sequencing (ChIRP-seq) [161, 221].
NPInter v3.0 documented approximately 500,000
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interactions in 188 tissues (or cell lines) from 68 kinds
of experiments and predicted the functions of IncRNAs
in humans on the basis of their interactions in the data-
base [221]. Furthermore, a database of RNA interac-
tomes identified by sequencing at the transcriptome
scale is lacking, and it is needed for identification of
novel functional ncRNAs.

Application of cancer-related ncRNA identification for
diagnosis

Due to their highly tissue-specific expression patterns
identified by various sequencing techniques and their key
roles in regulating biological activity in cancer, ncRNAs,
including miRNAs, IncRNAs, and circRNAs, are generally
considered to have potential as novel biomarkers for can-
cer diagnosis [20, 222, 223]. This section aims to present
new developments in diagnostic kits for cancer diagnosis
by the analysis of cancer-related ncRNAs.

Cancer seriously threatens the human life and gives
rise to an enormous burden on society. However, the in-
cidence and mortality of cancer could be decreased
effectively by preventative measures, including early de-
tection tests and monitoring of cancer prognosis. There-
fore, searching for novel biomarkers that are easy to use,
are not invasive, and exhibit high sensitivity, specificity,
and stability for cancer diagnosis and prognosis has been
a key clinical translational strategy. In addition to the
features of specific expression patterns, some types of
ncRNAs, such as miRNAs, IncRNAs, and circRNAs,
have also been shown to be relatively stable in serum,
plasma, saliva, or urine, which can be easier to collect
and is less harmful or invasive for patients than other
collection methods. In the past few years, seeking novel
biomarkers in cancer diagnosis has mainly focused on
miRNAs [224]. Recently, growing research has shown
that other ncRNAs, especially IncRNAs and circRNAs,
could also serve as a hallmark of carcinomas.

MiRNAs, IncRNAs, and circRNAs have been observed
to have highly specific expression patterns in diverse
types of cancers, and this aberrant expression usually oc-
curs in certain tumor cells or cancer tissues at a specific
stage of disease progression [13, 14, 225]. According to
patent searches in resources such as the EPO (https://
worldwide.espacenet.com), there are growing uses of
these three types of ncRNAs in the preparation of diag-
nostic kits for various cancers, including hepatocellular,
cervical, stomach, liver, breast, prostatic, and bladder
cancers (Table 3). Generally, detecting cancer-related
nucleic acids in patient samples using qRT-PCR with
specific primers or probes is the main method for diag-
nosis based on ncRNAs, which is also the primary ap-
proach for diagnosing disease in the recent COVID-19
(CoronaVirusDisease2019) pandemic [226]. For example,
a recent patent provided a circRNA hsacirc_0028185
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Cancer Database Species  Website Short description Ref
or
basis
Cancer  Lnc2Cancer INcRNA  http://www.bio-bigdata.net/  An updated database that provides comprehensive experimentally [180]
v2.0 Inc2cancer supported associations between IncRNAs and human cancers.
TANRIC INcRNA  http://bicinformatics. This database characterizes the expression profiles of IncRNAs in large [179]
mdanderson.org/main/ patient cohorts of 20 cancer types, including TCGA and independent
TANRIC:Overview datasets (> 8000 samples overall).
InCaNet INcRNA  http://Incanet.bioinfo- This database provides a comprehensive co-expression data resource [181]
minzhao.org/ which reveals the interactions between IncRNA and non-neighbouring
cancer genes.
LncRNADisease  IncRNA  http://www.rnanut.net/ A database integrating comprehensive experimentally supported and [182]
20 Incradisease/ predicted IncRNA-disease associations.
The Cancer INcRNA  http://tclafcgportal.org/ An academic research database to explore the IncRNA alternations across  [194]
LncRNome multiple human cancer types.
Atlas
SELER INCRNA  http://www.seler.cn/ A database of super-enhancer-associated IncRNA-directed transcriptional ~ [195]
download.php regulation in human cancers.
CSCD circRNA  http://gb.whu.edu.cn/CSCD A database that focuses on distinguishing cancer-specific circRNAs from  [183]
noncancerous circRNAs, and reports predicted cellular location, RBP sites,
and ORFs.
Circ2Traits circRNA  http://gyanxet-beta.com/ Provide cirRNA-disease association based on the interaction of circRNAs [184]
circdb/ with disease-related miRNAs and SNP mapped on circRNA loci.
CircR2Disease  circRNA http://bioinfo.snnu.edu.cn/ Provide a comprehensive resource for circRNA deregulation in various [185]
CircR2Disease/ diseases, containing 725 associations between 661 circRNAs and 100
diseases.
CircRNA disease circRNA http://cgga.org.cn:9091/ A manually curated database of experimentally supported circRNA- [196]
circRNADisease/ disease associations.
MiOncoCirc circRNA  https://nguyenjoshvo.github.  circRNA detection in 2093 clinical human cancer samples using exome [119]
io/ capture sequencing.
CircRiC circRNA  https://hanlab.uth.edu/cRic A database focusing on lineage-specific circRNAs in 935 cancer cell lines  [197]
including drug response.
miRCancer miRNA  http://mircancer.ecu.edu/ A database currently documents more than 9000 relationships between — [186]
57,984 miRNAs and 196 human cancers.
SomamiR 2.0 miRNA  http://compbio.uthsc.edu/ A database of cancer somatic mutations in microRNAs (miRNA) and their  [187]
SomamiR/ target sites that potentially alter the interactions between miRNAs and
competing endogenous RNAs (ceRNA).
OncomiR miRNA  http://www.oncomir.org/ An online resource for exploring miRNA dysregulation in cancer. [188]
miRCancerdb miRNA  https://mahshaaban. An easy-to-use database to investigate the microRNAs-dependent regula-  [189]
shinyapps.io/miRCancerdb/ tion of target genes involved in development of cancer.
miR2Disease miRNA  http//www.miR2Disease.org A database aiming at providing a comprehensive resource of microRNA — [198]
deregulation in various human diseases.
YM500v3 small http://ngs.ym.edu.tw/ym500/ A database which contains more than 8000 small RNA-seq dataseta and ~ [191]
ncRNA focuses on piRNAs, tRFs, SnRNAs, snoRNAs, and miRNAs.
tRF2Cancer small http://ma.sysu.edu.cn/ A web server to detect tRFs and their expression in multiple cancers. [192]
ncRNA  tRFfinder/
MINTbase v20  Small  https//cm jefferson.edu/ A framework for the interactive exploration of mitochondrial and nuclear  [193]
ncRNA  MINTbase/ tRNA fragments.
Basis LNCipedia INcRNA  https://Incipedia.org A public database for INcRNA sequence and annotation. [199]
LNCediting INcRNA  http://bioinfo.lifehustedu.cn/  This database provides a comprehensive resource for the functional [200]
LNCediting/ prediction of RNA editing in IncRNAs.
IncRNAdb v2.0  IncRNA  http://Incrnadb.com/ This database provides comprehensive annotations of eukaryotic IncRNAs.  [201]
LncRNAWiki INcRNA  http://Incrna.big.ac.cn This database is a publicly editable and open-content platform for com-  [202]
munity curation of human IncRNAs.
LncBook INcRNA  http://bigd.big.ac.cn/Incbook  This database is a curated knowledgebase of human IncRNAs. [203]
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Cancer Database Species  Website Short description Ref
or
basis
MONOCLdb INcRNA  https://www.monocldb.org/ 20,728 mouse IncRNA genes. [204]
NONCODE INcRNA  http://www bioinfo.org/ An interactive database that aims to present the most complete [205]
noncode/ collection and annotation of ncRNAs especially IncRNAs from 17 species.
CircAtlas circRNA  http://circatlas.biols.ac.cn/ An integrated resource of one million highly accurate circular RNAs from  [206]
1070 vertebrate transcriptomes.
circBase circRNA  http://www.circbase.org/ A database containing thousands of recently identified circRNAs in [207]
eukaryotic cells.
CIRCpedia v2 circRNA  http://www.picb.ac.cn/ A database for comprehensive circRNA annotation from over 180 RNA- [208]
rnomics/circpedia seq datasets across six different species.
TSCD circRNA  http://gb.whu.edu.cn/TSCD A tissue-specific circRNA database from RNA-seq datasets and character-  [209]

ized the features of circRNAs in human and mouse.

starBase v2.0 miRNA  http:/starbase.sysu.edu.cn/ A database decoding miRNA-ceRNA, miRNA-ncRNA, and protein-RNA [210]
interaction networks from large-scale CLIP-Seq data.
miRTarBase miRNA  http://mirtarbase.cuhkedu.cn/ A resource for experimentally validated microRNA-target interactions. [211]
php/index.php
miRmine miRNA  http://guanlab.ccmb.med. A database of human miRNA expression profiles. [212]
umich.edu/mirmine
EVmMIRNA miRNA  http://biocinfo.life.hustedu.cn/ A database focusing on miRNA expression profiles in extracellular vesicles. [213]
EVMIRNA#!/
miRGate miRNA  http://mirgate.bioinfo.cnio.es/ A curated database of human, mouse, and rat miRNA-mRNA targets. [214]
miRGate/
miRBase miRNA  http://www.mirbase.org/ A database containing microRNA sequences from 271 organisms: 38,589  [215]
hairpin precursors and 48,860 mature microRNAs.
DIANA-TarBase  miRNA  http://www.microrna.gr/ A reference database devoted to the indexing of experimentally [216]
V8 tarbase supported miRNA targets.
DASHR 2.0 small http://lisanwanglab.org/ A database that integrates human small ncRNA gene and mature [217]
ncRNA  DASHR products derived from all major RNA classes.

qPCR assay kit for the diagnosis of hepatocellular carcin-
oma. By detecting expression changes of serum hsacirc_
0028185, it is possible to assess the occurrence and
development of hepatocellular carcinoma. Another sam-
ple is that IncRNA-AC006159.3 in the blood could be
used for the diagnostic kit to rapidly speculate the
cetuximab-resistant possibility of rectal cancer. Briefly,
the lower the expression level of IncRNA-AC006159.3,
the higher the possibility of cetuximab resistance. In
addition, a patent provided application of miRNA-410 in
preparation of a prostatic cancer diagnostic kit.

It is noteworthy that the same RNA may be aberrantly
expressed in many types of cancers, which allows the same
RNA to be used to diagnose different kinds of cancers.
Moreover, the RNA-seq data show that a number of di-
verse species of ncRNAs are dysregulated in cancer sam-
ples compared to normal tissues, suggesting that
diagnostic kits can be designed to detect multiple ncRNAs
at the same time for more efficient cancer diagnosis.

Conclusion and perspective
The tissue-specific expression patterns, complicated
regulatory networks, and emerging roles all suggest that

ncRNAs are not simply debris or side products of tran-
scriptional processes or aberrant splicing; rather, they
are important regulatory molecules [102]. New technolo-
gies have endlessly emerged with different goals in
ncRNA identification in multiple areas of research, in-
cluding detection of ncRNA expression at the transcrip-
tome scale, identification of novel ncRNA categories,
searching for potential functional RNA within specific
subcellular compartments, or discovering applicable
biomarkers for cancer diagnosis. There are also some
ncRNA-associated databases that provide multiple
ncRNA information to enable further functional RNA
investigations. Moreover, with the increasing number of
studies on cancer-associated ncRNAs, translational ap-
plications of specific ncRNA identification for clinical
diagnosis have been developed, such as diagnostic kits.

It is noteworthy that different RNA categories can be
generated from the same regions of DNA, and they can
share the same sequences. In addition to small ncRNAs
derived from snoRNAs, tRNAs, or rRNAs, which can
play a role in the miRNA-like pathway, some long non-
polyadenylated transcripts, such as sno-IncRNAs and
circRNAs, have also been found to be generated from
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Species Name Expression in Diseases Application Patent number
cancer

circRNA  hsacirc_0028185 Up Hepatocellular Cancer auxiliary diagnosis CN111004850A
carcinoma (2020)

CircRNA  hsa_circ_001477 Up Gastric cancer Cancer diagnosis CN110129324A
(2019)

circRNA - hsa_circRNA_012515 Up Non-small cell lung Cancer diagnosis CN110592223A
cancer (2019)

circRNA  hsa_circRNA_405124 or hsa_circ_0012152 Up Leukemia Cancer early diagnosis CN109593859A
(2019)

circRNA  circ_104075 Up Liver cancer Cancer diagnosis CN109161595A
(2019)

circRNA  circ3823 Up Colorectal cancer Cancer early diagnosis CN110592220A
(2019)

circRNA  hsa_circ_0021977 Up Breast cancer Cancer diagnosis CN109022583A
(2018)

CircRNA  hsa_circ_0012755 Up Prostate cancer Cancer diagnosis CN108624688A
(2018)

circRNA  circ_0047921, circ_0007761 and circ_ Up Non-small cell lung Cancer early diagnosis CN108179190A
0056285 cancer (2018)

circRNA  hsa-circRPL15-001 Up Chronic lymphocytic Cancer diagnosis CN109055564A
leukemia (2018)

circRNA  has_circ_0117909 Up Acute lymphoblastic Cancer diagnosis CN107937522A
has_circ_0005720 Down leukemia (2017)

circRNA  cRNA-ZFR Up Bladder cancer Cancer diagnosis CN106011139A
(2016)

INcRNA  IncRNA-AC006159.3 Down Colorectal cancer Cetuximab-resistance CN108949993A
diagnosis (2018)

INcRNA  IncRNAXLOC_004122, Linc00467 and Up Breast cancer Cancer bone metastasis CN107699619A
INCRNAA1049452 diagnosis (2017)

INcRNA  LncRNA GENE NO.9 Up Bladder cancer Cancer diagnosis CN107267636A
(2017)

INcRNA  LINC00516 Up Lung cancer Cancer or cancer metastasis ~ CN108998528A
diagnosis (2018)

INCRNA  LSAMP-AS1 Up Gastric cancer Cancer diagnosis CN110628915A
(2019)

miRNA  miRNA-4692 Down Hepatocellular Cancer diagnosis CN107604065A
carcinoma (2018)

miRNA  miRNA-1266 Up Endometrial carcinoma  Cancer diagnosis CN105907883A
(2016)

miRNA  miR-320 Down Cervical cancer Cancer early diagnosis CN105506076A
(2016)

miRNA  miRNA-2116 Up Lung adenocarcinoma  Cancer metastasis diagnosis ~ CN104774966A
(2015)

miRNA  miRNA-410 Up Prostate cancer Cancer diagnosis CN104651492A
(2015)

miRNA  miRNA-1262 Up Acute myeloid leukemia  Cancer diagnosis CN105063052A

(2015)

the genetic sequences of well-known ncRNAs [10, 37,
42, 126, 139]. Sno-IncRNAs have the same classical
stem-loop as snoRNAs originating from the same gen-
omic regions. However, both types of ncRNAs have been
verified to have individual functions and to be important

regulatory molecules in biological processes [42]. An-
other example is circANRIL, a circRNA formed from
the IncRNA ANRIL, which performs functions in apop-
tosis and proliferation that are the opposite of the func-
tions of ANRIL [227]. Taken together, these results
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suggest that transcripts derived from canonical DNA re-
gions have functions in addition to their classical ones
by interacting with nonclassical binding molecules or by
being located in novel components, which indicates that
the transcriptome extends far beyond the genome. A
larger RNA world is waiting for us to explore.

High-throughput sequencing with purposeful sample
preparation not only has uncovered novel species of
ncRNAs but also has mapped the interaction networks
and subcellular locations of ncRNAs [221]. In accord-
ance with sequencing data of the RNA-associated inter-
actome and RNA subcellular locations that have been
determined at the transcriptome scale, a series of non-
coding transcripts, especially IncRNAs and circRNAs,
exhibit specific distributions in organelles, protein com-
plexes, or subcellular structures [228]. These results fur-
ther indicate that ncRNAs are functional molecules
playing roles in specific compartments, providing a pool
of candidates for us to search for specifically functional
ncRNAs. Using these sequencing methods, a huge num-
ber of snoRNAs have been found to be enriched on
chromatin, robustly suggesting that other potential func-
tions of these well-known small ncRNAs are located in a
nonclassical compartment [71]. However, the functions
of chromatin-associated snoRNAs remain unanswered.
In addition, thousands of potential functional ncRNAs
with specific interactions or locations have been discov-
ered and await further investigation.

Due to the features of specific expression patterns in
cancers and relatively high stability in serum, plasma,
saliva, or urine, ncRNAs especially miRNAs, IncRNAs,
and circRNAs are generally considered to have potential
as non-invasive diagnostic biomarkers for cancers. A
growing number of researehes have provided the suit-
able ncRNA candidates for diagnosis of different cancers
and increasing patents about preparation of ncRNA
diagnostic kits for cancer diagnosis have been approved.
However, most of these candidate ncRNAs are still in
the preclinical stages. In addition, the results of some
studies evaluating the potential of ncRNAs as bio-
markers are conflicting [20]. Thus, more accurate evalu-
ation of RNA expression pattern in larger cohorts of
clinical data are needed to reconcile the controversies.
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