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Abstract

As crucial antigen presenting cells, dendritic cells (DCs) play a vital role in tumor immunotherapy. Taking into account the
many recent advances in DC biology, we discuss how DCs (1) recognize pathogenic antigens with pattern recognition
receptors through specific phagocytosis and through non-specific micropinocytosis, (2) process antigens into small peptides
with proper sizes and sequences, and (3) present MHC-peptides to CD4+ and CD8+ T cells to initiate immune responses
against invading microbes and aberrant host cells. During anti-tumor immune responses, DC-derived exosomes were
discovered to participate in antigen presentation. T cell microvillar dynamics and TCR conformational changes were
demonstrated upon DC antigen presentation. Caspase-11-driven hyperactive DCs were recently reported to convert effectors
into memory T cells. DCs were also reported to crosstalk with NK cells. Additionally, DCs are the most important sentinel cells
for immune surveillance in the tumor microenvironment. Alongside DC biology, we review the latest developments for DC-
based tumor immunotherapy in preclinical studies and clinical trials. Personalized DC vaccine-induced T cell immunity, which
targets tumor-specific antigens, has been demonstrated to be a promising form of tumor immunotherapy in patients with
melanoma. Importantly, allogeneic-IgG-loaded and HLA-restricted neoantigen DC vaccines were discovered to have robust
anti-tumor effects in mice. Our comprehensive review of DC biology and its role in tumor immunotherapy aids in the
understanding of DCs as the mentors of T cells and as novel tumor immunotherapy cells with immense potential.
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Introduction
Antigen presenting cells (APCs) play a significant role in
both innate and adapted immunity responses. The cat-
egory of APCs consists of macrophages, dendritic cells
(DCs), and B lymphocytes [1]. DCs, first discovered by
Ralph Steinman in 1973, are the most important of the

APCs and have many different subtypes. These subtypes
have a variety of special functions in immunological pro-
cesses, such as initiating immune reactions, regulating
immune responses, and maintaining those responses [2].
According to its ontogeny, a DC can be categorized as
either a conventional DC (cDC) or a plasmacytoid DC
(pDC), as summarized in Table 1 [3]. Also, according to
the developmental stage of the DC, it can be classified
into two major categories: immature and mature [4].
Most immature DCs reside on mucosal surfaces, with
the skin and solid organs acting as sentinels to recognize
antigens. These DCs have a lower expression of major
histocompatibility complex (MHC) I and MHC II, T cell
co-stimulation factors, and adhesion molecules [3].
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Immature DCs do not secrete proinflammatory cyto-
kines. However, they are capable of migration.
When immature DCs uptake antigens, they shift to

secondary lymphoid organs and present antigens to
helper T cells or effector T cells to trigger specific cyto-
toxic T lymphocyte (CTL) responses [5]. In the mean-
time, they also gradually become more motile and
upregulate the expression of CC-chemokine receptors 7,
8 (CCR7, 8) [6].
On the other hand, matured DCs have a reduced ability

to uptake and process antigens but have an enhanced mi-
gration capacity. In addition, mature DCs were also re-
ported to have an increased expression of various co-
stimulatory molecules—for instance, CD40, CD70, and
CD80, as well as CD86—and an increased production of
proinflammatory cytokines and chemokines [7, 8].
Here, we review the latest studies on DCs as the mentors

of T cells, with an emphasis on how DCs specifically
recognize, process, and present antigens to program T cells
for immune activation, suppression, or memorization. We
also highlight some recent developments that demonstrate
the immense potential of DCs in tumor immunotherapy.

Antigen recognition and internalization
DCs are highly dynamic, using their specific receptors to
recognize foreign invading antigens or aberrant self-
antigens. DCs recognize antigens through pathogen-
associated molecular patterns (PAMPs) as well as
danger-associated molecular patterns (DAMPs) through
pattern recognition receptors (PRRs). DCs then uptake,
process, and present antigens to T cells to initiate im-
mune responses (Fig. 1a).

Specific phagocytosis
The critical approach of antigen uptake by DCs and
other immune cells is generally believed to be phagocyt-
osis [7]. There are two important forms of phagocytosis:
microautophagy and chaperone-mediated autophagy
(Fig. 1a). Microautophagy is initiated when the expres-
sion of master regulator RAB5A is altered and the
MHC-II compartment (MIIC) is fused by the autophagy
protein LC3. As a key endocytic protein, the master
regulator RAB5A also has multiple physiological activ-
ities, such as promoting coherent and ballistic collective
motility, impacting junctional mechanics and monolayer
rigidity, and increasing endomembrane trafficking [9].
Chaperones, such as C-type lectins and Fc receptors, can
recognize antigens by targeting special ligands of apop-
totic cells or pathogens. Afterwards, the endocytosis
process, mediated by clathrin, is induced, which places
antigens into antigen-processing compartments [10].
Here, we have highlighted the major mechanisms of
chaperone-mediated autophagy.

C-type lectin receptors (CLRs)
Pattern-recognition receptors are critical components to
immune responses. They recognize invading microbes
and induce protective immune responses to infection.
CLRs, a type of pattern-recognition receptor, are central
to antifungal immunity. They are expressed on macro-
phages as well as DCs. Dectin-1, CLEC9, and DEC-205
(lymphocyte antigen 75) are all examples of CLRs [10].
Specifically, the calcium-dependent carbohydrate recog-
nition domains (CRD) in CLRs recognize conserved fun-
gal cell-wall carbohydrates and their glycosylation
pattern, also known as the carbohydrate fingerprint [11].

Table 1 DC classification

DC
subtype

Identification basis Presence in vivo Main surface markers Secreted
molecules

Function

Mouse Human

pDCs 120G8+, B220+,
CD11c+, LY6C+,
CD11b–

Circulate through the blood
and lymphoid tissues

TLR7, TLR9, TLR12, RLR,
STING, CLEC12A

TLR7, TLR9, RLR, STING,
CLEC12A

CD317,
SIGLECH,
B220,
BDC2*,
BDC4*

(1) Type I
interferons, (2)
antigen
presentation, (3) T
cell priming

cDC1s cDC1s
(XCR1hiCD172low)

Thymus, spleen and lymph
nodes

TLR2-, TLR4, TLR11–
TLR13, STING, CLEC12A

TLR1, TLR3, TLR6, TLR8,
TLR10, STING, CLEC12A

XCR1,
CLEC9A,
(CD103),
(CD8α),
BDCA3*

Cross-priming

cDC2s cDC2s
(XCR1lowCD172hi)

Thymus, spleen and lymph
nodes

TLR1, TLR2, TLR4–TLR9,
TLR13, RLR, NLR, STING,
CLEC4A, CLEC6A,
CLEC7A, (CLEC12A)

TLR1–TLR9, RLR, NLR,
STING, LEC4A, CLEC6A,
CLEC7A, CLEC10A,
CLEC12A

CD11b,
SIRPa,
(CD4),
(DCIR2)

CD4+ T cell
priming

MoDCs CD11c+, Ly6C+,
CD103

Differentiate from monocytes
in peripheral tissues on
inflammation. Resident in skin,
lung, and intestine

CD11c+, MHC-II+,
CD11b+, Ly6C+, CD64+,
CD206+, CD209+,
CD14+, CCR2+

CD11c+, MHC-II+,
CD11b+, Ly6C+, CD64+,
CD206+, CD209+,
CD14+, CCR2+, CD103+

CD11b,
CCR2, LY6C,
CD115

Inflammation
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The melanin-sensing C-type lectin receptor MelLec
plays a major role in antifungal immunity by recognizing
naphthalene-diol of 1,8-dihydroxynaphthalene (DHN)-
melanin. MelLec has the ability to identify the conidial
spores of Aspergillus fumigatus and other DHN-
melanized fungi [12, 13]. The C-Type lectin 5A
(CLEC5A) is a spleen tyrosine kinase (Syk)-coupled re-
ceptor of APC and plays a pivotal role in the activation
of innate immunity against viruses—especially Flavivirus
[14]. CLEC5A promotes neutrophil extracellular trap de-
velopment and the production of both reactive oxygen
species and proinflammatory cytokines by recognizing
the bacteria Listeria monocytogenes. It can also induce
inflammasome activation in macrophages and stimulate
the immune reaction of T cells [14].
The human DC-specific intercellular adhesion

molecule-1 grabbing nonintegrin (DC-SIGN or CD209)
is thought to be a canonical of the C-type lectin receptor
expressed on both macrophages and DCs [15]. It is a
type 2, mannose-specific C-type lectin that also works as
a cytosolic DNA-sensor. It induces specific immune

responses upon the recognition of glycans through its
carbohydrate recognition domains (CRD) [16, 17]. After
DC-SIGN recognizes fucose-based PAMPs, it activates
IKKε. In turn, IL-27 is produced, follicular T helper cell
(TFH) differentiation is facilitated, B cell IgG production
is stimulated, B cell survival is aided, and Th2 differenti-
ation is implemented [18, 19]. DC-SIGN can be bound
by adaptor protein LSP1 in combination with a triad
“signalosome” complex consisting of the adaptor pro-
teins KSR1, CNK, and kinase [19]. The binding of patho-
gens to these lectins results in an internalization to
endosomal compartments, where the pathogens are
destroyed and an immune response is initiated [16].
In addition, Chao et al. found that Annexin A2
(ANXA2), which is abundantly expressed in nasopha-
ryngeal carcinoma (NPC), can activate DC-SIGN and
inhibit DC-mediated immunity against NPC [20].
Both DC maturation and the production of proin-
flammatory interleukin (IL)-12 were inhibited, but the
production of immunosuppressive IL-10 was increased
[20].

Table 2 Fc receptor classification and function

FcR Type Affinity
of
binding
IgG

Function
domain

Fc
signal

Fc expression cells Short-term effects Long-term effects

Constitutive Inducible

FcR I I High Fc
domains
within IgG

ITAM Monocytes Neutrophils,
eosinophils,
dendritic
cells

— —

FcrRIIa I Low Fc
domains
within IgG

ITAM Monocytes,
neutrophils,
eosinophils,
macrophages,
dendritic cells,
platelets, granulocytes

— Degranulation, ROI
production,
phagocytosis, cytokine,
chemokine expression,
platelet activation

Proinflammatory molecule stimulation
and release, cell survival, motility,
platelet binding to leukocytes,
enhanced antigen process,
presentation, T cell responses

FcrRIIb I Low Fc
domains
within IgG

ITIM B cells, monocytes,
neutrophils,
eosinophils,
macrophages,
dendritic cells, plasma
cells

— B cell selection High-affinity IgG responses

FcrRIIIa I Low Fc
domains
within IgG

ITAM NK cells Dendritic
cells

Phagocytosis, cytokine
and chemokine
expression, cell
activation, degranulation

Monocyte recruitment, differentiation,
proinflammatory pathway stimulate,
cytotoxicity, cell survival, effector
leukocyte impact, immune complexes
generation

FcrRIIIb I Low Fc
domains
within IgG

ITAM Granulocytes Neutrophils Degranulation, ROI
production,
phagocytosis

Proinflammatory molecule release,
cell survival, motility, myeloid
leukocyte impact

DC-
SIGN

II — Sialylated
Fc
glycoforms

Phagocytosis, cytokine
and chemokine
expression

Macrophage polarization, IgG-
mediated inflammation

DC23 II — Sialylated
Fc
glycoforms

B cells T cells,
monocytes,
neutrophils,
eosinophils

B cell selection Constitutive high-affinity IgG
responses

Note: High-affinity FcγR, capable of binding monomeric IgG; low-affinity FcγR, variable affinities by subclasses
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Formyl peptide receptors (FPRs)
FPRs are G protein-coupled receptors (GPCRs)
expressed in bone marrow cells and especially on DCs
[21]. GPCRs belong to the group of pattern-recognition
receptors that can recognize peptides containing N-
formylated methionine [21]. There are three human
FPRs: FPR1, FPR2, and FPR3. The mice equivalents are
unclear [22]. FPRs can induce DC migration to necrotic
tumor cells and affect tumor angiogenesis [23]. They can

also downregulate the cell surface expression of GPCRs,
CCR5, CXCR4, chemokines CXCL8 (also referenced as
interleukin 8, IL-8), and CCL3, which in turn promotes
monocyte migration, which is involved in tumor growth
[24, 25]. FPRs have five antigen-binding pockets where
consecutive amino acid residues can be modified with-
out changing their affinity towards the agonists [26].
FPRs can also induce cell adhesion with the robust re-
lease of migrating superoxide granules by recognizing

Fig. 1 Pathways of antigen recognition, processing, and presentation of DCs. a Antigen recognition and internalization into the early endosome
through specific phagocytosis (microautophagy and chaperone-mediated autophagy) or non-specific macropinocytosis. b Dimers of MHC-I and
MHC-II are formed in the endoplasmic reticulum (ER). MHC-II binds with a non-polymorphic invariant chain Ii (CD 74). c Gradual acidification to
approximate pH 3.8–5.0 by the ATP-dependent vacuolar proton pump, increasing the lysosomal enzyme activity in the late endosomal and
lysosomal-processing compartments. After proteolytic cleavage, antigens are transferred to MHC molecules. d MHC-I antigen cross-presentation
involved in modulating receptor-mediated signaling. e MHC-II antigen presentation involved in modulating receptor-mediated signaling
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transducing chemotactic signals in phagocytes [26]. You-
sif et al. reported that the recognition of the uPAR (84-
95) sequence and the shorter synthetic peptide (Ser88-
Arg-Ser-Arg-Tyr92, SRSRY) was a fresh, powerful, and
steady repressor against FPR1-triggered monocyte traf-
ficking and cell migration [26].

NOD-like receptor NLRP3 and Hexokinases
The glycolytic enzyme hexokinase is an innate immune
receptor which monitors bacterial peptidoglycan (PGN)
by recognizing PGN-produced N-acetylglucosamine
(NAG) in the cytosol [27]. The degradation of Gram-
positive bacterial cell walls by the phagosomes of DCs
will lead to the activation of the NOD-like receptor fam-
ily, pyrin domain-containing 3 (NLRP3), which promotes
the release of hexokinase [27]. Moreover, when NAG
binds with hexokinase, it induces the secretion of proin-
flammatory interleukins IL-1β and IL-18 [27, 28]. Un-
controlled IL-1β release can lead to autoinflammatory
diseases such as Cryopyrin-associated periodic syndrome
(CAPS) or Mediterranean fever. The overproduction of
IL-18 can also cause autoinflammatory diseases such as
rheumatoid arthritis. IL-18 functions to promote inflam-
mation primarily through stimulating the production of
IFN-γ, which is a classic anti-microbial inflammatory
cytokine [29].

Fc receptors
Expressed on hematopoietic cells, Fc receptors (FcRs)
play an important role in immune responses by binding
to the Fc region of an antibody. FcRs can bind to differ-
ent immunoglobulins (IgA, IgM, IgE, and IgG), partici-
pating in antibody-mediated innate and adaptive
immune responses (Table 2) [30]. A review by van de
Winkel has introduced the classification of Fc receptors
in detail [31]. In humans, activated Fc receptors include
FcRI (CD64), FcRIIA (CD32a), FcRIIC (CD32c), FcRIIIA
(CD16a), and FcRIIIB (CD16b) [32]. Most members of
the Fc receptor family generally bind to extracellular
IgGs, excluding the neonatal Fc receptor (FcRn) and the
intracellular Fc acceptor tripartite motif-containing pro-
tein 21 (TRIM21). FcRI has the highest affinity for
monomeric IgG1, the lowest affinity for monomeric
IgG2, and a medium level of affinity for IgG3 and IgG4.
Mostly, FcRI is saturated and in a steady condition in
the presence of physiological serum. The binding com-
plexes (FcR-IgG) not only trigger activating signals, but
also mediate inhibitory signals [33]. The complexes
affect the intensity of the immune reactions by setting-
up a “threshold” via a tyrosine-based activation motif
(ITAM) or immune receptor tyrosine-based inhibitory
motif (ITIM) in their cytoplasmic tails. ITIM phosphor-
ylation has an immunosuppressive effect by inducing the
recruitment of phosphatases, including SHIP-1 and

inositol polyphosphate-5-phosphatase (INPP5D). Recent
studies suggest that only monocyte-derived DCs and
macrophages express high levels of activated Fc recep-
tors for IgG [34]. FcRn works as an intracellular IgG Fc
binding receptor and is encoded by the Fcgrt gene. FcRn
is a lifelong resident of the endolysosomal system in
most hematopoietic cells, including DCs, and can guide
antibody-bound viruses and other antigens to the prote-
asome by activating E3 ubiquitin ligase [33]. After the
FcRs-IgG-peptide complex internalization is completed
via FcRn, FcRn releases IgG-peptides into the acidifying
endosomes, where the peptides can be successfully proc-
essed into peptide epitopes to be loaded onto MHC-I or
MHC-II molecules to activate CD8+ or CD4+ T cells
[35, 36].
FcRn in DCs can also lead directly to the activation of

CD4+ T cells [37]. An experiment showed that DCs iso-
lated from wild type mice pre-incubated with IgG-
peptides were able to effectively prime CD4+ T cells
[37]. In contrast, DCs isolated from Fcgrt−/− mice
needed antigen concentrations nearly 1000 times higher
than that for normal mice, suggesting that FcRn signifi-
cantly strengthens the ability of DCs to generate MHC-
II compatible epitopes from antigens delivered by IgG-
peptides [38].

Toll-like receptors (TLRs)
Discovered in 1996, TLRs are type I transmembrane
proteins [39]. TLRs reside on the surfaces of immune
cells or intracellular compartments and recognize
PAMPs for immune responses against pathogens and
neoplastic cells. TLRs induce DC maturation by activat-
ing nuclear factor kappa B (NF-κB) and upregulating the
expression of CCR7, MHC-II, and co-stimulatory CD80
or CD86 [40, 41]. At least two members of the Toll-like
receptor (TLR) family—TLR7 and TLR9—can recognize
self-RNA/DNA, respectively [42]. A new report found
that the TLR trafficking chaperone UNC93B1 specifically
limited the signaling of TLR7, but not TLR9, and pre-
vented TLR7-dependent autoimmunity in mice [42].
Comprehensive analyses reveal that both TLR2 and
TLR4 are required to recognize Sel1, activate NF-κB and
MAPK signaling pathways, and lead to the expression of
proinflammatory cytokines and chemokines against Can-
dida albicans infections [43].
TLRs are also expressed on tumor cells for the purpose of

immune evasion [44]. The stimulation of TLR3 and TLR5
signaling can induce an anti-tumor T cell response. However,
TLR4, TLR7, TLR8, and TLR9 mediated chronic inflamma-
tions were found to have pro-tumor effects. On the other
hand, a novel PAMP-mimicking regent can activate
macrophage-mediated tumor immunotherapy.
A specific agonist of TLR2 modified by acetyl groups

with a substitution degree of 1.8 (acGM-1.8) was found
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to stimulate macrophages to release anti-tumor proin-
flammatory cytokines. Another small-molecule agonist
of TLR7, 2-methoxyethoxy-8-oxo-9-(4-carboxybenzyl)
adenine (1V209), was found to enhance adjuvant activity
and limit adverse events when conjugated to hollow sil-
ica nanoshell s[45].

Non-specific macropinocytosis
Macropinocytosis is a type of non-specific phagocytosis
in the form of cell “drinking”. It can be spontaneously
induced by the engagement of growth factors, chemo-
kines, or Toll-like receptors (TLRs) [11, 46]. TLRs are
dependent on extracellular Ca2+-sensing receptors
(CaSR) [47]. Regulatory factors like Rab5, Rab34, and
ArfGTPases contribute to early macropinosome matur-
ation [12]. Rab5 and PtdIns (3)P then synergize to pro-
mote fusion with early endosomes with the involvement
of EEA1 [10]. The homotypic fusion and protein sorting
(HOPS) complex, septins, and SNARE proteins endow
the late compartment vacuoles with vacuolar-type H+-
ATPase (V-ATPase) at low pH values so that degrada-
tive enzymes can function optimally [13]. At this mo-
ment, a critical switch from Rab5 into Rab7 promotes
the centripetal transportation of the vacuole and its fu-
sion with late endosomal/lysosomal compartments.

MHC expression, assembly, and trafficking in DCs
MHC molecules have two categories: MHC class I
(MHC-I) and MHC class II (MHC-II) [48]. They both
exhibit tremendous allelic polymorphism in the peptide-
binding groove. This allows them to bind with a diverse
range of peptides (Fig. 1b).

MHC expression
MHC class I molecules are heterodimers that consist of
two polypeptide chains: α and β2-microglobulin (B2M).
The two chains are linked noncovalently via the inter-
action of B2M and the α3 domain. Only the α chain is
polymorphic and encoded by a HLA gene [49]. Dimers
of MHC-II are formed in the endoplasmic reticulum
(ER), then bind with a non-polymorphic invariant chain
Ii (CD 74) (Fig. 1b) [50, 51]. Li, also called a pseudo pep-
tide, has a transport function and low affinity for the
peptide-binding groove of MHC-II, which can prevent
MHCII from binding to premature antigens [52]. MHC
II contains targeting motifs that can direct the Ii-MHC-
II complex to traffic from the trans-Golgi network
(TGN) to the endosomal-lysosomal antigen-processing
compartment (MHC-II compartment, MIIC) via
clathrin-mediated endocytosis [50]. In the antigen-
processing compartment, Li is trimmed gradually by a
series of proteases, including cathepsin S, and ultimately
SPPL2A, to generate the Ii-associated invariant chain
peptide (CLIP). This protects the MHC-II groove before

the peptide is bound with MHC-II and removed from
the CLIP-MHC-II complex via the enzyme DM (HLA-
DM in humans or H2-DM in mice) [53]. DM has a simi-
lar structure with MHC-II. It catalyzes peptide acquisi-
tion and the dissociation of CLIP in the MIIC through
multivesicular bodies (MVB). DM stabilizes MHC-II
during peptide interchange and selects for higher bind-
ing affinities from the peptide repertoire [50]. After
losing CLIP, MHC-II molecules face two possible fates:
productively binding with a local peptide and presenting
the complex on the cell surface or aggregating and
deconstructing the vacant dimers [54]. Although
peptide-MHC-II complexes can be generated through-
out the endocytic pathway, antigen-processing typically
occurs in late endosomal compartments or in lysosomes.
These vesicular compartments are enriched with proteo-
lytic enzymes and disulfide reductases. The compart-
ments have sufficiently low pH values to activate these
enzymes (Fig. 1c) [34]. Interferon-γ (IFN-γ) induces the
expression of the MHC class II transactivator (CIITA),
which then converts MHC class II-negative monocytes
into MHC class II-presenting functional APCs [55].

MHC assembly
The receptors on DCs mediate the internalization of an-
tigens into early endosomes, where the pH value is
nearly neutral and the activity of antigen-processing en-
zymes is low [56]. After internalization, the lysosomal
enzyme will activate due to the gradual acidification by
the ATP-dependent vacuolar proton pump [57]. At first,
the longer peptide precursors will bind to MHC-II. The
precursors are then trimmed into shorter peptides [50].
The antigen-processing proteases consist of the serine
proteases cathepsin A and G (Cat A, G), the aspartic
proteases cathepsin D and E (Pepsin family A1A), and
the 11 cysteine proteases cathepsins B, C, F, H, K, L, O,
S, V, X, and W (Papain family C1A) [58]. Cathepsin S,
B, H, and Li are also essential for the degradation of Li
from MHC-II [57]. TFEB (transcription factor EB) can
also promote lysosome and phagosome acidification and
induce protein degradation in DCs [59]. The pH values
of the late endosomal and lysosomal-processing com-
partments reach approximately 3.8–5.0, allowing the en-
dopeptidases (EXPD) to recognize the most susceptible
site for subsequent cleavage on the antigens. Then,
GILT/IFI30 reduces certain disulfide bonds of the anti-
gens’ secondary structure [54].

MHC-peptide trafficking in DCs
After proteolytic cleavage, antigens are transferred to
nearby MHC-II molecules. In this course, many different
“pro-determinants” of antigens are exposed to the acidic
vesicular endosomal system [53]. Large pro-
determinants may contain more than one MHC-II
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binding region, but the most suitable, most dominant
pro-determinant has the strongest binding affinity for
MHC-II. This process is known as competitive cap-
ture. Once the pro-determinants are bound, their core
residues will be protected by the MHC-II inside the
lysosomal compartment. Many antigens contain only
one dominant determinant in a haplotype [48]. The
ER aminopeptidase has recently been identified to
take part in antigen-processing guided by MHC. Re-
cent data showed that a peptide of 51 amino acids
did not need to be processed, but it was preferable in
the competitive capture process than a peptide of half
its size. Compared with the 10-mer cytochrome c
peptide, the 23-mer peptide had a 32 times higher
binding affinity to MHC-II [60].
Endogenous peptides are generated by proteasomal

processing, then imported into the ER where the major-
ity of MHC-I are loaded via the action of the transporter
associated with antigen-processing (TAP) (Fig. 1c) [61,
62]. The closed-end of MHC-I molecules only binds to
short peptides containing 8–10 amino acids [63]. Before
being loaded to MHC-I molecules, the peptide must be
trimmed by ER aminopeptidase (ERAP) chaperones,
such as calnexin and calreticulin [53]. The specificity of
the proteasome, including ERAAP/ERAP1, trypsin, and
TAP, can influence epitope generation and transporta-
tion to receptive MHC-I molecules [62]. The MHC-I-
peptide complex is generally presented to CD8 T cells,
which induce the phosphorylation of the ITAM motifs
in TCR through a proto-oncogene tyrosine-protein kin-
ase and the Src (SRC) family kinases pathway [54].
Exogenous antigens are usually presented by MHC-II

molecules. Before binding to peptides, MHC-II mole-
cules must release CLIP and then generate an open
groove for binding [64]. The open groove of MHC-II,
containing a 9-amino acid glove cast (3–4 MHC-II an-
chor residues), tends to bind to longer peptide fragments
(> 11 amino acids) [53]. Peptide-MHC-II complexes in
DCs leave the antigen-processing compartments and
traffic for the plasma membrane, where they can interact
with T cells. Microvilli on T cell surfaces act as detectors
for these complexes and can continue moving to detect
p-MHC. Different peptides are exchanged until the pep-
tide with the highest affinity binds the TCR grooves [65].
Dynamic interactions between APCs and T cells require
several hours to several days [66]. The MHC-II pepti-
dome contains high-affinity and low-affinity peptides.
IRF4 regulatory CD11b+ DC subsets enhance peptide-
MHC-II complex formation and present antigens to
helper T cells in order to stimulate them [52].

Antigen presentation
To activate CD8+ or CD4+ T cells, several signals are
needed (Fig. 1d, e): Signal 1: Antigenic peptides bound

to MHC-I or MHC-II molecules are presented to CD8+

T cells or CD4+ T cells, respectively [67]. Signal 2: Ap-
propriate co-stimulatory signaling is delivered through
the balance between diverse positive and negative signal
s[60]. CD80/CD86 and programmed death-ligand 1 or 2
(PDL1/2) are examples of the positive and negative sig-
nals on DC surfaces [68]. Signal 3: T cell stimulatory
cytokines are produced by DCs. Examples of such cyto-
kines are proinflammatory interferons (IFNs) and
interleukin-12 (IL-12) [69]. These cytokines also stimu-
late the functional expansion and memory development
of CTLs.

Classic antigen presentation to T cells
The T cell receptor (TCR) or TCR-CD3 complex con-
sists of four subunits—an antigen-binding TCRαβ (or
TCRγδ) subunit and three signaling subunits (CD3εδ,
CD3εγ, and CD3ζζ)—and initiates antigen-specific im-
mune responses [70]. As they do not contain cytoplas-
mic signaling motifs, the TCRαβ and TCRγδ subunits
cannot trigger intracellular activation signaling pathways
upon recognizing antigens on APCs. TCR-mediated sig-
nals are transmitted across the cell membrane by CD3
chains, including CD3γ, CD3δ, CD3ε, and CD3ζ. All
CD3 chains contain ITAMs in their cytoplasmic domain.
CD3ε, CD3γ, and CD3δ each contain one ITAM in their
cytoplasmic domain, whereas CD3ζ contains three
ITAMs [71]. The antigen presentation process by
peptide-MHC to TCRs can be divided into two stages:
the transformation of TCR structure from “closed to
open” and the phosphorylation activation of the ITAMs
of TCR [66]. TCR interaction with distinct peptide-
MHC can trigger distinct conformational changes.
MHC-I-peptide and MHC-II-peptide complexes on the
surface of DCs are presented to TCR complexes on
CD8+ and CD4+ T cells, respectively, which in turn pro-
mote T cell activation, proliferation, and differentiation
(Fig. 1e, f) [72].

Cross-presentation and cross-priming
Cross-presentation is the process wherein DCs take up,
process, and present extracellular antigens via MHC-I
molecules to CD8+ T cells. This is also known as cross-
priming [73]. Cross-presentation is necessary to activate
CD8+ T cells and has a considerable effect on immune
surveillance in transplants and immune defense in infec-
tions. Only DCs can cross-prime for a cytotoxic CD8+ T
cell response [62]. Particularly, XCR1+ DCs are crucial
for cross-presentation and communication between
CD4+ and CD8+ T cells in a productive vaccinia virus
(VV) infection [74]. Many factors will infect cross-
presentation. TLRs can also trigger phagosomal MHC-I
transport from the endosomal recycling compartment to
facilitate cross-presentation [11]. The absence of FcRn
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will also impair the cross-presentation of IgG-bound in-
ternalized antigens by CD8−CD11b+ DCs. TFEB can in-
hibit the DC presentation of exogenous antigens via
MHC-I and promote presentation via MHC-II [75].

Antigen presentation by DC exosomes
DC-derived exosomes (Dex) are nanometer-sized mem-
brane vesicles that can migrate to tumors or the spleen
and present antigens directly or indirectly to CD4+ and
CD8+ T cells, thereby inducing immune responses [76].
Several mechanisms have been proposed on how Dex
presents antigens via MHC molecules in order to stimu-
late T cell responses (Fig. 2).
First, Dex can present antigens to T cells directly,

which is thought to be a restimulation of activated T
cells [77].
Secondly, a process known as cross-dressing occurs.

Simply put, it is Dex-mediated indirect antigen presenta-
tion to T cells. After binding to APCs, Dex merges with
the acceptor APC surface membrane and transfers its
peptide/MHC complexes. Following internalization, the
Dex peptide/MHC complexes can be reprocessed via
endosomal pathways within the APC. Peptide complexes
can then be transported back to the DC’s surface for
presentation to T cells.
Thirdly, Dex can be internalized by tumor cells and

convert tumor cells into stronger immunologic targets

for effector immune cells [77]. The mature Dex can acti-
vate immature DCs and T cells in vitro [78]. Rao et al.
reported that DCs pulsed with exosomes from the hu-
man hepatocellular carcinoma HepG2 cell line could
elicit a stronger antigen-specific CTL response than cell
lysates did in vitro and in vivo [79]. DCs can also secrete
extracellular vesicles (EVs) of different sizes [76]. Large
EVs (lEVs) secreted by immature DCs induce Th2 cyto-
kine secretion (IL-4); small EVs (sEVs) induce Th1 cyto-
kine secretion. Upon DC maturation, all EVs induce Th1
cytokine secretion [76, 80].

Immune responses meditated by DCs
DCs enable CD4+ T cells to activate B and CD8+ T cells
According to their patterns of cytokine production, tran-
scription factor expression, and cell surface marker ex-
pression, CD4+ T helper cells are currently subdivided
into multiple lineages, encompassing at least Th1, Th2,
Th17, and follicular T helper (Tfh) (Fig. 2). CD40, a co-
stimulatory molecule glycoprotein with 277 amino acids
also known as TNFRSF5, was originally identified as a re-
ceptor on B cells and was later found to be expressed in
various other immune effector cells. T follicular helper
cells, a subgroup of T cells, mediate important cell-cell in-
teractions with B cells that occur within the follicles of
secondary lymphoid organs. These T cells also stimulate
and govern B cells to produce antibodies. The interaction

Fig. 2 DC exosome-mediated antigen presentation and T cell activation
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of CD40 on DCs in addition to CD40L on T cells leads to
DC activation, enabling DCs to prime T cells and induce
the upregulation of co-stimulatory molecules, adhesion
molecules, and the Th1-polarizing cytokine IL-12 in both
mouse and human DCs [81]. Notably, the IL-12 produced
after the interaction of CD40 with CD40L plays a decisive
role in determining the type of CD4+ T cell immunity
[69]. IL-12 polarizes the differentiation of naive CD4+ T
cells into Th1 cells [82]. Th1 and Th2 cells, in turn, se-
crete interleukin IL-2, IFNγ, IL-4, IL-5, and IL-13, respect-
ively, to promote CD8+ T and B cell responses [64]. Th1
cells express the defining T-box transcription factor
TBX21 (T-bet), express chemokine receptors such as
CXC-chemokine receptor 3 (CXCR3) and CC-chemokine
receptor 5 (CCR5), and secrete IFNγ. Moreover, many
CD4+ T cells in the atherosclerotic plaque express other
Th1-associated proinflammatory cytokines in addition to
IFNγ, such as IL-2, IL-3, tumor necrosis factor (TNF), and
lymphotoxin, which can all activate macrophages, T cells,
and other plaque cells, accelerating the inflammatory re-
sponse [83]. The main Th2 cell cytokine is IL-4. IL-4
binds to the IL-4 receptor on T cells and activates signal
transducer and activator of transcription 6 (STAT6), lead-
ing to the expression of the transcription factor GATA3,
the master regulator of Th2 cell differentiation. In mouse
atherosclerotic plaques, a substantial proportion of T cells
express transcripts for Th2 cell-associated cytokines, such
as IL-4, IL-5, IL-10, and IL-13 [84].
Recent studies have revealed that primary tumors can

induce B cell accumulation into draining lymph nodes
(DLN), possibly through signaling mediated by the phos-
phorylated proteins EGFR, VAV2, P130, CHK2, and
CLDN3 in DLN [85–88]. When B cells accumulated in
the DLN, they increased the expression of cell cycle re-
lated genes Cdc25c, Bub1, Ttk, and Cdk1, and
migration-related genes Vcam1, Arhgap5, Cxcr3, and
Ccr2. They also secreted chemotactic molecules. In the
meantime, these B cells selectively promoted cancer cell
lymph node metastasis by producing pathogenic IgG
that targeted the glycosylated membrane protein HSPA4
of cancer cells. HSPA4 targeting IgG activated the
HSPA4-binding protein ITGB5 and the downstream
Src/NF-κB pathway in cancer cells to promote CXCR4/
SDF1α-axis-mediated cancer metastasis [85, 87, 88].

DCs mediate immune memory
Immune memory is a vital mechanism of myeloid cell
plasticity. It occurs in response to environmental stimuli
and alters subsequent immune responses [89]. Two types
of immunological imprinting can be distinguished: train-
ing and tolerance. These imprinting processes are epige-
netically mediated and enhance or suppress subsequent
inflammation, respectively [89]. DCs can also mediate im-
mune memory via group 2 innate lymphoid cells (ILC2)

[90]. Memory Th2 cells are essential for the recall re-
sponse and subsequent type-2-cytokine-driven inflamma-
tion [90, 91]. Halim et al. reported that ILC2 is critical in
memory Th2 cell immune response [90]. Activated ILC2
can secrete IL-13 to stimulate IRF4+CD11b+CD103−DCs,
generating CCL17 and recruiting CCR4+ memory Th2
cells [90]. To generate a long-term vaccinal anti-tumor re-
sponse, many researchers are investigating the conversion
of effector T cells into memory T cells. The desired anti-
tumor antibodies should be optimized against cytotoxic
effects and should be involved in motivating a long-lasting
anti-tumor cellular immune response [92]. DiLillo et al.
demonstrated that both hFcγRIIIA expressed on macro-
phages and hFcγRIIA expressed on human DCs (Table 1)
generated a potent long-term vaccinal anti-tumor T cell
response upon ADCC-mediated tumor clearance in a
FcγR-humanized murine lymphoma model. Zhang et al.
reported that CD45+RALDH+ DCs controlled volume ex-
pansion and maintenance in the secondary lymphoid or-
gans of germ-free mice [93]. Many factors enhance DC
active stages. For example, Zanoni et al. found that micro-
bial products and self-encoded oxidized phospholipids
(ox-PAPC) can make DCs hyperactive via a caspase-11 en-
zyme that bound to ox-PAPC and a bacterial lipopolysac-
charide (LPS). Hyperactive DCs are longevous and can
convert effector T cells into memory T cells [94].

DCs’ effects on Tc1 and Treg cells
The cardinal features of natural or therapy-induced
immuno-surveillance are CD8+ cytotoxic T lymphocytes
(Tc1 cells), which can specifically recognize antigens and
produce a particular interferon-γ (IFN-γ)-centered cyto-
kine pattern [95, 96]. For major human malignancies,
the abundance of Tc1 cells in tumors has a positive
prognostic impact. It is activated by IL-12 and CCR7-
mediated CD103+/CD141+ DCs [95]. CCR7 loss in DCs
leads to deficient lymph node T cell activation and will
increase tumor outgrowth [96]. CCR7 expression levels
in human tumors correlated positively with signatures of
CD141+ DCs and intra-tumor T cells, as well as better
clinical outcomes [96].
DCs present peptide-MHC to TCR and generate IL-2

to promote the development of antigen-specific Treg
cells for immune suppression. High levels of type I IFNs
will feedback suppress Treg cell expansion [97, 98].
When type I IFNs wane, Treg cells increase the expres-
sion of IL-10 to suppress the maturation state of DCs
and limit their production of proinflammatory cytokines
[99]. Low levels of proinflammatory signals allow for the
continued maturation of effector CD8+ T cells into func-
tional memory CD8+ T cells [100]. Indoleamine 2, 3-
dioxygenases (IDO1) expressed in DCs can deplete tryp-
tophan and increase kynurenine, which in turn activates
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Treg cells and exerts important immunosuppressive
functions [101].

DC and NK cells crosstalk
The reciprocally activating crosstalk between DCs and
NK cells plays a pivotal role in the innate immune re-
sponse against cancer and infections [102]. DCs recruit
NK cells to the draining lymph nodes and interact with
them in a CXCR3-dependent fashion. DCs and NK cells
interact through a “touch and go” mode lasting from
300 s to 4 h [103]. The interaction induces DCs to pro-
duce cytokines IL-12, IL-18, IL-27, type I IFNs, IL-15,
and prostaglandin E2 (PGE2), leading to the proliferation
of NK cells, the expression of the activation marker
CD69, and the release of the effector molecule IFN-r
[102]. During viral infection, DCs can be recruited to the
infection site through the type I interferon mediated
production of the chemokine CCL2. The recruited DCs
are then activated via SIGN-R1 triggers to produce the
chemokines CCL5, CXCL9, and CXCL10, which recruit
NK and T cells to the infected site to kill the viruses. As
a negative feedback molecule, IL-10, produced by the
interacting cells, was able to limit this process [103–
105]. Activated NK cells may leave the lymph node, infil-
trate tumors, and kill cancer cells in tumors. In contrast
to CD21+ NK cells, the activated CD2+ NK cell subset
produces IFN-γ. This induces DC maturation and stimu-
lates T cell responses. This also kills autologous imma-
ture DCs through the CD94/NKG2A inhibitory NK
receptor [102].

DCs in tumor immunity and immunotherapy
Cancer cells often escape from immune surveillance
and sometimes show relative resistance to chemothera-
peutic drugs. Tumors contain heterogeneous cancer
cells, including tumor stem cells [106, 107], which
interact with stromal cells and immune cells in the
tumor microenvironment [108]. DCs, as crucial APCs,
mediate tumor immunity via the activation of CD8+

and CD4+ T cells (Fig. 1). In addition, exosomes ex-
pressing CD47 to protect themselves from phagocytosis
by monocytes and macrophages have been used in
tumor immunotherapy and have impressive outcomes
[109]. DCs have been used for tumor immunotherapy
in various kinds of preclinical and clinical studies. We
categorized the included studies (Table 3), which may
reflect clinical importance. We also note that viruses
have been used for tumor virotherapy and immuno-
therapy [127–129]. Prospective studies need to be war-
ranted to investigate the clinical benefits of cancer
immunotherapy in combination with virotherapy
through DC immunotherapy.

DC vaccines showed great potential for tumor
immunotherapy
Tumor-specific antigens are being used to stimulate DCs.
These antigens include cancer-testis or cancer-germline
antigens, abnormally expressed fetal antigens, mutated an-
tigens, overexpressed antigens, differentiation antigens,
and viral antigens [130]. Culturing patient tumor cells
with allogeneic-IgG-loaded DCs induced vigorous patient
T cell responses to autologous tumor antigens, shedding
light on this technique as a new potent method for tumor
immunotherapy [131]. Personalized DC vaccines have in-
duced T cell immunity, which targets private somatic
neoantigens in certain melanoma patients and may be-
come clinically feasible soon [132]. Personalized DC vac-
cines can be generated by the co-culture of autologous
DCs with oxidized autologous whole tumor cell lysate
(OCDC) that has been shown to significantly prolong pa-
tient survival [133]. Also, allogenic mature DCs have been
made to fuse with inactive gastric cancer cells (MGC803)
and cytokine-induced killing cells (CIKs), facilitating effi-
cient, targeted immunotherapy against gastric cancer
[134]. It has been found that fusion cells (FCs) in addition
to CIKs can trigger tumor-specific CTLs and inhibit
tumor growth in vivo. FCs can act as efficient vehicles to
deliver tumor antigens systemically by activating CTL and
triggering an anti-tumor immune response [134]. Mitchell
and his colleagues found that a tetanus/diphtheria (Td)
toxoid can induce CCL3 expression and facilitate DC
migration. They deployed a DC vaccine pulsed with
glioblastoma specific antigen cytomegalovirus phospho-
protein 65 (pp65), which was able to enhance anti-tumor
effects [135].

DCs in combination tumor immunotherapy
Effective tumor immunotherapy requires four parts as
follows: a tumor antigen targeting antibody, recombinant
interleukin-2 with an extended half-life, anti-PD1, and a
powerful T cell vaccine [136]. These combined therapies
promote immune cell infiltration and inflammatory
cytokine production. Curative tumor regression is medi-
ated mainly by CD8+ T cells and cross-presenting DCs,
suggesting that effective treatment engages innate and
adaptive immune responses to eradicate large tumors
[136]. The identification of human cancer-specific anti-
gens has led to the development of antigen-specific im-
munotherapy in cancer. CD47 is a transmembrane
glycoprotein widely expressed on the surface of cancer
cells [73], which, embedded on exosomes, limits their
clearance by circulating monocytes [109]. It transmits an
inhibitory signal through its receptor—the signal regula-
tory protein alpha (SIRPα) on DCs. This signal blunts
antibody effector functions as an antiphagocytic ligand
exploited by tumor cells [137]. The interference with
CD47–SIRPα interaction synergized with tumor-specific
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monoclonal antibodies enhanced macrophage-mediated
antibody-dependent cellular phagocytosis (ADCP), leading
to the elimination of human tumor xenografts in mice
[137]. Exosomes harboring SIRPα variants (SIRPα-exo-
somes) were sufficient to induce augmented tumor phago-
cytosis, resulting in a prime, effective anti-tumor T cell
response. This suggests that a superlative exosome-based
platform has broad potential to maximize the therapeutic
efficacy of membrane-associated protein therapeutics
[138]. Interestingly, near-infrared photoimmunotherapy
(NIR-PIT) is a localized molecular cancer therapy combin-
ing a photosensitizer-conjugated mAb and light energy.
CD47-targeted NIR-PIT increases direct cancer cell death
and phagocytosis, resulting in inhibited tumor growth and
improved survival in a model of human bladder cancer
[139]. A novel CD47-targeting fusion protein, termed
SIRPαD1-Fc, was generated and found to increase the
phagocytic and cytotoxic activities of macrophages against
non-small cell lung cancer (NSCLC) cells [140]. Targeting
both CD47 and autophagy in NSCLC xenograft models
elicited enhanced anti-tumor effects, with the recruitment
of macrophages, activated caspase-3, and overproduction
of ROS at the tumor site [140, 141].
DCs and cancer cells express PDL1 on their cell surface,

which represses T cell activation [142]. Specific antibodies
that block immune checkpoint molecules, such as the cyto-
toxic T lymphocyte antigen 4 (CTLA4), PDL1, and PD1 are
currently licensed as therapies for various types of cancers
[100, 143]. Mezzadra et al. found that CMTM4 can help
CMTM6, a type-3 transmembrane protein, to reduce PDL1
ubiquitination and increase its protein half-life, enhancing
the ability of PDL1-expression in tumor cells to inhibit T
cells [144]. Arming Abs with IFN-β is more potent than the
first generation of Abs in controlling Ab-resistant tumors
[145]. Yang et al. found that DCs were the major cell type
responding directly to anti-EGFR-IFN-β treatment by in-
creasing antigen cross-presentation. Combined therapy with
anti-EGFR-IFN-β and PDL1 blocking completely eradicated
established tumors [145]. In addition, Overacre-Delgoffe
et al. found that neuropilin-1 (Nrp1)-deficient Tregs induced
IFN-γ, which made intratumoral Tregs fragile and boosted
anti-PD1 therapy [146]. The TLR7 antagonist Loxoribin
inhibited tumor growth in xenograft models of colon cancer
and lung cancer by promoting CD4+ T cell proliferation, re-
versing CD4+CD25+ Treg-mediated suppression via DCs
[13, 147]. DC cross-presentation can also reactivate CTL and
block PDL1 induced by IFN-γ [68]. T cell therapy needs
CD40-CD40L to activate the tumor necrosis factor (TNF)
and DCs to produce nitric oxide synthase 2 (NOS2) [60].

DCs promote tumor immunotherapy by suppressing Treg
cells
DC-based cancer immunotherapy is a promising ap-
proach, but Treg cells in the tumor microenvironment

are the biggest barrier for effective tumor immunity.
Treg cells and DCs in the tumor microenvironment can
mutually suppress each other [148]. DCs can suppress
Treg cells but activate effector T (Teff) cells to enhance
tumor immunity by inhibiting the p38 MAPK pathway
through the DC cell surface molecule OX40L [149].
Additionally, OX40 co-stimulation by SB202190-treated
mDCs (mSBDCs) inhibits the conversion of Teffs to
Tregs [149]. In the tumor microenvironment, tumor-
associated DCs can produce reactive oxygen species
(ROS), which cause lipid peroxidation/degradation and
tumor suppression. Meanwhile, the accumulation of un-
folded proteins in the ER can also cause ER stress, which
in turn enhances unfolded protein response (UPR),
resulting in the reduced DC expression of MHC-I mole-
cules and an impaired anti-tumor T cell response. This
indicates that ER stress in DCs suppresses tumor im-
munity via MHC-I expression reduction [150, 151].

Clinical trials of DC-based tumor immunotherapy
Clinical trials of DC-related cancer immunotherapy
show promising results (Table 3). These trials may be
classified into DC vaccines and other DC-related trials.
DC vaccines involve DCs that recognize various kinds of
tumor-specific antigens or whole tumor lysates, as well
as cytokine activated DCs. Other DC-related trials may
not use DCs directly, but DCs are involved in their
therapeutic mechanisms.
DC vaccines have been tested in multiple clinical trials

to target many tumor-specific or tumor-associated anti-
gens, including CMV pp65, telomerase, Her2, Wilms’
tumor 1, and so on. Two stage I clinical pilot trials used
vaccination with CMV pp65 mRNA-loaded DCs in pa-
tients with glioblastoma (GBM). Patients who received
this vaccination experienced an increase in the overall fre-
quencies of IFNγ+, TNFα+, CCL3+ polyfunctional, and
CMV-specific CD8+ T cells, as well as long-term
progression-free survival alongside overall survival [110,
111]. Telomerase activity in leukemic blasts is frequently
increased among patients with high-risk acute myeloid
leukemia (AML). In a stage II clinical study, the re-
searchers found that human telomerase reverse transcript-
ase (hTERT)-expressing autologous DCs (hTERT-DCs)
were feasible. Vaccination with hTERT-DCs appeared to
be safe and may be associated with favorable recurrence-
free survival in adult patients with AML [112]. DCs elec-
troporated with Wilms’ tumor 1 (WT1) messenger RNA
(mRNA) were found to be an effective strategy to prevent
or delay AML relapse after standard chemotherapy with
the induction of WT1-specific CD8+ T cell response in a
stage II clinical trial [113]. In the clinical trial anti-HER2,
DC1s vaccination was a safe and immunogenic treatment
to induce tumor-specific T cell responses in HER2pos

breast cancer patients [114]. In another trial, Wilms’
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tumor 1 peptide-loaded DCs and OK-432 adjuvant com-
bined with conventional chemotherapy was shown to be
safe and feasible for patients with an advanced stage of
head and neck squamous cell carcinoma (HNSCC) [152].
An autologous tumor lysate DC vaccine was shown to

have T cell stimulatory capacity. It generated a tumor-
specific immune response and benefitted the overall sur-
vival of metastatic colorectal cancer patients in a stage
III clinical trial [115]. Autologous mature DCs pulsed
with killed LNCaP prostate cancer cells (DCVAC/PCa)
in addition to concomitant chemotherapy did not pre-
clude the induction of specific anti-tumor cytotoxic T
cells in a I/II clinical trial study [116]. Some autologous
DCs generated ex vivo pulsed with tumor antigens
showed limited promise in the treatment of patients with
advanced cancers. In a stage I clinical trial, autologous
DCs pulsed with allogeneic tumor cell lysate demon-
strated that DC immunotherapy with allogeneic tumor
lysate can be safe and feasible in humans [117]. The
adoptive transfer of autologous activated killer T cells
and DCs (AKT-DC) in a stage III clinical trial elevated
the CD8+/CD4+ T cell ratio in survivors of patients with
non-small cell lung cancer [118]. Intratumoral activated
DC injections in a stage I clinical trial increased the pro-
duction of specific cytokines and prolonged survival as
well [119].
Furthermore, in a stage I/II clinical trial, it was shown

that pre-conditioning the vaccine site with a potent re-
call antigen such as the tetanus/diphtheria (Td) toxoid
significantly improved lymph node homing and the effi-
cacy of tumor antigen-specific DCs [120, 130]. In one
study, patients with glioblastoma were pre-conditioned
with either mature DCs or Td before a vaccination with
cytomegalovirus phosphoprotein 65 (pp65) mRNA
pulsed DCs. The results indicated that this may repre-
sent a viable strategy to improve anti-tumor immuno-
therapy [130].
Other DC-related trials include the use of DCs in conjunc-

tion with the toll-like receptor (TLR)-3 agonist poly-ICLC
against metastatic or locally advanced unresectable pancre-
atic cancer. Results showed an increased tumor-specific T
cell population [121]. Additionally, in a stage II clinical trial,
autologous monocyte-derived mRNA electroporated DCs
(TriMixDC-MEL) alongside ipilimumab usage resulted in
durable tumor responses in melanoma patients [122]. In a
stage I clinical trial, DCs were transduced with an adenoviral
(Ad) vector expressing the CCL21 gene (Ad-CCL21-DC),
which induced systemic tumor antigen-specific immune re-
sponses, enhanced tumor CD8+ T cell infiltration, and in-
creased tumor PDL1 expression [123].

Conclusions and perspectives
DCs are crucial sentinel cells. Educating naive T cells for
adaptive immune responses, DCs recognize antigens,

process antigens into small bioactive peptides, and form
specific MHC-peptides complexes before presenting an-
tigens to T cells. DCs are not only able to activate T
cells, but they also maintain a balance among immune
activation, suppression, and memorization. Thus, DCs,
the mentors of T cells, are a key player in immune
defense, surveillance, and homeostasis. Furthermore, ac-
cumulating evidence indicates that DCs are a key player
in tumor immunity. DC-based tumor immunotherapy
has been shown to be highly effective in preclinical stud-
ies and clinical trials. DCs can specifically recognize,
process, and present diverse and heterogeneous cancer
antigens, as well as activate T cells specifically to over-
come drug resistance caused by cancer cell heterogen-
eity. DC-based tumor immunotherapy has shown great
potential in a wide variety of tumors.
The increasing applications of new technologies and

hypotheses to DC research will likely reveal more in-
sights in our fundamental understanding of DC biology.
Future works can easily promote the development of
new strategies for DC-based tumor immunotherapy, and
we believe that DC-based tumor immunotherapy holds
great promise for a cure to cancer in future.
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