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Abstract

Background: Alpha-fetoprotein (AFP) is a widely used biomarker for hepatocellular carcinoma (HCC) early detection.
However, low sensitivity and false negativity of AFP raise the requirement of more effective early diagnostic approaches
for HCC.

Methods: We employed a three-phase strategy to identify serum autoantibody (AAD) signature for HCC early diagnosis
using protein array-based approach. A total of 1253 serum samples from HCC, liver cirrhosis, and healthy controls were
prospectively collected from three liver cancer centers in China. The Human Proteome Microarray, comprising 21,154
unique proteins, was first applied to identify AAb candidates in discovery phase (n = 100) and to further fabricate HCC-
focused arrays. Then, an artificial neural network (ANN) model was used to discover AAbs for HCC detection in a test
phase (n = 576) and a validation phase (n = 577), respectively.

Results: Using HCC-focused array, we identified and validated a novel 7-AAb panel containing CIAPINT, EGFR, MAST,
SLC44A3, ASAH1, UBL7, and ZNF428 for effective HCC detection. The ANN model of this panel showed improvement of
sensitivity (61.6-77.7%) compared to AFP (cutoff 400 ng/mL, 28.4-30.7%). Notably, it was able to detect AFP-negative HCC
with AUC values of 0.841-0.948. For early-stage HCC (BCLC 0/A) detection, it outperformed AFP (cutoff 400 ng/mL) with
approximately 10% increase in AUC.

Conclusions: The 7-AAb panel provides potentially clinical value for non-invasive early detection of HCC, and brings new

clues on understanding the immune response against hepatocarcinogenesis.
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Background

Hepatocellular carcinoma (HCC) is one of the leading
causes of cancer mortality worldwide [1]. The majority
of HCC occur in patients with underlying liver disease,
such as hepatitis B virus (HBV) infection and cirrhosis
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[2]. Over half of patients with HCC are diagnosed at ad-
vanced stages, preventing the possibility of curative ther-
apies. Alpha-fetoprotein (AFP) is a widely used, yet
imperfect, biomarker for HCC early diagnosis. It has
been reported that AFP (at a threshold level of 20 ng/
mL) showed low sensitivity of 40—60% with specificity of
80-90% [3]. Low sensitivity, false negativity (e.g., a small
HCC with normal AFP level), and false positivity (e.g.,
liver function damage and certain gastrointestinal tu-
mors) of AFP could lead to decreased chance of early
diagnosis and thus poor clinical outcomes, highlighting
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the requirement for more effective approaches for HCC
detection.

Cancer-associated autoantibodies (AAbs) may develop
early during carcinogenesis when cancer-associated anti-
gens appear in premalignant or malignant lesions. The
immune system can effectively amplify and memorize
immune responses to those antigens, thereby making
AAbs as appealing cancer biomarkers. For example,
DHCR24 AAb was identified as a novel biomarker for
disease progression of hepatitis C [4]. Likewise, it has
been reported that AAbs against HCC1, CDKN2A, p53,
CIP2A, and survivin could indicate the presence of HCC
prior to clinical diagnosis [5]. In another study, AAbs
against NPM-1, 14-3-3 zeta, and MDM2 were suggested
to have diagnostic value for AFP-negative HCC patients
(AFP < 20 ng/mL; AFP™ HCC) [6]. Serum AAbs against
EIF3A [7] and SF3B1 [8] were also reported as potential
diagnostic biomarkers for HCC. However, the sensitivity
and specificity of those selected AAbs remain limited,
and further high-throughput unbiased screening with a
large cohort and independent validation are still re-
quired. In addition, the heterogeneity of human biology
in cancer suggest that combined use of the cancer bio-
markers in parallel or in tandem in algorithms such as
artificial neural network (ANN) are necessary [9, 10].

Protein microarrays are capable of presenting thou-
sands of tumor-associated antigens to rapidly and glo-
bally identify AAb responses in serum (seromics) [11,
12]. Known and predicted tumor antigens have been
employed in a comprehensive protein array to profile
cancer immune response, such as p53 [13], GPR78 [14],
HER2 [15], and HSP60 [16]. In this regard, global AAb
screening has identified high-performance AAb panels
for early diagnosis of lung cancer [13] and Behcet dis-
ease [17]. Herein, the HuProt arrays, comprising of 21,
154 unique full-length proteins, were first employed to
survey serum AAbs using HCC samples. Subsequently,
HCC-focused arrays were fabricated with the candidate
proteins identified in the HuProt arrays. A large cohort
of 1253 serum samples, including HCC patients, liver
cirrhosis (Cirrhotic) patients, and healthy controls
(Healthy), were screened to develop a diagnostic model.
A novel panel of 7 proteins including CIAPIN1, EGEFR,
MAS]1, SLC44A3, ASAH1, UBL7, and ZNF428 were dis-
covered and evaluated for the early detection of HCC.

Methods

Human serum sample

The cohort was comprised of 1253 serum samples from
611 HCC patients, 249 cirrhotic patients, and 393 healthy
controls. Between January 2019 and August 2019, these
samples were collected at Zhongshan Hospital of Fudan
University, Eastern Hepatobiliary Surgery Hospital, and
Cancer Hospital of Guangxi Medical University. All blood
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samples were processed identically to obtain serum.
Briefly, 5 mL venous blood was drawn from each individ-
ual (before any treatments and surgery), placed in room
temperature (RT) for 1 h until coagulated. Serum was re-
covered by centrifugation at 3000 rpm for 10 min and
stored in aliquots at — 80 °C until used. The informed con-
sent and agreement of all samples used in this study have
been obtained. The ethical regulations have been ap-
proved from each hospital.

Inclusion criteria for HCC patients in this study were
(1) pathological diagnosis of HCC (n = 446); or (2) diag-
nosis of HCC by enhanced computed tomography, en-
hanced magnetic resonance imaging, or contrast-
enhanced ultrasonography in combination with AFP or
des-gamma carboxyprothrombin for patients without
pathological diagnosis (# = 165); (3) without auto-
immune diseases. Patients were all free of hepatic en-
cephalopathy and ECOG/WHO/Zubrod performance
status scored as 0O~1. Child-Pugh score, BCLC staging
[18], TNM staging, and Chinese Liver Cancer staging
[19] were individually estimated; (4) patients with other
cancerous history were excluded from our study.

Diagnosis of liver cirrhosis was confirmed by enhanced
magnetic resonance imaging or pathology. Healthy con-
trols had normal liver biochemistry and were in the ab-
sence of liver diseases and alcohol abuse.

Serum AAb profiling on HuProt arrays

HuProt™ Human Proteome Microarray v3.0 was provided
by CDI Laboratories, Inc (Mayaguez, PR). Each HuProt
array is comprised of 21,154 unique proteins. A total of 100
serum samples from discovery phase (I) was applied to
HuProt arrays, including 50 HCC and 50 healthy controls.
The microarray was taken out from - 80 °C and then incu-
bated in blocking buffer (3% BSA in PBS) at RT for 3 h.
Then a serum sample diluted at 1:200 in binding buffer (1%
BSA in PBST) was added to the microarray and incubated
at 4 °C overnight. After washing with PBST, the microarray
was incubated with 1:1000 diluted Fluor conjugated goat
anti-human IgG (532nm) and donkey anti-human IgM
(635 nm) (Jackson ImmunoResearch, West Grove, PA) at
RT for 1h in the dark. After washing with PBST, the
microarray was rinsed with ddH,O and dried. The micro-
array was scanned with the LuxscanTM 10 K-A (CapitalBio
Corporation, Beijing, China). The GenePix Pro 6.0 (Axon
Instruments, Foster City, CA) was used for foreground and
background intensity extraction for each spot. The signal
for each spot (SNR) was defined as the ratio of the fore-
ground to the background median intensity as previously
described [20].

HCC-focused arrays
After serum incubation on the HuProt arrays, autoantibody
signals were detected, normalized [21], and quantified. For
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selection of candidate proteins, three criteria should be sat-
isfied after comparing HCC vs. Healthy: (1) p values ob-
tained from the ¢ test < 0.05; (2) fold change (FC) > 1.2; (3)
the positive ratio > 10% (The HCC positive reactivity was
defined as greater than the mean plus 2 x SD of the healthy
controls. The positive ratio was calculated as the number of
HCC positive reactivity to its sum [22]). According to the
criteria above, 81 proteins were identified. The extra 19
AAbs including CTRL, DCAF4L2, BIRC5, CCNBI1IP1,
GPR78, HM13, HSPA2, IMP3, KDM1A, MAPK1, RALA,
RPLPO, SARNP, SF3A3, TSPAN13, TUBB6, XRCCS5,
CENPF, and CDKN2A were selected based on cancer lit-
erature in general. We aimed to fabricate the HCC-focused
arrays using more candidate proteins from our own experi-
ment and the literature. Thus, a total of 100 proteins were
picked to fabricate the HCC-focused arrays, which con-
tained 14 identical subarrays on each slide (BC-BIO, Fo-
shan, China). The subsequent assay process was similar to
that described for HuProt array, with an exception that the
dilution of serum samples was 1:100 per subarray.

Model development for HCC detection

For ANN model, we determined the number of hidden
neurons based on previous literature [23]. Using the
model Nj, = (4n” + 3)/(n* - 8) [N}, the number of hid-
den neurons; #, the number of input neurons], N;, was
set at 5 in our study. Thus, fully connected feedforward
neural-networks including 7 input nodes, 5 neurons in
the hidden layer, and 2 output nodes were chosen. Back
propagation of error algorithm was used as the learning
rule, and the average committee vote was used to classify
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samples [24-26]. For the test phase (II), 576 samples
were randomly split into 10 equally sized groups. One
ANN model was constructed using 90% of cases as
training set and the remaining 10% as verification set.
This procedure was repeated 10 times to obtain 10 ANN
models. After repeating 50 times, 500 ANN models were
developed. Each ANN model provided the outputs O for
control or 1 for HCC. The committee vote was per-
formed by averaging all outputs and then to classify the
samples. The samples in the validation phase (III) used
500 ANN models for the blind test. Both ANN models
and AFP were tested using receiver operating character-
istic (ROC) curve analysis.

Results

Study design

This study included three phases (Fig. 1): discovery
phase (I), test phase (II), and validation phase (III). In
the discovery phase (I), serum samples from 50 HCC
and 50 healthy were enrolled. These 100 samples were
all obtained from Zhongshan Hospital and individually
profiled on HuProt arrays for screening candidate pro-
teins and fabricating the HCC-focused arrays. Then, 282
HCC, 130 cirrhotic, and 164 healthy were collected from
Zhongshan Hospital and used for model construction in
the test phase (II). Finally, 279 HCC, 119 cirrhotic, and
179 healthy collected from Eastern Hepatobiliary Sur-
gery Hospital and Cancer Hospital of Guangxi Medical
University were used for independent verification in the
validation phase (III). The clinical data of patients are
summarized in Additional file 5: Table S1. Clinical

HuProt™ Array
21,154 Proteins

100 Samples

Discovery Phase ()

HCC Focused Array
100 Proteins

Test Phase (Il)
576 Samples

HCC 50
(50) Biomarker
Candidates
Healthy (50)
HCC  (282)
Model

Cirrhotic (130)

Development

Healthy (164)

HCC Focused Array
100 Proteins

Validation Phase (lll)
577 Samples

HCC (279)
Cirrhotic (119)

Model
Verification

Healthy (179)

Fig. 1 Study design using seromics. A large cohort of 1253 serum samples, including 611 HCC patients, 249 patients with liver cirrhosis (cirrhotic),
and 393 healthy controls (healthy), were enrolled for discovery and evaluation of potential serum AAbs as HCC diagnostic biomarkers
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variables of each group in the test phase (II) and valid-
ation phase (III) were compared by Pearson’s chi-
squared test, and there was no statistical significance.

AADb screening for construction of HCC-focused arrays

In the discovery phase (I), the HuProt arrays were
employed to profile 100 serum samples collected from
50 HCC and 50 healthy (Additional file 1: Fig. S1). For
selection of candidate proteins, three criteria should be
satisfied after comparing HCC vs. Healthy, as described
in the “Methods” section. Finally, 81 proteins that were
more significantly bound by the autoantibodies of HCC
group than by those of the healthy group were identified
(Fig. 2a). A total of 100 proteins were printed to fabri-
cate the HCC-focused arrays in combination with add-
itional 19 proteins from cancer literature in general.
Among these 19 AAbs, 17 were also present in the dis-
covery HuProt array and satisfied 1-2 criteria. Another
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2 AAbs, CENPF [16] and CDKN2A [5], were absent in the
discovery HuProt array. Alternatively, more samples were
enrolled in the test phase (II) and validation phase (III),
which would help to accurately evaluate the distinguishing
capacity of these AAbs. The biological function and ex-
pression level of these 100 proteins were also investigated
based on HPA database and our previous multi-omics
HCC data [27] (Additional files 2 & 3: Figs. S2 & S3). One
serum sample (pooled from 10 randomly selected HCC
individuals) was independently applied to a total of 47 dif-
ferent HCC-focused arrays to evaluate their potential vari-
ance. As shown in Fig. 2b, the variance was minimal with
an average correlation coefficient of 0.95.

Identification of AAb biomarkers for HCC detection

Next, HCC-focused arrays were tested using serum sam-
ples from a large cohort of HCC individually. In the test
phase (II), the signals of each protein between HCC and
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Fig. 2 Fabrication of HCC-focused arrays. a According to the screening results of HuProt arrays, 81 proteins (p < 0.05, FC = 1.2 and positive ratio
= 10%) were selected as potential candidates. A total of 100 proteins were printed to fabricate the HCC-focused arrays, including 19 proteins
from previous reports. b Six representative HCC-focused arrays testing the same sample exhibited high reproducibility. The diagonal indicates the
SNR distribution of the sample, the lower left indicates the bivariate scatter plot with a fitted line, and the upper right indicates the correlation
coefficient and the significance (***p < 0.001). ¢ HCC-focused arrays were incubated with samples from one HCC patient, one patient with liver
cirrhosis, and one healthy control, respectively. Three-dimension renderings of the signal intensities were shown, indicating that the array
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healthy or cirrhotic were compared, respectively. Exam-
ples of array image for HCC, cirrhotic, and healthy were
provided in Fig. 2c. We identified a total of 55 potential
biomarkers using the following criteria: p < 0.05, FC 2
1.2, and sensitivity > 15% with at least 90% specificity.
Among them, 24 AAbs were able to classify HCC pa-
tients versus healthy, 17 AAbs were able to classify HCC
versus cirrhotic, and the remaining AAbs were able to
classify both HCC patients versus healthy and HCC ver-
sus cirrhotic (Additional file 6: Table S2).

To select predictors for model development, we per-
formed 10-fold cross validation for the 55 potential bio-
markers (Fig. 3a). The differential AAbs in each fold
were used as input to a logistic regression that classified
HCC patients versus controls. Within each fold, stepwise
variable selection identified the most discriminative sub-
set of the biomarker candidates [28]. Biomarker candi-
dates selected in ten folds were characterized as
predictors in a consensus logistic regression model, and
7 predictors were identified including CIAPIN1, EGFR,
MAS1, SLC44A3, ASAHI1, UBL7, and ZNF428 (Add-
itional file 4: Fig. S4). The performance of the combina-
torial 7 AAbs was then evaluated for HCC detection.

Performance of the 7-AAb panel in test/validation phase
The correlations between any two proteins from the 7
predictors were calculated using all samples (HCC, cir-
rhotic, and healthy) in the test phase (II). The results
showed that the closest connection existed between
MAS1 and ASAHI with a coefficient of 0.77 (p < 0.001;
Fig. 3b). It has been reported that neural network analysis
was potentially more powerful than traditional statistical
techniques when the interaction among variables was
complex. Thus, ANN model based on these 7 predictors
was further explored in the test phase (II). We built a
three-layer neural network with 7 input nodes, 5 hidden
neurons, and 2 output neurons (Fig. 3c). The committee
vote was performed by averaging all outputs and then to
classify the samples (Fig. 4). As shown in Table 1, the
ANN model for this 7-AAb panel could identify HCC
with a sensitivity of 68.6% and a specificity of 92.1% (AUC
= 0.894, HCC vs. controls [healthy + cirrhotic]), which
was superior to AFP (cutoff = 400 ng/mL, sensitivity =
28.4%, specificity = 98.7%, AUC = 0.808).

Second, 577 serum samples from an independent cohort
were used (phase III) to validate the performance of this
7-AAb panel. Based on the ANN-model, this panel had a
sensitivity of 73.4% and a specificity of 90.1% for HCC de-
tection (HCC vs. controls [healthy + cirrhotic], AUC =
0.902) (Table 1), as well as a sensitivity of 80.6% and a spe-
cificity of 90.1% for AFP™ HCC detection (AFP™ HCC vs.
Controls [healthy + cirrhotic], AUC = 0.926) (Table 2).
Importantly, this panel detected HCC with high sensitivity
(62.2—77.5%), outperforming AFP (30.7%) (Table 1).
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When combining the test phase (II) and validation
phase (III), we found that this model also performed
well. It reached to a sensitivity of 71.6% and a specificity
of 90.0% in detecting HCC (HCC vs. controls [healthy +
cirrhotic], AUC = 0.898) (Table 1), and a sensitivity of
76.1% and a specificity of 89.1% in detecting AFP~ HCC
(AFP™ HCC vs. controls [healthy + cirrhotic], AUC =
0.912) (Table 2).

The 7-AAb panel’s performance for HBsAg~ and HBsAg*-
HCC

Chronic HBV infection is the leading cause of HCC in
Eastern Asian countries and most African countries [3].
Hepatitis B surface antigen (HBsAg) is used to deter-
mine whether a patient has a recent or long-standing in-
fection of HBV. In our cohort, approximately 70% (439/
611) of HCC patients were HBsAg positive (HBsAg'-
HCC). For HBsAg'-HCC detection, our model provided
sensitivity of 59.6-79.1% and specificity of 85.2-95.5%,
while AFP (cutoff 400 ng/mL) provided sensitivity of
31.4-34.7% and specificity of 96.7-100% (Additional file
7: Table S3). We also explored the feasibility of the
model in HCC patients with negative HBsAg (HBsAg -
HCC). Test phase (II) and validation phase (III) con-
tained 46 and 30 HBsAg -HCC patients, respectively.
We found that the ANN model of this panel was able to
efficiently detect HBsAg -HCC patients from controls
(AUC 0.822-0.932), superior to AFP at a cutoff of 400
ng/mL with an AUC of 0.567-0.647 (Additional file 7:
Table S3).

The 7-AAb panel’s performance for different HCC stages

Patients with early-stage HCC can benefit from curative
treatments like tumor resection, liver transplantation, or
ablation [18]. The performance of our model for HCC
patients at different stages were also considered in our
study. The evaluation for different stages of BCLC is
provided in Table 3 and the others including TNM and
Chinese HCC stages in Additional files 8 & 9: Tables S4
& S5. For early stage HCC (BCLC: 0, A; TNM: IA, IB;
Chinese: Ia, Ib) detection, our model demonstrated sig-
nificantly improved performance with 5-20% increases
of AUC compared with AFP (cutoff 400 ng/mL). For
HCC patients at intermediate or late stages (BCLC: B, C;
TNM: II, III, IV; Chinese: II, III) detection, our model in
combination with AFP (cutoff 400 ng/mL) achieved sen-
sitivity of 72.2-88.6% and specificity of 89.3-96.6%
(AUC 0.887-0.967) for distinguishing HCC patients
from controls (healthy and cirrhotic). This combination
achieved sensitivity of 79.2-94.3% and specificity of
90.1-97.6% (AUC 0.918-0.985) for distinguishing HCC
patients from healthy, and sensitivity of 58.3—88.6% and
specificity of 83.7-98.8% (AUC 0.829-0.943) for distin-
guishing HCC patients from cirrhotic. Thus, the 7-AAb
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panel based on ANN-model could be effectively applied
for early-stage HCC detection.

Discussion

Although pathological and radiological examination re-
mains the “gold standard” for clinical diagnosis of cancers,
liquid biopsy has shown appealing potential for early de-
tection of HCC [29]. In this regard, tremendous efforts
have been made on the early diagnostic potential of

circulating micro-RNA signature [30], cell-free DNA [31],
metabolites [32], glycans [33], and DNA methylation pat-
tern [34]. However, AFP is still the only widely used clin-
ical protein biomarker for HCC diagnosis, although
approximately 40% of HCC cases harbored a normal AFP
level. Due to the nature of stability and easy detection, ef-
forts have also been made to evaluate novel protein bio-
markers for HCC detection, such as Dickkopf-1 [35] and
Aldo-keto reductase family 1 member B10 [36].
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Based on three steps for biomarker classifier develop-
ment [37], we focused on CIAPINI1, EGFR, MASI,
SLC44A3, ASAH1, UBL7, and ZNF428, which are
mainly involved in activation of signaling cascades and
apoptotic/metabolic processes. The molecular function
of UBL7 is polyubiquitin modification-dependent pro-
tein binding, and loss of ubiquitin-proteasome players

Table 1 Performance of the 7-AAb panel and AFP in HCC detection

were suggested to lead to protein expression alteration
and hepatocarcinogenesis [27]. CIAPIN1 was reported to
play an important role in HCC proliferation through
regulating the expression of cell cycle-related proteins
[38]. EGER is a transmembrane receptor tyrosine kinase
and plays a key role in HCC development and progres-
sion [39]. The biological functions of MAS1, SLC44A3,

Phase Detection?  HCC vs. (healthy + cirrhotic) HCC vs. healthy HCC vs. cirrhotic
AUC  Specificity ~ Sensitivity AUC  Specificity =~ Sensitivity AUC  Specificity =~ Sensitivity
Test Phase (Il) AFP 0.808 98.7% 284% 0821 100.0% 28.4% 0.789  96.7% 28.4%
ANN 0894 92.1% 68.6% 0933 933% 77.5% 0.838 90.2% 61.6%
AFP + ANN 0924 92.1% 78.6% 0959 963% 84.1% 0873 924% 71.6%
Validation Phase (Ill) AFP 0822  99.6% 30.7% 0.822  100.0% 30.7% 0.823 98.8% 30.7%
ANN 0902 90.1% 73.4% 0928 934% 77.5% 0853 96.3% 62.2%
AFP + ANN 0932 90.1% 82.0% 0953  934% 83.9% 0893 95.1% 73.0%
Test phase (Il) + validation phase (IIl) ~ AFP 0815  99.1% 29.6% 0821 100.0% 29.6% 0805 97.7% 29.6%
ANN 0.898  90.0% 71.6% 0930 92.7% 77.7% 0.845 90.8% 64.1%
AFP + ANN 0928 93.7% 77.0% 0956  934% 85.1% 0882 913% 73.0%

*The diagnostic cutoff value of AFP was 400 ng/mL
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Table 2 Evaluation of the 7-AAb panel in AFP™ HCC detection
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Phase AFP™ HCC vs. (healthy + cirrhotic) AFP™ HCC vs. healthy AFP™ HCC vs. cirrhotic

AUC Specificity Sensitivity AUC Specificity  Sensitivity ~ AUC Specificity  Sensitivity
Test phase (Il) 0.898 89.4% 70.4% 0937  889% 83.5% 0841  87.0% 64.3%
Validation phase (IIl) 0.926 90.1% 80.6% 0948  934% 83.7% 0886  852% 77.5%
Test phase (Il) + validation phase (lll) 0912 89.1% 76.1% 0942  93.4% 80.3% 0862  89.6% 65.7%

ASAH1, and ZNF428 in HCC were rarely reported.
Here, we provided autoantibody clues for further explor-
ing their biological significance in HCC.

It has been reported that neural network analysis was
potentially more useful than traditional statistical tech-
niques when the relationship among variables was com-
plex and non-linear [10]. The performance of ANN-
based 7-AAb model could be further improved due to
continuous learning of neural networks in future clinical

application. However, there are several limitations in the
present study. First, AAbs were reported to appear in
multiple cancer types due to immune surveillance. Alter-
natively, it may indicate the potential of AAbs for moni-
toring various cancer types, similar to the pan-cancer
diagnostic value of cfDNA alterations [40]. Based on
previous literature, AAb against ASAH1 could be ap-
plied to monitor the progression of melanoma [41].
However, there were no significant differences in AAb

Table 3 Performance of the 7-AAb panel and AFP to detect HCC with different BCLC stages

BCLC stage Detection®  Test phase (Il) Validation phase (Ill) Test phase (Il) + validation phase (IIl)
AFP ANN  AFP + ANN  AFP ANN  AFP + ANN  AFP ANN AFP + ANN
BCLC (0/A) vs. healthy + cirrhotic  AUC 0.733 0.899  0.906 0.763 0920 0924 0.748 0910 0915
Specificity  98.7%  89.9% 92.1% 99.6%  90.1% 90.1% 99.1% 90.0% 89.3%
Sensitivity  143%  69.6% 73.2% 105%  80.7% 86.0% 124% 72.6% 79.6%
BCLC (0/A) vs. healthy AUC 0.732 0.937 0947 0.759 0942 0946 0.745 0.940 0.947
Specificity  100.0% 933% 94.1% 100.0% 94.0% 94.7% 100.0% 93.4% 94.4%
Sensitivity  143%  76.8% 82.1% 105%  842% 86.0% 124% 80.5% 84.1%
BCLC (0/A) vs. cirrhotic AUC 0.736 0.844 0846 0.772 0880 0.884 0.753 0.860 0.862
Specificity  96.7%  97.8% 94.6% 988%  914% 91.4% 97.7% 90.8% 91.3%
Sensitivity  143%  554% 64.3% 105%  702% 754% 124% 65.5% 67.3%
BCLC (B) vs. healthy + cirrhotic AUC 0.824 0894 0923 0.847 0895 0927 0.835 0.895 0.926
Specificity  98.7%  89.4% 90.7% 996%  90.1% 90.1% 99.1% 90.0% 89.3%
Sensitivity  286%  72.8% 80.3% 330% 69.6% 783% 30.5% 714% 81.3%
BCLC (B) vs. healthy AUC 0.842 0.933 0958 0.850 0922 0950 0.845 0.928 0.954
Specificity  100.0% 93.3% 96.3% 1000% 91.4% 91.4% 100.0% 93.4% 93.4%
Sensitivity  286%  79.6% 85.0% 330% 783% 852% 30.5% 77.1% 85.1%
BCLC (B) vs. cirrhotic AUC 0.797 0.838 0871 0.841 0843 0885 0817 0.842 0.879
Specificity  96.7%  902% 94.6% 988%  889% 88.9% 97.7% 91.3% 91.3%
Sensitivity  286%  61.2% 68.7% 330% 652% 739% 30.5% 62.2% 72.5%
BCLC(Q) vs. healthy + cirrhotic AUC 0.878 0.924 0962 0915 0898 0959 0.899 0.909 0.959
Specificity  98.7%  92.5% 93.4% 99.6%  96.6% 96.6% 99.1% 95.0% 94.3%
Sensitivity  42.9%  743% 88.6% 521% 708% 833% 48.2% 71.1% 85.5%
BCLC (Q) vs. healthy AUC 0.899 0.956  0.985 0.923 0923 0974 0912 0.938 0.979
Specificity  100.0% 92.6% 93.3% 100.0% 934% 94.7% 100.0% 93.0% 93.4%
Sensitivity  42.9%  829% 94.3% 521%  77.1% 87.5% 48.2% 79.5% 90.4%
BCLC (Q) vs. cirrhotic AUC 0.848 0877 0928 0.899 0.850 0.931 0877 0.861 0927
Specificity  96.7%  924% 92.4% 988%  852% 85.2% 97.7% 90.2% 93.1%
Sensitivity  42.9%  65.7% 85.7% 521%  750% 87.5% 48.2% 71.1% 80.7%

*The diagnostic cutoff value of AFP was 400 ng/mL
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against EGFR between patients with breast cancer and
controls [42]. Thus, further analyses are required to
evaluate the diagnostic value of our 7-AAb panel in di-
verse cancers. Second, this study was conducted using
most of patients with HBV-related HCC from China and
HCC patients with high ANN value featured HBsAg
positivity (p value < 0.001, Pearson’s chi-squared test). A
prospective multi-nation validation is necessary for fur-
ther application. Third, the panel contained 7 bio-
markers for ANN-model and it is more complex than
single marker detection in clinic. Albeit its complexity,
ANN could perform better when subclasses are sepa-
rated by a non-linear boundary.

Conclusions

In summary, a comprehensive seromic survey was per-
formed for discovering and validating serum diagnostic
biomarkers in HCC. Based on ANN-model, we identified
a 7-AAb panel that was generally superior to AFP for
HCC detection, and performed well for AFP-negative
HCC and HCC at early stage. The 7-AAb panel provides
potentially clinical value for non-invasive early detection
of HCC, and brings new clues on understanding the im-
mune response against hepatocarcinogenesis.
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Additional file 1:. Fig. S1. Boxplot of signals obtained from HuProt™
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Arrays. (A) A total of 100 proteins were selected to prepare HCC Focused
Arrays using GST fusion proteins. Anti-GST antibody was employed for
quality control of HCC Focused Array. (B) Two spots (spot 1 and spot 2)
of each protein were printed onto array with correlation coefficient (R?)
approximate of 0.99. (C) Function enrichment analysis identified bio-
logical processes, including focal adhesion, and negative regulation of
cellular component organization and protein modification process.

Additional file 3: Fig. S3. Expression level for the 100 proteins. (A) Gene
expression level of 100 proteins in the liver compared to other tissues
using The Human Protein Atlas (http://www.proteinatlas.org/). Based on
this database, 7 proteins were absent in the liver, including MAST,
C3orf56, DCAF4L2, DEFB112, GPR78, PAGET and SCGB1C2. 16 genes
showed increased mRNA expression level in the liver. Liver elevated
proteins reported in the liver-specific proteome of The Human Protein
Atlas were labeled with green. (B) Totally, 64 of these 100 proteins were
found and further analyzed in paired HCC tumor and adjacent non-
tumor liver tissues according to our previous proteomics (Ref. Cell. 179,
561-577 (2019)). (C) Among the 64 proteins, 10 were down-regulated and
8 were up-regulated significantly in HCC tumor, compared with adjacent
liver tissues (adjusted p < 0.05 and |log, FC| > 0.5) according to our pre-
vious proteomics (Ref. Cell. 179, 561-577 (2019)). ( 4412 kb)

Additional file 4:. Fig. S4. The representative blots for both HCC and
controls. (A) HCC Focused Arrays incubated with HCC, liver cirrhosis
(Cirrhotic), and healthy control (Healthy), respectively. (B) Performance of
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phase ().
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