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Abstract

Background: Personalized and risk-adapted treatment strategies in multiple myeloma prerequisite feasibility of prospective
assessment, reporting of targets, and prediction of survival probability in clinical routine. Our aim was first to set up and
prospectively test our experimental and analysis strategy to perform advanced molecular diagnostics, i.e., interphase
fluorescence in-situ hybridization (iFISH) in ≥ 90% and gene expression profiling (GEP) in ≥ 80% of patients within the first
cycle of induction chemotherapy in a phase III trial, seen as prerequisite for target expression-based personalized treatment
strategies. Secondly, whether the assessment of risk based on the integration of clinical, cytogenetic, and expression-based
parameters (“metascoring”) is possible in this setting and superior to the use of single prognostic factors.

Methods:We prospectively performed plasma cell purification, GEP using DNA-microarrays, and iFISH within our
randomized multicenter GMMG-MM5-trial recruiting 604 patients between July 2010 and November 2013. Patient data were
analyzed using our published gene expression report (GEP-R): after quality and identity control, integrated risk assessment
(HM metascore) and targets were reported in clinical routine as pdf-document.
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Results: Bone marrow aspirates were obtained from 573/604 patients (95%) and could be CD138-purified in 559/573
(97.6%). Of these, iFISH-analysis was possible in 556 (99.5%), GEP in 458 (82%). Identity control using predictors for sex,
light and heavy chain type allowed the exclusion of potential sample interchanges (none occurred). All samples passed
quality control. As exemplary targets, IGF1R-expression was reported expressed in 33.1%, AURKA in 43.2% of patients.
Risk stratification using an integrated approach, i.e., HM metascore, delineated 10/77/13% of patients as high/medium/
low risk, transmitting into significantly different median progression-free survival (PFS) of 15 vs. 39 months vs. not
reached (NR; P < 0.001) and median overall survival (OS) of 41 months vs. NR vs. NR (P < 0.001). Five-year PFS and OS-
rates were 5/31/54% and 25/68/98%, respectively. Survival prediction by HM metascore (Brier score 0.132, P < 0.001) is
superior compared with the current gold standard, i.e., revised ISS score (0.137, P = 0.005).

Conclusions: Prospective assessment and reporting of targets and risk by GEP-R in clinical routine are feasible in ≥ 80%
of patients within the first cycle of induction chemotherapy, simultaneously allowing superior survival prediction.
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Background
Multiple myeloma is a malignant hematological disease
characterized by accumulation of clonal plasma cells in the
bone marrow and associated clinical signs and symptoms,
especially those related to the displacement of normal
hematopoiesis and generation of osteolytic bone disease [1].
Introduction of high-dose melphalan followed by autolo-

gous stem cell transplantation, proteasome inhibitors,
immunomodulatory drugs, and monoclonal antibodies im-
proved survival [2–5] without curing a significant fraction
of patients. Prognosis of individual patients is highly hetero-
geneous: current treatment algorithms do well for some pa-
tient groups with a median survival of more than 10 years,
while a significant proportion of patients shows median
survival of 2 years or even below [6, 7]. This frequently
prompts the suggestion to treat the latter patients differ-
ently, most often more aggressively, in other terms to per-
form risk-adapted treatment, e.g., UAMS total therapy [8],
mSMART by the Mayo Clinic [9], or the GMMG-
CONCEPT trial (NCT03104842).
Risk stratifications in clinical routine are usually per-

formed by combination of presence of high-risk chromo-
somal aberrations as detected by interphase fluorescence
in-situ hybridization (iFISH) and the International Staging
System (ISS) as exemplified by the revised ISS score (rISS)
and others [10–12]. At the same time, prognostic power
can be increased by assessing gene expression, i.e., prolif-
eration [13] and high risk scores [14–20], e.g., by DNA-
microarrays (gene expression profiling, GEP). This is,
however, rarely used prospectively in clinical routine or in
a clinical trial setting. In turn, ending up with a variety of
clinical and molecular prognostic factors, it is necessary to
integrate different factors into a single prognostic infor-
mation (metascoring).
Besides risk stratification, assessment of gene expression

allows investigation of aberrantly or overexpressed targets
exemplified by Aurora-kinase A (AURKA) [21] or insulin-

like growth factor 1 receptor (IGF1R) [22]. Expression of
these targets, in turn, is associated with adverse survival
[21, 22]. For potential personalized treatment, the addition
of clinical grade inhibitors to a backbone treatment only
in those patients whose myeloma cells actually express the
respective target could be envisioned. Whereas the num-
ber of actionable targets in multiple myeloma is currently
largely limited, it is very likely that the advent of immuno-
therapy will change this.
Both personalized and risk-adapted treatment strategies

prerequisite the feasibility of prospective assessment and
reporting of targets and prediction of survival probability in
clinical routine in a high enough percentage of patients. For
phase III trial strategies, e.g., selecting an add-on treatment,
the necessary threshold based on power calculations and
clinical feasibility could be estimated as 80% of the actual
population of patients included in the trial. It is interesting
to denote that, despite of course iFISH and GEP have been
used in an academic setting or using commercial providers
[8, 17, 23–28], the question has yet not been answered if
this is possible in terms of a prospective molecular analysis
and reporting, as opposed to being conducted in a pro-
spective clinical trial. Our study group sees such a proof as
prerequisite for indeed planning a clinical trial based on
molecular diagnostics such as GEP or RNA-sequencing.
Aims of this study were thus: (i) set up a sampling,

experimental and analysis strategy to perform iFISH
in ≥ 90% and GEP in ≥ 80% of patients within the
first cycle of induction chemotherapy. (ii) Report to
patients and physicians within this time to be able to
draw a clinical consequence. (iii) Prospectively valid-
ate this strategy in the randomized phase III multi-
center GMMG-MM5-trial including assessment of
potential targets (based on GEP) and multimodal as-
sessment of risk using clinical, cytogenetic, and gene
expression-based prognostic factors and their integra-
tion into a metascore in clinical routine.
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Methods
Patients
Six hundred and four patients were included in the pro-
spective, open-label, randomized multicenter phase III
clinical trial (EudraCT no. 2010-019173-16) between
July 2010 and November 2013. A total of 31 transplant
centers and 75 associated sites throughout Germany are
participating in this trial initiated by the GMMG and ap-
proved by ethics committees of the University of Heidel-
berg and all participating sites. The MM5 trial was
conducted according to the European Clinical Trial Dir-
ective (2005) and the Declaration of Helsinki. Patients
were equally randomized to each of the four treatment
arms (A1, A2, B1, and B2) using block randomization,
stratified by ISS stage. Treatment consisted of either
three 4-week cycles of PAd (A1+B1) or three 3-week cy-
cles of VCD (A2+B2). Thereafter, standard intensifica-
tion according to local protocols (GMMG standard) was
performed, including stem cell mobilization and leuka-
pheresis followed by single high-dose therapy or, for pa-
tients not achieving near complete response (nCR) or
better, tandem high-dose therapy. Subsequently, consoli-
dation therapy consisting of two cycles of lenalidomide
(25 mg, days 1–21) followed by lenalidomide mainten-
ance (for the first 3 months, 10 mg/day continuously
and thereafter 15 mg/day continuously) for either 2
years (A1+A2) or until CR (B1+B2) was applied. Patients
were followed until April 2017. Trial results regarding
the primary endpoint, i.e., non-inferiority of VCD vs.
PAd induction treatment have already been published
[29], or are currently under review. With written informed
consent as depicted above, patients were simultaneously
included in the pre-planned prospective conducting of ad-
vanced molecular diagnostics, i.e., iFISH and GEP.

Sampling strategy
Sixty to 80 ml of heparinized bone marrow (i.e., 3–4 ×
18 ml of bone marrow plus 2 ml of heparin per syringe,
aspirated with three bone marrow punctures within one
anesthetized region) were drawn before the start of
chemotherapy and sent to the Multiple Myeloma Re-
search Laboratory Heidelberg by overnight express. For
in-house samples, technicians of the Multiple Myeloma
Research Laboratory attended the bone marrow aspir-
ation providing assistance to the physician and allowing
the fastest possible processing of the samples. Plasma
cell purification including quality control and prepar-
ation of samples for iFISH (i.e., cytospins) and GEP (see
below for details) were performed centrally according to
our laboratory SOP immediately after the arrival of the
sample. Sample submitting centers were informed elec-
tronically about the quality of the aspirate and the re-
sults of the plasma cell purification.

Purification of CD138+ plasma cells
Density gradient centrifugation of bone marrow aspi-
rates over Ficoll Hypaque (Biochrom, Berlin, Germany)
was performed to separate mononuclear cells by stand-
ard protocol. CD138+ plasma cells were isolated using
anti-CD138 immunobeads and an autoMACS Pro Separ-
ator (Miltenyi Biotec, Bergisch Gladbach, Germany) as
published [13, 21, 30–35]. Purity was assessed by flow
cytometry (Becton Dickinson, Heidelberg, Germany)
using antibodies against CD38 (clone HB-7, FITC-
labeled; Becton Dickinson) and CD138 (clone B-B4, PE-
labeled; Miltenyi Biotec). Aliquots of CD138+ malignant
plasma cells were subjected to cytospin preparation with
5000 cells per dot for iFISH analysis (n = 556 patients)
and RNA/DNA extraction for gene expression profiling
(n = 458).

Interphase fluorescence in situ hybridization
iFISH analysis was conducted on CD138-purified plasma
cells using probes for numerical changes of the chromo-
some regions 1q21, 5p15, 5q31 or 5q35, 8p21, 9q34,
11q22.3 or 11q23, 13q14.3, 15q22, 17p13, and 19q13, as
well as translocations t(4;14)(p16.3;q32.3), t(11;14)(q13;
q32.3), and t(14;16)(q32.3;q23) or any other IgH rearrange-
ment with unknown translocation partner, according to the
manufacturer’s instructions (Kreatech, Amsterdam, The
Netherlands and MetaSystems, Altlussheim, Germany) and
data were analyzed as published [36].

Analysis of gene expression
RNA was extracted using the Qiagen AllPrep DNA/
RNA kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. Quality control and quanti-
fication of total RNA was performed using an Agilent
2100 bioanalyzer (Agilent, Frankfurt, Germany).
Gene expression profiling using U133 2.0 plus arrays

(Affymetrix, Santa Clara, CA, USA) was performed as
published [13, 32, 33]. Expression data are deposited in
ArrayExpress under accession number E-MTAB-2299.

Reporting of GEP-R
Our gene expression report (GEP-R) [31] is a non-
commercial software framework developed within the
open source software environments R [37] and Biocon-
ductor [38] that can be adapted to other parameters or
disease entities. It includes classifications of myeloma,
i.e., TC [39]-, EC [40]-, and molecular classification [41],
risk stratification, i.e., UAMS GEP70 [14]- and IFM 15-
gene score [15], and our gene expression-based prolifer-
ation index (GPI) [13], and assessment of target gene ex-
pression, e.g., for immunotherapeutic or individualized
treatment approaches, into one report. The GEP-R runs
a quality and identity control; the latter is based on pre-
diction analysis for microarrays (PAM) [42] predictors
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for sex, IgL (lambda, kappa), and IgH type (IgA, IgG,
IgD). Results are reported as pdf document consisting of
a two pages report given to the treating physician and an
appendix containing details regarding the quality and
identity control, as well as the assessment of gene expres-
sion. Within the GEP-R, the implemented HM metascore
integrates gene expression-based and conventional prog-
nostic factors into one prognostic classification [31]. The
HM metascore has already been validated by cross-
validation and an external validation cohort [31].

Statistical analysis
Effects were considered statistically significant if the P-
value of corresponding statistical tests was below 5%.
Overall (OS) and progression-free survival (PFS) were
investigated using Cox’s proportional hazard model as
published [43, 44]. Survival curves were computed with
nonparametric survival estimates for censored data using
the Kaplan-Meier method [45, 46]. Difference between
the curves was tested using the G-rho Log-rank test
[47]. A subset of 451 patients with complete prediction
information was used within a 73 months period for
evaluating the performance of the risk prediction models
in OS analysis. Cox’s proportional hazard models were
used as input; for cross-validation, subsampling param-
eter of 301 and bootstrapping parameter of 150 were
chosen. The integrated Brier score was used to assess
prediction accuracy [48–50]. For statistical testing, the
van de Wiel test was used [50].

Results
Feasibility of sampling and plasma cell purification
Six hundred and four patients were included in the
GMMG multicenter MM5-trial between July 2010 and
November 2013, with a total of 31 participating trans-
plant centers and 75 associated sites throughout
Germany. In accordance with the pre-planned prospect-
ive protocol, bone marrow aspirates at the time of inclu-
sion in the study, i.e., before start of treatment, were
available for n = 573 patients (94.9%) with a median vol-
ume of 75 ml (standard deviation (SD): 23.4), of whom
we were able to successfully perform plasma cell purifi-
cation followed by quality control using flow cytometry
for n = 559 patients (97.6%) according to our laboratory
SOP. The 31 lacking samples (5.1%) were due to patients
declining the bone marrow aspiration (2.5%) or punctio
sicca (2.5%) (Fig. 1). Median purity according to CD38/
CD138 double staining was 87.9% (SD 16.5%) with a me-
dian cell number of 1.2 × 106 cells (SD 8.5 × 106).

Feasibility of iFISH and GEP
iFISH using cytospins from CD138-purified plasma cells
was performed centrally for the trial (Multiple Myeloma
Research Laboratory and Department of Human Genetics).

Cytospins were prepared with 5000 cells per dot on the day
of purification and hybridized immediately thereafter. Data
could be obtained for 556/573 patients with available bone
marrow aspirates (97%) and 556/559 patients with available
CD138-purified plasma cells, respectively (99.5%; Fig. 1).
The median proportion of malignant plasma cells as per
iFISH, i.e., the highest percentage of a chromosomal aberra-
tion, was 95% (SD 20%).
Samples for RNA extraction followed by quality con-

trol were collected over 2 weeks each and then subjected
to gene expression profiling by DNA-microarrays. In
total, n = 458 transcriptome datasets are available; i.e.,
81.9% of patients with available CD138-purified plasma
cells. Of these, two patients were excluded from further
analysis as they did not fulfill the inclusion criteria of
the trial. Gene expression profiling could not be per-
formed in 53 cases due to low RNA quality (9.5%) and
further 48 cases (8.6%) in which not enough RNA was
available (Fig. 1). Gene expression data were then analyzed
and reported using our previously published GEP-R [31].

Identity and quality control
In the 456 GEP-R from the intention-to-treat popula-
tion, we exclude an interchange of samples using the im-
plemented identity control. Predictors for light and
heavy chain type (overall error rate 2.2% and 1.6%, re-
spectively) as well as the sex of the patient (5.5% overall
error rate, in agreement with frequent loss of the Y-
chromosome [51]; being “female” can be predicted with-
out error) showed comparable results in this prospect-
ively analyzed cohort of patients if compared to the
original publication (retrospectively on the validation co-
hort: 6%, 1%, and 4%, respectively [31]). False predictions
were found in 3/93 patients with IgA myeloma (3.2%)
and 3/269 patients with IgG (1%) as well as 4/308 pa-
tients with kappa light chains (1.3%) and 6/148 patients
with light chains type lambda (4%; Additional file 1:
Table S1). No sample failed in all three criteria.
As per the implemented quality control with a total of 7

quality parameters, the majority of patients showed no ab-
normality (339, 74.4%), 110 had a warning in one minor
criterion (24.1%), 6 patients in 2 (1.3%), and 1 patient in 3
(0.2%). No patient fulfilled one of the major exclusion cri-
teria based on previously performed QC analysis.

Risk assessment and classifications of myeloma
Fifty-three patients were predicted using the GEP-R to
have a t(4;14), corresponding to 11.6% of the total cohort
with available GEP data. In five patients, iFISH and GEP
showed discrepant results with the alteration being not
found in iFISH. In conservative estimation, we consid-
ered the PAM-based predictor to have an overall error
rate of 1.1%. Three of these patients had a clonal IgH-
translocation with an unknown translocation partner,
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one patient had a clonal t(11;14), and one patient did
not have a detectable translocation involving the IgH-
locus. Predicted t(4;14) status delineated significantly dif-
ferent median PFS of 40 vs. 26 months (P = 0.008) and
median OS of not reached (NR) vs. 56 months (P =
0.003; Additional file 2: Figure S1).
Regarding the GEP70 score, 113 patients were attributed

as being high risk (24.8%) and 343 (75.2%) as low risk which
transmitted into significantly different median PFS of 23 vs.
43 months (P < 0.001) and median OS of 41 months vs. NR
(P < 0.001; Additional file 2: Figure S1). The same holds
true for the IFM15 score with 106 patients being high risk
(23.2%) and 350 patients (76.8%) being low risk transmit-
ting into median PFS of 25 vs. 44 months (P < 0.001) and
OS of 57 months vs. NR (P < 0.001; Additional file 2: Figure
S1). Regarding myeloma cell proliferation, 36 (7.9%), 191
(41.9%), and 229 (50.2%) patients were attributed as being
GPIhigh, GPImedium, and GPIlow, respectively with signifi-
cantly different median PFS of 18 vs. 33 vs. 49 months (P <

0.001) and median OS of 33 vs. 76 months vs. NR (P <
0.001; Additional file 2: Figure S1).
The percentages of patients identified as being of high

risk by conventional prognostic factors, gene expression-
based risk scores or proliferation (GPI), as well as meta-
scores and the overlap of the respective groups of pa-
tients are shown in Table 1 and Fig. 2.
For the results of grouping myeloma into different

subentities, see Additional file 2: Figure S2.

Target assessment
Expression height and presence/absence of expression
were assessed for (i) examples of potential “target genes.”
As the aim of our manuscript was prospective testing of
the GEP-R, these examples include AURKA, FGFR3,
and IGF1R, for which at that time potential clinical
grade inhibitors were foreseen, (ii) potential targets for
immunotherapy, i.e., cancer testis antigens like CTAG1,
MAGE1, and HM1.24, and (iii) genes frequently

Fig. 1 Feasibility of plasma cell purification, iFISH, and gene expression profiling within the GMMG-MM5 trial. Percentages are given for feasibility
of plasma cell purification (ALL) as well as performing of interphase fluorescence in situ hybridization (iFISH) and gene expression profiling (GEP)
using DNA-microarrays. For the latter two, columns refer to both all patients and those for which purified plasma cells were available. BM(A),
bone marrow (aspiration); na, not available

Table 1 Delineation of “high-risk” patients by the respective variables and scores

The percentages of patients identified as being of high risk (first column) and the overlap of the respective groups of patients are shown
GPI, gene expression-based proliferation index; (r)ISS, (revised) International Staging System
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aberrantly or differentially expressed in myeloma. In our
cohort of 456 patients from the intention-to-treat popu-
lation for which a GEP-R is available, 197 were found to
express AURKA (43.2%), 151 IGF1R (33.1%), and 50
FGFR3 (11%), respectively. In the same way, candidates
for personalized treatment approaches, given the avail-
ability of respective inhibitors, could be addressed.

Metascoring
The HM metascore had already been validated on an ex-
ternal cohort as part of its initial set up [31]. In pro-
spective testing, 58 myeloma patients were classified as
being low risk (12.7%), 352 as medium risk (77.2%), and
46 were attributed as being high risk (10.1%). This trans-
mitted into significant different median PFS of NR vs. 39
vs. 15 months (P < 0.001) and OS of NR vs. NR vs. 41
months (P < 0.001). At 5 years, survival rate was 98% vs.
68% vs. 25% and 57 (98.2%) vs. 253 (71.8%) vs. 15
(32.6%) patients were still alive (Fig. 3).
Applying the rISS as the current gold standard, 150

patients were classified as being rISS I (27.8%), 317 as
rISS II (58.9%), and 71 were attributed as rISS III
(13.2%), respectively, transmitting into significant

different median PFS of 54 vs. 37 vs. 22 months (P <
0.001) and median OS of NR vs. NR vs. 41 months (P<
0.001). Five-year PFS and OS-rates for rISS I/II/III were
44/30/18% and 86/65/40%, respectively (Fig. 3). Forest
plots summarizing the prognostic impact of individual
factors and metascores (i.e., rISS and HM metascore)
can be found in Fig. 4.
An integrated Brier score was calculated to assess pre-

diction accuracy. The overall predictive value for OS
from 0 to 73 months is best for the HM metascore
(0.132) compared to rISS (0.137) or other GEP-based
scores, i.e., the GEP70- (0.139), IFM15 models (0.14), or
Reference (0.148), respectively (Fig. 5). Differences be-
tween the HM metascore and the other models were,
however, not statistically significant. Likewise, differences
between the “conventional” ISS and rISS were not sig-
nificantly different.

Discussion
Personalized and risk-adapted treatment strategies in
multiple myeloma prerequisite the feasibility of pro-
spective assessment, reporting of targets and prediction
of survival probability in clinical routine—in a “high
enough” percentage of patients. Besides, they also neces-
sitate the availability of treatment options that can in-
deed be applied in a personalized manner (see below).
Based on statistical power calculations for subsequent
trials, we defined the thresholds as 90% for iFISH and
80% for GEP-based assessment.

Can you do it in clinical routine?
Despite iFISH, GEP and RNA-sequencing have been
used in academic setting or using commercial providers,
to the best of our knowledge, no data is available regard-
ing a prospective molecular analysis and reporting in
clinical routine in a way that this could be used for per-
sonalized and risk-adapted treatment strategies, e.g., dur-
ing the first cycle of induction chemotherapy. This is a
different setting from being able to run advanced mo-
lecular diagnostics in a prospective trial in a subpopula-
tion of patients which has frequently been shown by
others and us [8, 17, 23–28].
In our GMMG-MM5 trial, consenting to bone marrow

aspiration and molecular analyses was not a prerequisite
to participate in the trial, in contrast, e.g., to the total
therapy 4 and 5 trial with mandatory GEP data [8, 23],
as it did not imply any up-front clinical consequences.
Nonetheless, 95% of patients agreed to bone marrow as-
piration at inclusion in the trial. This rate was driven by
a high motivation of participating centers and physicians
to explain patients planned analyses and the usefulness
of translational research in multiple myeloma, and a
concomitant intrinsic willingness of patients to partici-
pate. At the same time, we motivated participating

Fig. 2 Overlap of patients identified as being of high risk by
conventional prognostic factors, gene expression-based risk scores
or proliferation, and metascores. Venn diagrams showing overlap of
patients identified as being of high risk by a gene expression-based
risk scores or proliferation, i.e., GEP70, IFM15 scores, and GPI, as well
as HM metascore and b GEP70, IFM15 scores, GPI, and rISS. See
Table 1 for details and further prognostic factors. rISS, International
Staging System; GPI, gene expression-based proliferation index
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centers by direct feedback of sample quality and result
of purification, as well as iFISH and GEP (see below).
The set-up of our sampling and analysis strategy allowed
performing iFISH in 97% and GEP in 80% of patients with
available bone marrow samples. This compares favorably
to iFISH results reported by the EMN02/HOVON95-trial
(74.1%) [52], IFM2009-trial (73.6%) [53], DSMM XI-trial
(73.7%) [54], SWOG S0777-trial (60.2%) [55], or a pooled
analysis of three PETHEMA/GEM clinical trials, i.e.,
GEM2000, GEM2005MENOS65, and GEM2010MAS65
(60.8%) [56], which were conducted during a comparable
time frame. We have therefore for the first time validated
prospectively in a randomized phase III multicenter trial
the possibility to perform not only cytogenetic (including
rISS) but also gene expression-based risk stratification and
reporting in > 80% of patients during the first cycle of in-
duction chemotherapy as—potentially—molecular risk-
adapted, personalized treatment strategy.

Why would you want to do it?
Besides risk stratification which can be done by both
iFISH and GEP [20], the specific benefit of gene expres-
sion profiling, either by DNA-microarrays as in this trial

or by RNA-sequencing, lies in the additional ability to
identify target gene expression. In our analysis, this was
intended for immunological targets and those for which
small molecules or antibodies existed, e.g., Aurora-
kinase A (VX-680 [21]), IGF1-receptor (e.g., AVE1642
[57]), or FGF3R (e.g., CHIR-258 [58]). AURKA was se-
lected at this point in time when the GEP-R was devel-
oped as we had previously shown it to be expressed in
approx. 30% of previously untreated myeloma patients
and is associated with adverse survival [21]. IGF1R-in-
hibition was selected due to its importance as myeloma
growth factor and impact on patient survival [22, 59]. As
our aim was the prospective testing of our approach, we
retained both factors also in the HM metascore, even
given that neither will in 2019 be used as a clinical target.
Here, it was our intention to give the proof-of-principle
for prospective advanced molecular diagnostics of targets
and reporting in clinical routine; in this way, the GEP-R is
depicted and should be interpreted. Novel targets for
which clinical grade inhibitors become available or im-
munological targets can be added to the assessment due
to the adaptable surface of our reporting tool (GEP-R)
[31]. Without a doubt, actual implementation necessitates

Fig. 3 Prognostic impact of HM metascore and rISS. Shown are progression-free (PFS) and overall survival (OS) for a our HM metacore as well as
b the revised International Staging System (rISS)
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standardization and either commercial or academic devel-
opment of an actual molecular diagnostics test. Although
this is beyond the scope of our manuscript, we show here
that such a strategy is in principle feasible.
Alongside the principle possibility of running ad-

vanced molecular profiling and depiction of potential
targets for individualized treatment, assessment of
risk was the third main objective of our study. Here,
many prognostic factors have been described with
the ongoing discussion of which to include [19, 20].

This leaves the treating physician with a plethora of infor-
mation that is difficult to consolidate intending counseling
patients and drawing a clinical conclusion. Metascoring
appears as an appropriate strategy [18, 31, 60, 61] to over-
come this, and we show that this is likewise possible in a
randomized clinical trial setting. Regarding the molecular
techniques used in the metascore, i.e., iFISH and GEP, we
choose to include both due to in part non-overlapping
prognostic information, e.g., it is not possible to pre-
dict del17p13 at a high-enough accuracy by GEP [62].

Fig. 4 Forest plots. Forest plots summarizing the prognostic impact of individual factors and metascores (i.e., revised International Staging
System (rISS) and HM metascore) in terms of a progression-free and b overall survival. GPI, gene expression-based proliferation index. The
hazard ratios are shown on a log scale
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The actual (good) prediction result of our metascore
per se is thereby not the main focus of our analysis.
Nonetheless, even with this “2010 choice” regarding risk
factors and target genes, metascoring including GEP-
based risk assessment is superior in numbers to rISS, al-
though not statistically so. The same however holds true
for a comparison of rISS to ISS even on our comparably
large cohort of patients.

Can we do better?
For a molecular diagnostics-based trial, bone marrow as-
sessment, submission of bone marrow of sufficient qual-
ity and quantity are mandatory prerequisites. Based on
our optimized protocol, data in terms of purity and cell
number could be further improved within the prospect-
ive multicenter GMMG-HD6 trial (NCT02495922)
recruiting 564 patients between June 2015 and Septem-
ber 2017 to a median purity of 94.5% (SD 13.2%) and 1.4
× 106 (SD 34.8 × 106) purified plasma cells. Future direc-
tions comprise the optimization of patient recruitment
and sampling strategy in terms of mandatory bone mar-
row aspiration as inclusion criterion as defined above
and replacement of GEP by RNA-sequencing, currently

tested in our BMBF-funded CLIOMMICS-project. RNA-
sequencing has several advantages over GEP using mi-
croarrays [63, 64]: (i) it provides quantification of levels
of transcripts without significant saturation effects, (ii) it
does not prerequisite a priori definition of sequences to
be analyzed (as are, e.g., Affymetrix “probesets”) and
thus allows detection of mutated transcripts, e.g., target-
able BRAF-mutations. Likewise, transcripts, for which
initially incorrect sequences were assumed, and thus
corresponding probesets do not interrogate the tran-
script of interest, can be analyzed. (iii) RNA-sequencing
enables the analysis of splice variants, as well as (iv) the
investigation of other RNA types, for example, miRNAs
[65], and (v) it can routinely be performed from as low
input as 10 pg of total RNA compared to about 100 ng
for microarrays and a double amplification protocol [63].
The latter is especially important, as the amount of RNA
did not permit an analysis by GEP in approx. ten percent of
patients in the GMMG-MM5 trial. Despite these advan-
tages, there are also several caveats and challenges including
data storage and handling due to the large size of RNA-
sequencing raw datasets, time-consuming bioinformatics
analysis, and less standardization [64, 66, 67].

Fig. 5 Brier score. Integrated Brier score assessing accuracy of prediction for HM metascore vs. a revised International Staging System (rISS), b
GEP70 score, and c IFM15 score compared to the reference. Brier scores (prediction error) as well as P values for the different comparisons are
given (bottom right, respectively) for overall survival are given

Hose et al. Journal of Hematology & Oncology           (2019) 12:65 Page 9 of 12



Conclusion
In conclusion, using an elaborated sampling, experimen-
tal and analysis strategy as reported here, we show for
the first time that it is possible to prospectively perform
and report molecular analyses in a randomized phase III
multicenter trial in over 90% (iFISH) and 80% (GEP) of
patients, respectively, within the first cycle of induction
chemotherapy. Therefore, we validate that a trial strategy
using either of the methods is possible, including report-
ing of potentially actionable targets. Risk assessment
using our HM metascore allows to stratify patients
with excellent/intermediate/adverse PFS and OS with
survival rates of 98% vs. 68% vs. 25%, respectively,
after 5 years. In comparison to the rates by rISS of
86% vs. 65% vs. 40%, respectively, both groups with
better as well as more adverse survival are delineated
by the HM metascore.
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