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Abstract

Background: The expression of CYP4Z1 and the pseudogene CYP4Z2P has been shown to be specifically increased
in breast cancer by our group and others. Additionally, we previously revealed the roles of the competitive endogenous
RNA (ceRNA) network mediated by these genes (ceRNET_CC) in breast cancer angiogenesis, apoptosis, and tamoxifen
resistance. However, the roles of ceRNET_CC in regulating the stemness of breast cancer cells and the mechanisms
through which ceRNET_CC is regulated remain unclear.

Methods: Transcriptional factor six2, CYP4Z1-3'UTR, and CYP4Z2P-3'UTR were stably overexpressed or knocked down in
breast cancer cells via lentivirus infection. ChIP-sequencing and RNA-sequencing analysis were performed to reveal the
mechanism through which ceRNET_CC is regulated and the transcriptome change mediated by ceRNET_CC. Clinical
samples were used to validate the correlation between six2 and ceRNET_CC. Finally, the effects of the six2/ceRNET_CC
axis on the stemness of breast cancer cells and chemotherapy sensitivity were evaluated by in vitro and in vivo
experiments.

Results: \We revealed that ceRNET_CC promoted the stemness of breast cancer cells. Mechanistically, six2 activated
ceRNET_CC by directly binding to their promoters, thus activating the downstream PI3K/Akt and ERK1/2 pathways. Finally,
we demonstrated that the six2/ceRNET_CC axis was involved in chemoresistance.

Conclusions: Our results uncover the mechanism through which ceRNET_CC is regulated, identify novel roles for the six2/
ceRNET_CC axis in regulating the stemness of breast cancer cells, and propose the possibility of targeting the six2/ceRNET_
CC axis to inhibit breast cancer stem cell (CSC) traits.
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Introduction
Human tumors are composed of heterogeneous cells, in
which cancer stem cells (CSCs), here defined as the tumor
cells specifically endowed with self-renewal and tumor-seed-
ing potential, have been regarded as the main drivers of
tumor progression and chemoresistance [1]; however, the
mechanisms underlying CSC maintenance are not well de-
fined, and currently, no drugs directly kill CSCs. In fact, we
have only a scattered understanding of the cellular mecha-
nisms that contribute to CSC attributes. Notably, because
tumorigenesis and chemoresistance are led by the deregula-
tion of gene networks, single gene expression analysis can-
not completely explain chemotherapy or tumor recurrence,
which should be assessed by several synergistic factors.
Competitive endogenous RNAs (ceRNAs) are defined as
the transcripts that share common miRNAs and can core-
gulate each other’s expression [2]. ceRNAs play critical roles
in tumor progression; for example, the long non-coding
RNA UICLM can facilitate colorectal cancer metastasis by
acting as a ceRNA for miR-215 [3] and ROR promotes pan-
creatic cancer progression by acting as a ceRNA for Nanog
[4]. We and others have shown that the expression of
CYP4Z1 and the pseudogene CYP4Z2P are significantly
and specifically higher in breast cancer tumor tissues [5-7].
Furthermore, we revealed that CYP4Z1 and the pseudo-
gene CYP4Z2P form a ceRNA network via competiting
with several miRNAs, such as miR-211, miR-125a-3p,
miR-197, miR-1226, and miR-204, here called ceRNET_CC,
and both we and others have shown that these shared miR-
NAs exert tumor suppressive effects [8—12]. We further
demonstrate that ceRNET_CC promotes breast cancer
angiogenesis [6] and tamoxifen resistance [5] and sup-
presses breast cancer apoptosis [13]; these effects suggest
that suppression of ceRNET_CC may allow for inhibition
of breast cancer. Due to the roles of ceRNET_CC in pro-
moting breast cancer, here, we focused on understanding
the mechanisms underlying the progression of ceR-
NET_CC and the roles of ceRNET_CC in regulating the
stemness of breast cancer. Transcript overexpression oc-
curs through transcriptional and epigenetic control mecha-
nisms in the vast majority of cancers, as demonstrated by
Rinath et al, who uncovered a role for the RUNX2-ER
(runt-related transcription factor 2-estrogen receptor) com-
plex in stimulating the transcription of a set of genes, in-
cluding most notably the stem cell factor Sox9, which
promotes proliferation and a metastatic phenotype [14],
and TRIM28, which interacts with EZH2 and SWI/SNF
to activate genes that promote mammosphere forma-
tion [15]. A bioinformatics method was then used to
predict the transcriptional factors binding to the pro-
moters of CYP4Z1 and the pseudogene CYP4Z2P, and
transcriptional factor six2 attracted our attention based
on its critical roles in organ development and promot-
ing roles in cancers [16—18].
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Transcriptional factor six2 activity is required to main-
tain the mesenchymal progenitor population in an undif-
ferentiated state [16], and cells autonomously regulate a
multipotent nephron progenitor population throughout
mammalian kidney development [17]. Additionally, hap-
loinsufficiency for the six2 gene increases nephron pro-
genitor proliferation, promoting branching and nephron
number [19]. These processes are normally maintained by
stem cells, and the expression of genes involved in embry-
onic development is usually reinstated in tumors. Add-
itionally, previous studies have revealed that several cell
fate regulators (DeltaNp63, Slug, Sox9, and miR-200c) are
molecular links between mammary stem cells and breast
tumor-initiating cells that drive renewal activity in both
normal and cancerous mammary gland tissues [20-22].
Based on these data, we speculated that six2 could drive
CSC progression. Previous studies have shown that breast
cancer patients with higher six2 levels have shorter time
to both relapse and metastasis [18, 23]. Additionally,
increased expression and decreased methylation of six2
are correlated with increased tumor size, clinical stage,
vascular invasion, and unfavorable histological differenti-
ation in Wilms' tumor [24]. Moreover, a systematic
meta-analysis revealed that higher six2 expression is asso-
ciated with a greater possibility of tumorigenesis and
predicted poor overall survival (OS) in non-small-cell lung
cancer (NSCLC) and poor relapse-free survival (RFS) in
lung adenocarcinoma (ADC) [25]. However, the molecular
mechanisms underlying six2-mediated oncogenic effects,
and the downstream effectors of six2 are not fully
understood.

In the present study, we showed that the expression of
six2, CYP4Z1, and pseudogene CYP4Z2P was significantly
increased in breast cancer tumors and that six2 could dir-
ectly bind to the 5'-TCAG-3" motif in the promoter of
CYP4Z1 and CYP4Z2P and thus promote the progression
of ceRNET_CC. Notably, this novel six2/ceRNET_CC regu-
latory axis was responsible for the stemness and chemore-
sistance of breast cancer cells. Importantly, the expression
of six2, CYP4Z1, and the pseudogene CYP4Z2P was nega-
tively correlated with the OS of breast cancer patients, and
the expression of these genes was positively correlated with
one another, underscoring the critical roles of this regula-
tory axis in breast cancer progression. A broader under-
standing of six2-dependent regulation on ceRNET_CC is
needed to effectively target therapy-resistant breast cancer
cells with stemness characteristics and address the
challenges of tumor heterogeneity.

Materials and methods

Clinical samples

Paraffin-embedded breast cancer tissue samples were
obtained in our previous work [26]. Eight pairs of fresh
breast cancer and normal adjacent tissues were collected
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from Huai An First People’s Hospital and Jiangsu Prov-
ince Hospital of TCM between September 2017 and
January 2018. Written informed consent from all pa-
tients and approval of the hospital ethics review commit-
tees were obtained. Online clinical posited data (http://
www.firebrowse.org/), Breast Cancer Gene-Expression
Miner (version 4.0; http://bcgenex.centregauducheau.fr/),
and R2: Genomics Analysis and Visualization Platform
(http://hgserverl.amc.nl/cgi-bin/r2/main.cgi) were used
for the analyses of gene expression and correlation. The
diagnostic values of the genes were analyzed by KM plot-
ter (http://kmplot.com) to obtain KM survival plots in
which the number at risk is indicated below the main plot
[27]. Hazard ratio, 95% confidence intervals, and log-rank
P values were calculated and displayed on the webpage.

Cell culture and chemical reagents

The human breast cancer cell lines MCF-7, MDA-MB-231,
and HEK293T were preserved in our laboratory.
Adriamycin-resistant MCF-7-Adr cells were purchased
from KeyGen BioTECH (Nanjing, China). The cell line was
authenticated every year through short tandem repeat
(STR) DNA profiling. HEK293T and MCE-7 cells were cul-
tured in DMEM (Gibco, Grand Island, NY, USA),
MCEF-7-Adr cells were cultured in 1640 medium (Gibco),
and MDA-MB-231 cells were cultured in L-15 medium
(Gibco) at 37 °C under a humidified atmosphere with 5%
CO,. All of the media were supplemented with 10% FBS
(Gibco), 80 U/ml penicillin, and 0.08 mg/ml streptomycin.
PI3K inhibitor (LY-294002) and ERK1/2 inhibitor (VX-11e)
were purchased from APEXBIO. Adriamycin was purchased
from Zhongda Hospital Southeast University.

Quantitative real-time PCR (qRT-PCR)

Total RNA from the cells was extracted using TransZol Up
(Cat. No. ET111-01, TransGen Biotech, Beijing, China) fol-
lowing the manufacturer’s recommendation. Total RNA
from paraffin-embedded breast cancer tissues was extracted
using a total RNA extraction kit for paraffin-embedded
tissues (Cat. No. DP439, TianGen Biotech, Beijing, China)
according to standard protocols. Then, complementary
DNA (cDNA) was reverse-transcribed using M-MLV (H-)
Reverse Transcriptase (Cat. No. R021-01, Vazyme, Nanjing,
China) according to the manufacturer’s protocol. qRT-PCR
was performed with AceQ Universal SYBR qPCR Master
Mix (Cat. No. Q511-02, Vazyme). A melting curve analysis
was performed routinely to check the amplification specifi-
city. cDNA templates were analyzed in triplicate, and
GAPDH was used as an internal control. The relative ex-
pression level of each transcript was calculated by the 27°°
method. The qRT-PCR primers are described in Additional
file 1: Table S1.
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Western blotting

The detailed procedure was described in our previous
study [26]. Protein in fresh tissues was extracted using
total protein extraction kit (Invent, USA) following the
manufacturer’s recommendation. B-actin or GAPDH
was used as an internal reference. Detailed information
on the antibodies used in this work is given in
Additional file 2: Table S2.

Fluorescence-activated cell sorting

CD24 and CD44 expression was analyzed in cells
derived from monolayer cultures following dissociation
in trypsin-EDTA at 37 °C. At least 1 x 10° cells were pel-
leted by centrifugation at 300xg and 4°C for 5min.
Then, cells were washed in PBS, re-suspended with
anti-CD24-PE (BD Biosciences, USA) and anti-CD44-
APC (BD Biosciences, USA), and then incubated at 4 °C
for 30 min in the dark. The labeled cells were washed
using PBS and analyzed using a flow cytometer (BD,
USA). The negative fraction was determined using
appropriate isotype controls.

Chromatin immunoprecipitation assay

A chromatin immunoprecipitation (ChIP) assay was per-
formed using the EZ-Magna ChIP™ A/G Chromatin Im-
munoprecipitation Kit (Cat. No. 17-10086, Merck)
following the manufacturer’s protocols. Primers flanking
the six2 binding sites on the promoters of CYP4Z1 and
pseudogene CYP4Z2P were used for qRT-PCR. The se-
quences of the primers for ChIP analysis were denoted
in Additional file 3: Table S3.

ChIP-sequencing and data assay

ChIP-sequencing analysis was performed by GENEWIZ
(Suzhou, China). ChIP-seq raw reads were aligned to a
human reference genome (hgl9) using cutadapt (version
1.9.1) to pass filter data and acquire clean data. Up to
mismatch per read was allowed. The quality of the se-
quencing data was assessed using FastQC (v0.10.1), and
only uniquely mapped reads were kept for downstream
analysis. The data are available in the Gene Expression
Omnibus (GEO) database as GSE117145.

RNA sequencing and data analysis

RNA sequencing and data analysis were conducted by
Novogene (Beijing, China). The data are available in the
Gene Expression Omnibus (GEO) database as GSE116984.

Tissue microarray analysis

A tissue microarray including 30 breast cancer tissues
and 30 normal adjacent tissues was purchased from
OUTDO IVD (Shanghai, China). Further immunohisto-
chemistry was performed to detect the expression of
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six2 following the protocols described in our recent
work [28].

Small interfering RNA transfection

When cells confluency reached 50%, cells were transfected
with a final concentration of 50 nM small interfering RNA
(siRNA) or 50 nM NC (si-NC, inhibitor-NC, mi-NC) which
were synthesized by Biomics Biotechnology (Nantong,
China) using jetPRIME (Polyplus Transfection, France) fol-
lowing the manufacturer’s protocols. The siRNA sequences
are mentioned in Additional file 4: Table S4.

Cell spheroid formation assay

A mammosphere formation assay was performed using
MammoCult™ Human Medium Kit (STEMCELL Tech-
nologies, Canada). A total of 3 x 10 cells were mixed with
500 pl of Complete MammoCult™ Medium in the presence
of 4 pg/ml Heparin (STEMCELL Technologies, Canada)
and 0.48 pg/ml hydrocortisone (STEMCELL Technologies,
Canada) and seeded in 24-well ultra-low attachment plates
(Corning, USA) for 7 days. The spheres were counted and
photographed. All images were obtained with a Leica DMI
microscope (DE).

Lentivirus package, stable cell lines, and plasmid
construction

To construct stable expression cells, the six2 coding area or
the CYP4Z1 3'UTR or CYP4Z2P 3'UTR sequences were
subcloned into pLVX-ZsGreen. siRNA oligos were pur-
chased from GenePharma (Shanghai, China). After anneal-
ing, double-strand oligos were inserted into the lentiviral
pLKO.1-puro vector (Addgene). To package lentivirus,
HEK293T cells were co-transfected using Lentifectin
(ABM, USA) with the lentiviral vector and packaging vec-
tors psPAX2 and pMD2.G. MCE-7 and MDA-MB-231 cells
were infected with the virus in the presence of 2 pg/ml
polybrene. Cells infected with Plko.1-derived vectors were
selected with puromycin (Sigma, 2 pug/ml) for 2 weeks. Cells
infected with pLVX-ZsGreen-derived vectors were selected
by fluorescent cell sorting. Western blot and qRT-PCR ana-
lyses were used to verify expression levels. MCF-7 cells sta-
bly overexpressing CYP4Z1 3'UTR, CYP4Z2P 3'UTR, and
six2 were designated as MCF-7-Z1-UTR, MCEF-7-Z2P-
UTR, and MCEF-7-six2, respectively. MCF-7 cells stably
knocking down CYP4Z1 3'UTR, CYP4Z2P 3'UTR, and
six2 stable were denoted as MCF-7-Plko-Z1, MCEF-7-Plko-
Z2P, and MCEF-7-Plko-six2, respectively. MDA-MB-231
cells stably overexpressing six2 were designated as 231-six2,
while those stably knocking down CYP4Z1 3'UTR,
CYP4Z2P 3'UTR, and six2 were denoted as 231-Plko-Z1,
231-Plko-Z2P, and 231-Plko-six2, respectively. The
sequences of the primers used for plasmid constructions
were listed in Additional file 5: Table S5.
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Luciferase reporter assay

The promoter sequences of CYP4Z1 (1-2403 bp) and
the pseudogene CYP4Z2P (1-2998bp) were inserted
into the pGL3-promoter vector, and truncations of these
sequences were also inserted into the pGL3-promoter
vector. Then, potential six2 binding sites were mutated
using the Fast Mutagenesis Kit V2 (Vazyme, China) fol-
lowing the manufacturer’s instructions and inserted into
the pGL3-promoter vector as well. All of the abovemen-
tioned constructs were verified by DNA sequencing be-
fore use. To analyze the activity of the abovementioned
constructs, they were individually co-transfected with
B-gal and a six2 overexpression vector into MCF-7 cells.
Seventy-two hours later, the luciferase activity was mea-
sured by a POLARstar Omega multimode microplate
reader according to the manufacturer’s protocol and
normalized to [B-gal. All primer sequences for this
experiment are listed in Additional file 6: Table S6.

Chemoresistance or sensitivity assay

Cell viability was assessed using MTT (Amresco, USA)
staining. Cells were seeded at 3 x 10 cells/well in 96-well
cell plates overnight and then treated with different con-
centrations of adriamycin for 48 h. During the last 3.5h,
the cells were exposed to MTT (5 mg/ml) and the result-
ing formazan crystals were dissolved in 150 ul of DMSO
and measured using a spectrophotometer(BIO-RAD) at a
test wavelength of 490nM. The experiments were
conducted in triplicate.

In vivo tumorigenesis

The procedure was referenced in our previous work [28].
Briefly, six-week-old male athymic BALB/c nude mice
were purchased from the Model Animal Research Center
of Nanjing University, housed and fed under standard
pathogen-free conditions. For the tumor-limiting dilution
assay, 1 x 10° and 1 x 10° MCF-7 cells, 1 x 10° and 1 x 10*
MDA-MB-231 cells, or 1x 10> MCF-Adr cells receiving
different treatment were orthotopically implanted in the
inguinal mammary gland of mice. On day 8, all the mice
were euthanized and tumor tissues were collected and
weighed. The stem cell frequencies were calculated using
an ELDA (http://bioinf.wehi.edu.au/software/elda/) [29].
All the animal experiments were carried out with the ap-
proval of the Ethics Committee for Animal Experimenta-
tion of China Pharmaceutical University.

Statistical analysis

GraphPad Prism 5.01 software (GraphPad Software, Inc.,
La Jolla, CA, USA) was used for the statistical analysis.
All the data were obtained from at least three independ-
ent experiments and are presented as the means + stand-
ard deviations (SDs). Datasets with only two groups
were analyzed using Student’s ¢ test. Differences between
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multiple groups were analyzed by one-way analysis of
variance with the Tukey-Kramer post hoc test. P<0.05
was considered indicative of a statistically significant
difference.

Results

CeRNET_CC promotes the stemness of breast cancer cells
in vitro

The expression levels of CYP4Z1 and its pseudogene
CYP4Z2P were initially examined in breast tumor and nor-
mal adjacent tissues via online clinical deposited data
(http://www.firebrowse.org/). As shown in Fig. 1a, b, the ex-
pression of CYP4Z1 and the pseudogene CYP4Z2P was sig-
nificantly increased in breast tumor tissues, which is
consistent with our previous work in which CYP4Z1 and
pseudogene CYP4Z2P expression was detected in clinical
samples [26, 30]. KM-plotter analysis (http://kmplot.com)
indicated that CYP4Z1 expression was negatively correlated
with the OS of breast cancer patients (Fig. 1c). We defined
the CYP4Z1-3'UTR- or CYP4Z2P-3'UTR-regulated tran-
scriptome in MCEF-7 cells with CYP4Z1- or CYP4Z2P-3’
UTR overexpression and subsequently performed expres-
sion profiling, and the results revealed a substantial and
highly statistically significant overlap between genes regu-
lated by both CYP4Z1-3'UTR and CYP4Z2P-3'UTR in
MCE-7 cells (Fig. 1d). Additionally, CYP4Z1-3'UTR and
CYP4Z2P-3'UTR activated (3854 vs. 3788) or repressed
(3404 vs. 3934) similar numbers of genes in MCF-7 cells
(Fig. e, f). Further gene set enrichment analysis (GSEA) of
this dataset revealed that a negative enrichment of stem
cell-differentiated signatures was observed in MCF-7 cells
with CYP4Z2P-3'UTR overexpression (Fig. 1g), and the
top positive signatures associated with CYP4Z1-3'UTR
overexpression were the embryonic stem cell function and
adult tissue stem modules (Fig. 1h, i) [31], both of which
are indicative of a stemness phenotype. Functional annota-
tion analysis revealed that the overexpression of
CYP4Z2P-3'UTR or CYP4Z1-3'UTR activated signaling
pathways regulating the pluripotency of stem cells (Fig. 1j).
Among the differentially expressed genes, we identified a
set of gene signatures related to epithelial cancer stem cells
in MCF-7 cells with CYP4Z2P-3'UTR and CYP4Z1-3’
UTR overexpression, including YY1, KRAS, YAP1, and
HMGB2 (Fig. 1k) [31]. Consistent with the activation of
stem cell function, we detected an increase in a set of cell
cycle-related genes, namely CDK5R1, CDK1, CDK2, and
CDK?7 (Fig. 1). Notably, the expression of CYP4Z1 and
CYP4Z2P displayed a positive correlation in clinical breast
cancer samples (P < 0.001, Fig. 11).

As previous studies have demonstrated that non-ad-
herent spheres are highly enriched for CSCs [32, 33], the
expression levels of CYP4Z1 and its pseudogene
CYP4Z2P were examined in non-adherent MCEF-7
spheres and parental cells. qRT-PCR results showed that
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non-adherent MCF-7 spheres displayed significantly
higher levels of CYP4Z1 and CYP4Z2P relative to mono-
layer cultures of MCE-7 cells (Additional file 7: Figure
S1A). We then determined whether the overexpression
of CYP4Z1- or CYP4Z2P-3'UTR conferred stemness
upon breast cancer cells in vitro. First, MCF-7 cells with
CYP4Z1- or CYP4Z2P-3'UTR stable overexpression or
knockdown were subjected to a spheroid formation
assay. The infection efficiency was confirmed by qRT-
PCR (Additional file 7: Figure S1B and C). Both the
sphere size and number were increased in MCF-7 cells
with CYP4Z1- or CYP4Z2P-3'UTR overexpression,
whereas the knockdown of CYP4Z1- or CYP4Z2P-3’
UTR exerted the opposite effects (Additional file 7: Fig-
ure S1D). Additionally, the overexpression of CYP4Z1-
or CYP4Z2P-3'UTR increased the CD44*/CD24~ popu-
lation, which has been identified as having breast CSC
markers [34] (Additional file 7: Figure S1E). Moreover,
the expression of several pluripotent transcription fac-
tors, namely Oct3/4, ALDH1, Nanog, and Sox2, was in-
creased in cells with CYP4Z1- or CYP4Z2P-3'UTR
overexpression, whereas the knockdown of CYP4Z1- or
CYP4Z2P-3'UTR vyielded the opposite effects (Add-
itional file 7: Figure S1F and S1G). These results were
recapitulated in MDA-MB-231 cells with or without the
knockdown of CYP4Z1- or CYP4Z2P-3'UTR. qRT-PCR
analysis confirmed the knockdown efficiency of shRNAs
against CYP4Z1- or CYP4Z2P-3'UTR (Additional file 8:
Figure S2A and B). As expected, the knockdown of
CYP4Z1- or CYP4Z2P-3'UTR resulted in fewer primary
mammospheres than control cells (Additional file 8: Fig-
ure S2C) and decreased the CD44'/CD24~ population
(Additional file 8: Figure S2D). Additionally, the expres-
sion of stemness markers was inhibited in MDA-MB-
231 cells with CYP4Z1- or CYP4Z2P-3'UTR knockdown
(Additional file 8: Figure S2E and F). Notably, we
assessed the expression correlation between Nanog and
CYP4Z1 or CYP4Z2P across basal-like breast cancer
subtypes using Breast Cancer Gene-Expression Miner
(version 4.0; http://bcgenex.centregauducheau.fr/) and
found that Nanog expression is positively correlated with
CYP4Z1 or CYP4Z2P expression in basal-like breast
cancer subtypes (Additional file 8: Figure S2G and S2H).
These results indicate that ceRNET_CC is engaged in
tumor stemness in breast cancer.

ceRNET_CC promotes the tumor-initiating potential of
breast cancer cells in vivo

We further investigated whether ceRNET_CC facilitates
the tumor-initiating potential of breast cancer cells in
vivo. We compared the capacity of MCF-7 cells with
CYP4Z1- or CYP4Z2P-3"UTR overexpression or knock-
down to seed tumors at limiting dilutions. Although all
of the cell lines could form tumors at a density of 1 x
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low and high CYP4Z1 levels. d Venn diagram showing overlap of genes in MCF-7-Z1-UTR and MCF-7-Z2P-UTR cells. e, f Genes with expression levels that
were upregulated or downregulated in MCF-7-Z2P-UTR (e) or MCF-7-Z1-UTR (f) cells relative to those in MCF-7 cells. g-i Enrichment of a stem cell
signature in a GSEA of genes regulated in MCF-7-Z2P-UTR and MCF-Z1-UTR cells. NES, normalized enrichment score; FDR, false discovery rate. j Functional
annotation analysis of genes coordinately activated by CYP4Z1-3'UTR- or CYP4Z2P-3'UTR. k Heat map showing the mean expression values of genes
related to epithelial cancer stem cells in MCF-7 cells with CYP4Z2P-3'UTR and CYP4Z1-3'UTR overexpression (fold change > 2 compared with MCF-7 cells,
P < 0.05). I Pearson correlation analysis of the expression of CYP4Z1 and the pseudogene CYP4Z2P in breast cancer tissues (n = 1207, P < 0.0001)

10° and 1x10° cells, CYP4Z1- or CYP4Z2P-3'UTR CYP4Z1- or CYP4Z2P-3'UTR knockdown and showed
overexpressed cells showed increased tumor size and that the knockdown of CYP4Z1- or CYP4Z2P-3'UTR
weight (Fig. 2a—d) while knockdown of CYP4Z1- or remarkably reduced the tumor-initiating potential of
CYP4Z2P-3'UTR decreased the tumor-initiating ability of =~ MDA-MB-231 cells (Fig. 2g—k). Therefore, our results
MCE-7 cells (Fig. 2a—f). Additionally, we performed an in ~ demonstrate that ceRNET_CC could promote the stem-
vivo tumorigenic assay with MDA-MB-231 cells after ness of breast cancer cells.
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Fig. 2 CeRNET_CC promotes the tumor-initiating potential of breast cancer cells in vivo. a—c Images (a, b) and number (c) of tumors harvested
when serially diluted MCF-7, MCF-7-Z1-UTR, MCF-7-Z2P-UTR, MCF-7-Plko-Z1, and MCF-7-Plko-Z2P were seeded. d Weight of tumors harvested
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ceRNET_CC promotes the stemness of breast cancer cells

partly through the hTERT/PI3K/Akt and ERK1/2 pathways

We next sought to explore the mechanisms through
which ceRNET_CC promotes the stemness of breast can-
cer cells. To address this issue, we characterized pathways
regulated by CYP4Z1- or CYP4Z2P-3'UTR based on
RNA-sequencing data. As expected, we found that the
phosphatidylinositol signaling system and MAPK signal-
ing pathways in cancer were some of the most highly up-
regulated pathways after CYP4Z1- or CYP4Z2P-3'UTR
overexpression (Fig. 3a, b). These results were supported
by our previous studies showing that ceRNET_CC could
act as a subceRNA network for hTERT and promote
hTERT expression, thus activating hTERT/PI3K/Akt and
ERK1/2 signaling [13, 26]. We then aimed to detect
whether ceRNET _CC indeed facilitated the stemness of
breast cancer cells through these two pathways. MCEF-7-
Z1-UTR or MCEF-7-Z2P-UTR cells were transfected with
siRNA against hTERT (sihTERT) or treated with a PI3K/
Akt inhibitor (LY-294002) or ERK1/2 inhibitor (VX-11e),
and we then detected the formation of cell spheroids and

the CD44"/CD24~ population. As shown in Fig. 3¢, d, the
increased cell spheroid formation or CD44"/CD24~ popu-
lation induced by CYP4Z1- or CYP4Z2P-3'UTR overex-
pression was attenuated by sihTERT transfection or by
LY-294002 or VX-lle treatment. Additionally, the in-
creased expression of stemness markers induced by
CYP4Z1- or CYP4Z2P-3'UTR overexpression was attenu-
ated by sihTERT (Fig. 3e) or by LY-294002 or VX-1le
treatment (Fig. 3f) and the knockdown of hTERT or treat-
ment with LY-294002 or VX-11e decreased the p-Akt and
p-ERK1/2 levels. Thus, these results demonstrate that
ceRNET_CC promotes the stemness of breast cancer cells
in a manner dependent on the hTERT/PI3K/Akt and
ERK1/2 pathways.

Transcriptional factor six2 induces the progression of
ceRNET_CC by directly regulating the transcription of
CYP4Z1 and the pseudogene CYP4Z2P

To determine the mechanisms through which ceR-
NET_CC is regulated, the Genomatix Software Suite
v3.10 (https://www.genomatix.de) was used to predict
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transcriptional factors that could bind to the promoters
of CYP4Z1 and CYP4Z2P. We aimed to identify specific
transcriptional factors that correlate with tumor progres-
sion and tissue development, and six2 attracted our at-
tention because it has been shown to promote breast
cancer metastasis [18] and regulate the expansion of the
nephron progenitor pool during nephrogenesis, which
involves a process similar to CSC formation [35]. We
identified one (- 1458 nt) and two putative binding sites
(-1125nt and - 2716 nt) on the promoters of CYP4Z1
and CYP4Z2P, respectively (Fig. 4a). To confirm the
interaction between six2 and CYP4Z1 or CYP4Z2P,
MCE-7 cells showing stable overexpression of six2 were
constructed by lentivirus infection. We then performed a
genome-wide chromatin immunoprecipitation sequencing

(ChIP-seq) analysis to identify the six2-bound chromatin
regions using an antibody against six2. As shown in Fig. 4b,
binding molecular function and developmental process
were enriched in six2-overexpressing cells. Importantly,
signaling pathways regulating stem cell pluripotency were
enriched in six2-overexpressed cells (Fig. 4c). Peak and
motif analysis revealed that the 5-TCAG-3" motif was
highly enriched (P=1e™'") (Fig. 4d), and the majority of
six2 peaks were located at the promoters/transcription
start sites (Fig. 4e). Importantly, six2 occupied the pro-
moters of CYP4Z1 and CYP4Z2P (Fig. 4f). We subse-
quently performed a ChIP assay for six2 in MCF-7 cells
with or without six2 overexpression. Our results indicated
that six2 was indeed bound to the promoters of CYP4Z1
and CYP4Z2P and that six2 overexpression increased six2
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Fig. 4 Transcriptional factor six2 induces the progression of ceRNET_CC by directly regulating the transcription of CYP4Z1 and the pseudogene
CYP4Z2P. a Diagram of the potential binding sites of six2 on the promoters of CYP4Z1 and the pseudogene CYP4Z2P. b Functional annotation
analysis of genes coordinately activated by six2 overexpression in MCF-7 cells. ¢ Enrichment of signaling signatures differentially expressed
between MCF-7-six2 and MCF-7 cells based on ChIP-sequencing analysis. d The peak motifs of six2-occupied sites. e Pie chart showing the
percentage of six2-occupied genomic regions that are promoter-TSS, exon, intron, or intergenic. f Peak histograms showing six2-occupied
CYP4Z1 (left) and pseudogene CYP4Z2P (right) promoters. g, h ChIP-gRT-PCR analysis of six2 occupancy at selected gene promoters in MCF-7
and MCF-7-six2 cells (g) and in MDA-MB-231 and 231-six2 cells (h). Error bars represent the SD from three independent experiments (*P < 0.05,
*P <001). 1, j Pearson correlation analysis of six2 and the pseudogene CYP4Z2P (i) or CYP4Z1 (j); log” values of the relative expression levels are

binding to these promoters (Fig. 4g, h). Additionally, we
constructed luciferase reporter vectors containing differ-
ent regions of the promoters of CYP4Z1 and CYP4Z2P
and found that the luciferase activity of the luciferase re-
porter vectors containing the putative binding sites was
enhanced in MCEF-7 cells with six2 overexpression (Add-
itional file 9: Figure S3A—C), whereas the activity of lucif-
erase vectors with mutated binding sites or without
putative binding sites was unaffected when the binding
sites were mutated (Additional file 9: Figure S3B-D).
These results indicated that six2 could directly bind to the

5'-TCAG-3" motif in the promoters of CYP4Z1 and
CYP4Z2P. Consistently, the expression levels of CYP4Z2P
and CYP4Z1 were significantly increased or decreased by
six2 overexpression or knockdown, respectively (Add-
itional file 9: Figure S3E—H). Notably, a qRT-PCR assay of
clinical samples showed that both six2 and CYP4Z1 ex-
pression and six2 and CYP4Z2P expression were posi-
tively correlated in breast cancer tissues (P < 0.001, Fig. 4i,
j)- These results suggest that six2 directly binds to the pro-
moters of CYP4Z1 and CYP4Z2P, thus increasing their ex-
pression and activating ceRNET_CC.
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Transcriptional factor six2 promotes the stemness of
breast cancer cells

Notably, we indeed observed a large overlap and positive
correlation between gene expression profiles regulated
by CYP4Z1-3'UTR- or CYP4Z2P-3'UTR and six2 in
MCE-7 cells (Fig. 5a, b). We next explored whether six2
exerts similar effects on ceRNET_CC. First, six2 expres-
sion was examined in breast tumor and normal adjacent
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tissues via online clinical deposited data (http://www fir-
ebrowse.org/). The results showed that six2 expression
was significantly increased in breast tumor tissues
(Fig. 5¢), and a further tissue microarray analysis exhib-
ited consistent results (Fig. 5d). Additionally, an analysis
of different clinical samples (http://hgserverl.amc.nl/
cgi-bin/r2/main.cgi) showed that six2 expression was
negatively correlated with OS, disease-free survival, and
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Fig. 5 Transcriptional factor six2 promotes the stemness of breast cancer cells in vitro. a Venn diagram showing the overlap of genes in MCF-7-
Z1-UTR, MCF-7-22P-UTR, and MCF-7-six2 cells. b Pearson correlation of altered genes in MCF-7-Z1-UTR, MCF-7-Z2P-UTR, and MCF-7-six2 cells. ¢
MRNA levels of six2 were examined in breast cancer and normal adjacent tissues via online deposited data (n = 1207, the error bars denote the +
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immunohistochemistry analysis. @ Heat map showing the mean expression values of genes related to stem cell pluripotency in MCF-7 cells with
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RES of breast cancer patients (Additional file 10: Figure
S4A—-F). Notably, we identified a set of gene signatures
regulating the pluripotency of stem cells in MCE-7 cells
with overexpressing CYP4Z2P-3'UTR, CYP4Z1-3'UTR,
and six2, and these genes included AMOTL2, CCNA2,
ID1/2, GSK3pB, and FGF2 (Fig. 5e). A GSEA revealed
that six2 overexpression resulted in the enrichment of
gene sets related to embryonic stem cell and mammary
stem cell function (Fig. 5f, g), consistent with the
CYP4Z71-3'UTR or CYP4Z2P-3'UTR overexpression-
mediated changes. As expected, six2 overexpression po-
tentiated sphere formation in MCF-7 cells, whereas the
knockdown of six2 exerted the opposite effects (Add-
itional file 11: Figure S5A). Moreover, six2 overexpres-
sion increased the CD44%/CD24~ population, whereas
the knockdown of six2 decreased this population (Add-
itional file 11: Figure S5B and S5C). Furthermore, the
expression of several pluripotent transcription factors
was increased in cells with six2 overexpression and de-
creased in cells with six2 knockdown (Additional file 11:
Figure S5D-G). We further investigated whether six2
could promote the tumor-initiating potential of breast
cancer cells in vivo. We compared the capacity of
six2-overexpressing or six2-knockdown MCE-7 cells to
seed tumors at limiting dilutions. Although all cell lines
could form tumors at the densities of 1 x 10° and 1 x 10°
cells, the six2-overexpressing cells showed an increase of
tumor size and weight, whereas six2-knockdown cells
exhibited decreased tumor size and weight (Fig. 6a—d).
Furthermore, an in vivo tumorigenic assay was per-
formed with MDA-MB-231 cells after six2 overexpres-
sion or knockdown and demonstrated that six2
remarkably attenuated the tumor-initiating potential of
MDA-MB-231 cells (Fig. 6e—i). Together, our gain- and
loss-of-function assays demonstrate that six2 could pro-
mote the stemness of breast cancer cells.

ceRNET_CC is sufficient and necessary for six2-induced
effects

We continued investigating whether the ability of six2 to
promote the stemness of breast cancer cells is dependent
on ceRNET _CC. MCF-7-six2 cells were transfected with
siRNA against CYP4Z1- (si-Z1) or CYP4Z2P-3'UTR
(si-Z2P), and the resulting cells were subjected to cell
spheroid formation and CD44*/CD24~ population assays.
As shown in Fig. 7a—d, the increased cell spheroid forma-
tion, CD44*/CD24~ population, and stemness marker ex-
pression induced by six2 overexpression were nullified by
si-Z1 and/or si-Z2P transfection. CYP4Z1- or CYP4Z2P-3’
UTR knockdown decreased the hTERT, p-Akt, and
p-ERK1/2 levels or even reversed the six2-mediated in-
crease in the hTERT, p-Akt, and p-ERK1/2 levels (Fig. 7e).
Notably, co-transfection with si-Z1 and si-Z2P exerted
additive effects. Importantly, we constructed MCF-7-six2
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cells with CYP4Z1 or CYP4Z2P knockdown, designated as
MCEF-7-six2-si-Z1 and MCEF-7-six2-si-Z2P cells, respect-
ively, and MCF-7-Plko-six2 cells with CYP4Z1- or
CYP472P-3'UTR overexpression, denoted as MCF-7-Plko-
six2-Z1-UTR and MCEF-7-Plko-six2-Z2P-UTR cells, re-
spectively. An in vivo tumorigenic assay showed that six2
overexpression increased the tumor-initiation capacity of
MCE-7 cells, an effect that was fully inhibited by CYP4Z1
or CYP4Z2P knockdown, and the decreased tumor-initi-
ation capacity of MCF-7 cells with six2 knockdown was
rescued by CYP4Z1- or CYP4Z2P-3'UTR overexpression
(Fig. 7).

Additionally, we detected whether the six2-mediated
promotion of breast cancer cell stemness occurs
through the downstream effectors of the ceRNA net-
work between CYP4Z1 and the pseudogene CYP4Z2P
and the hTERT/PI3K/Akt and ERK1/2 pathways. To
address this issue, we characterized pathways regu-
lated by six2 based on RNA-sequencing data. As ex-
pected, we found that PI3K-Akt signaling pathway,
phosphatidylinositol signaling system, and signaling
pathways regulating pluripotency of cells and breast
cancer were among the pathways most highly upregu-
lated by six2 overexpression (Additional file 12: Figure
S6A). As expected, the increased cell spheroid forma-
tion or CD44"/CD24~ population induced by six2
overexpression was attenuated by sihTERT transfec-
tion or by LY-294002 or VX-1lle treatment
(Additional file 12: Figure S6B—D). Moreover, the in-
creased expression of stemness markers induced by
six2 overexpression was attenuated by sihTERT
(Additional file 12: Figure S6E), or by LY-294002 or
VX-1le treatment (Additional file 12: Figure S6F).
Furthermore, the overexpression or knockdown of
six2 increased or decreased the expression of hTERT,
p-ERK1/2, and p-AKT in MDA-MB-231 cells, respect-
ively (Additional file 12: Figure S6G). Consistent with
these results, the knockdown of CYP4Z1, CYP4Z2P,
or hTERT or the treatment with LY-294002 or
VX-1le reduced the ability of six2 overexpression to
promote hTERT expression, PI3K/Akt signaling,
ERK1/2 signaling, or the expression of cell stemness
markers in MDA-MB-231 cells (Additional file 12:
Figure S6H). Notably, we found that the overexpres-
sion of CYP4Z1- or CYP4Z2P-3'UTR rescued the
six2 knockdown-mediated inhibition of breast cancer
cell stemness, characterized by increasing cell spher-
oid formation (Additional file 13: Figure S7A and
S7B), CD44%/CD24~ population (Additional file 13:
Figure S7C), and expression of stemness markers and
reactivation of the PI3K/Akt and ERK1/2 signaling
(Additional file 13: Figure S7D-G). Thus, these re-
sults demonstrate that six2 promotes breast cancer
cell stemness dependent on ceRNET_CC.
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Six2-mediated regulation of ceRNET_CC renders breast
cancer cells resistant to adriamycin treatment by
promoting cell stemness

We have established the ability of the six2/ceRNET_CC
axis to promote CSC traits in breast cancer cells. As
conferring CSC traits have been confirmed to endow
chemoresistance to tumor cells [36], we speculated
whether this regulatory axis could decrease adriamycin
sensitivity in breast cancer cells by promoting cell stem-
ness. First, the expression of six2, CYP4Z1, and the
pseudogene CYP4Z2P was examined in MCF-7 and

adriamycin-resistant MCF-7 (MCF-7-Adr) cells via
qRT-PCR assay, and the expression was shown to be sig-
nificantly increased in MCF-7-Adr cells (Fig. 8a). Fur-
thermore, ICs, values were determined in MCF-7 and
MDA-MB-231 cells with CYP4Z1- or CYP4Z2P-3'UTR
overexpression or knockdown, or with six2 overexpres-
sion or knockdown, and we found that overexpression of
CYP4Z1- or CYP4Z2P-3'UTR or six2 increased the I1Cs,
values of adriamycin, while knockdown decreased the
ICsy values in both MCF-7 and MDA-MB-231 cells
(Table 1). MCE-7-Adr cells displayed higher expression
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of P-gp (a multidrug resistance protein) and pluripotent
transcription factors and hyperactivation of PI3K/Akt
and ERK1/2 signaling, both of which were attenuated by
the knockdown of CYP4Z1- or CYP4Z2P-3'UTR or
six2, and the overexpression of CYP4Z1- or
CYP4Z2P-3'UTR rescued the attenuation mediated by
six2 knockdown (Fig. 8b). Additionally, the knockdown
of CYP4Z1- or CYP4Z2P-3'UTR or six2 decreased the
spheroid formation ability (Fig. 8c) and the CD44"/
CD24" population in MCE-7-Adr cells (Fig. 8d), and the
decrease induced by six2 knockdown was rescued by the
overexpression of CYP4Z1- or CYP4Z2P-3'UTR. Not-
ably, the knockdown of CYP4Z1- or CYP4Z2P-3'UTR
or six2 enhanced adriamycin sensitivity, evidenced by
the decrease of ICs, values of adriamycin (Table 1). Con-
sistently, the knockdown of CYP4Z1- or CYP4Z2P-3’
UTR or six2 impaired the tumor-initiating potential of
MCE-7-Adr cells (Fig. 8e, f). Thus, our results indicate
that the six2/ceRNET_CC regulatory axis attenuates

adriamycin sensitivity by promoting the stemness of
breast cancer cells (Additional file 14: Figure S8).

Discussion

The pseudogene CYP4Z2P was first identified in 2004
by Rieger et al., who showed that the expression of both
the pseudogene CYP4Z2P and its functional gene CYP4Z1
were specifically increased in breast cancer [37]. Further
study indicated that the expression of CYP4Z1 and the
pseudogene CYP4Z2P was associated with PIK3CA muta-
tions in ERalpha-positive breast cancer [38]. These effects
suggest that CYP4Z1 and the pseudogene CYP4Z2P might
be involved in breast cancer progression. Our previous
studies established that ceRNET_CC promotes angiogen-
esis [26], confers tamoxifen resistance [39], and serves as
an anti-apoptotic factor in breast cancer cells [13]. In the
present study, we further determined its role and under-
lying molecular mechanism in regulating the stemness of
breast cancer, and we obtained the following findings: (1)
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the expression levels of CYP4Z1 and the pseudogene
CYP4Z2P were higher in breast cancer sphere cells and
adriamycin-resistant MCF-7-Adr cells; (2) RNA-sequen-
cing and pathway analysis combined with in vitro and in
vivo experiments indicated that ceRNET_CC promoted
the stemness of breast cancer cells by activating the PI3K/
Akt and ERK1/2 signaling pathways, both of which are
critically involved in pro-survival and pro-stem-cell main-
tenance [40-42]; (3) ChIP-sequencing and a ChIP assay
confirmed that transcriptional factor six2 directly bound
to the 5'-TCAG-3" motif in the promoters of CYP4Z1
and CYP4Z2P; (4) six2 expression was increased in breast
cancer tissues and facilitated the progression of ceR-
NET_CC, thereby enhancing the stemness of breast can-
cer cells; (5) the six2-mediated regulation of ceRNET_CC
contributed to adriamycin resistance by regulating the

stemness of breast cancer cells, and this effect was due at
least in part to the activation of PI3K/Akt and ERK1/2 sig-
naling pathways; and (6) the expression of both six2 and
CYP4Z1 was negatively correlated with the OS of breast
cancer patients and positively correlated with the expres-
sion of the stemness marker Nanog, and furthermore, six2
and CYP4Z1 expression was positively correlated in breast
cancer tissues. These findings provide the first insights
into the roles and molecular mechanism of the
six2-mediated regulation of ceRNET_CC, which promotes
stemness and chemoresistance in breast cancer.

A previous study indicated that tumor cells with
higher expression of hTERT displayed stronger stemness
characteristics [43]. This work and our previous work
have suggested that ceRNET_CC acts as a subceRNA
network for hTERT [13], which fully supports the role of
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Table 1 The ICs, value of adriamycin in different cells

(2019) 12:23

Cell name ICso value ((LM) P value
MCF-7 3.637 £0.028

MCF-7-Z1-UTR 6496 + 0.017 **
MCF-7-22P-UTR 649 + 0013 **
MCF-7-six2 9.31 + 0.009 **
MCF-7-Plko-Z1 04349 + 0.024 w*
MCF-7-Plko-Z2P 0.546 + 0.029 **
MCF-7-Plko-six2 04871 + 0.017 **
MDA-MB-231 2.853 £ 0.034

231-Z1-UTR 4208 £ 0.015 **
231-Z2P-UTR 4081 £ 0.011 **
231-Plko-Z1 0.6296 + 0.033 **
231-Plko-22P 0.7747 £ 0.036 w
231-Plko-six2 0.3066 + 0.030 **
MCF-7-Adr 4112 £ 593
MCF-7-Adr-Plko-Z1 19.87 + 333 **
MCF-7-Adr-Plko-Z2P 1133 £ 168 **
MCF-7-Adr-Plko-six2 6971 +1.10 **
MCF-7-Adr-Plko-six2-Z1-UTR 108 £ 1.31 ##
MCF-7-Adr-Plko-six2-Z2P-UTR 9235+1.12 ##

**p < 0.01 vs MCF-7 or MDA-MB-231 or MCF-7-Adr cells, **p < 0.01 vs
MCF-7-Plko-six2 cells

ceRNET_CC in promoting the stemness of breast cancer
cells. Additionally, combined with the current work
showing that ceRNET_CC attenuates adriamycin sensi-
tivity in estrogen receptor (ER)-positive and ER-negative
breast cancer, our previous study showed that ceR-
NET_CC confers tamoxifen resistance in ER-positive
breast cancer [39]. Additionally, KEGG pathway enrich-
ment showed that endocrine resistance and EGFR tyro-
sine kinase inhibitor resistance were enriched in MCF-7
cells with CYP4Z1- or CYP4Z2P-3"UTR or six2 overex-
pression (data not shown). These results strongly sup-
port ceRNET_CC as a CSC-related marker because
CSCs contribute to drug resistance. Nevertheless, we in-
vestigated adriamycin sensitivity in this work because it
is one of the first-line drugs used for chemotherapy in
breast cancer patients, and it remains unclear whether
six2/ceRNET_CC contributes to resistance to other
drugs. Notably, due to the relatively lower stemness of
MCE-7 cells and higher stemness of MDA-MB-231 and
MCE-7-Adr cells [7, 44], we mostly chose to overexpress
CYP4Z1-3'UTR or CYP4Z2P-3'UTR or six2 in MCF-7
cells and to knock these factors down in MDA-MB-231
and MCEF-7-Adr cells.

Importantly, current treatments for triple-negative
breast cancer (TNBC), which is the deadliest form of
breast cancer, rely mainly on chemotherapy because no
targeted therapies are currently approved for TNBC
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[45], raising the potential for ceRNET_CC-targeted ther-
apies in TNBC. Furthermore, a previous study demon-
strated that six2 could bind to the E-cadherin promoter
and enhance its methylation levels in breast cancer cells
[18]. However, the exact six2 binding sites remained un-
clear. Here, a ChIP-sequencing assay indicated that six2
specifically bound to the 5'-TCAG-3" motif. This is the
first study elucidating the binding sites of six2 in breast
cancer. However, it remains unclear whether this is a
common phenomenon. GSEA analysis indicated that
ACCAAAG_MIR9, CATGTAA_MIR496, GTTATAT -
MIR410, ACATATC _MIR190, IKEDA_MIR30 TAR-
GETS_UP, and 3 'UTR-mediated translational regulation
were enriched in MCF-7-six2 cells (data not shown).
These five miRNAs were predicted to bind to the 3’
UTR of both CYP4Z1 and the pseudogene CYP4Z2P,
and KEGG enrichment showed that miRNAs in cancers
were also enriched in MCF-7-six2 cells (data not
shown), which suggested that six2 might regulate ceR-
NET_CC through the 3'UTR and shared miRNAs of
CYP4Z1 and the pseudogene CYP4Z2P. These findings
should be explored in future work. A previous study in-
dicated that six2 defines and regulates a multipotent
self-renewing nephron progenitor population through-
out mammalian kidney development [17], and recent
work has shown that normal cells and CSCs might share
regulatory mechanisms for maintaining self-renewing
capacity and resisting differentiation [46]. Moreover, the
YAP1/six2 axis is required for DDX3-mediated tumor
aggressiveness and cetuximab resistance in KRAS
wild-type colorectal cancer [47]. Notably, the WNT sig-
naling pathway, Jak-STAT signaling pathway, and FoxO
signaling pathway, which are involved in regulating cell
stemness [48—50], were enriched in MCF-7 cells with
CYP4Z1- or CYP4Z2P-3'UTR or six2 overexpression
(data not shown). Although we cannot exclude the pos-
sibility that six2 may still function through additional
signaling pathways to regulate the stemness of breast
cancer cells, our study firmly establishes the critical roles
of six2-mediated regulation of ceRNET_CC in these
processes.

Notably, six2 protein levels were gradually increased
by adriamycin treatment in a concentration-dependent
manner (data not shown), suggesting that six2 overex-
pression and adriamycin resistance might form a positive
feedback loop in breast cancer cells. Despite efforts to
develop chemotherapies for killing CSCs over the past
decades and evidence of early success [43, 51, 52], there
have been significant setbacks, presumably due to lim-
ited effectiveness in late-stage clinical trials. In addition
to toxicity and side effects, the reasons for the setbacks
could also be the lack of predictive biomarkers for pa-
tients. Our finding that the six2/ceRNET_CC regulatory
axis promotes the stemness of breast cancer provides
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putative targets for the development of new strategies
for targeting and compromising the maintenance of
breast cancer stemness, and we hypothesize that a gene
expression signature comprising all three of these genes
will predict chemotherapeutic sensitivity in breast cancer
patients.
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Additional file 7: Figure S1. CeRNET_CC promotes the stemness of
MCF-7 cells in vitro. (A) The expression of CYP4Z2P and CYP4Z1 in MCF-7
and MCF-7-tumorsphere cells was detected by gRT-PCR. (B and C) The in-
fection efficiency of MCF-7 cells with CYP4Z1- or CYP4Z2P-3'UTR stable
overexpression (B) or knockdown (C) was detected by qRT-PCR. (D) Phase
contrast images of mammospheres formed by stable expression cells
depicted in B and C and quantification of spheres. (E) Representative
FACS profile of cells described in B with CD24~ and CD44™ markers. (F
and G) The mRNA and protein expression of stemness markers (ALDHT,
SOX2, OCT4 and Nanog) in cells described in B and C were examined by
gRT-PCR and western blot analysis, respectively. The data are presented
as the means +SDs, n=3, *P < 0.05, **P < 0.01, ***P < 0.001 vs. MCF-7.
(PDF 5600 kb)

Additional file 8: Figure S2. CeRNET_CC promotes the stemness of
MDA-MB-231 cells in vitro. (A and B) The infection efficiency of MDA-MB-
231 cells with CYP4Z1- (A) or CYP4Z2P-3'UTR (B) stable knockdown was
detected by gRT-PCR. (C) Phase contrast images of mammospheres
formed by stable expression cells depicted in A and B and quantification
of spheres. (D) Representative FACS profile of cells described in A and B
with CD24~ and CD44" markers. (E and F) The mRNA and protein expres-
sion of stemness markers (ALDH1, SOX2, OCT4, and Nanog) in cells de-
scribed in A and B. (G) Pearson correlation analysis of the expression of
CYP4Z1 and Nanog in basal-like breast cancer (n =252, P< 0.01). (H) Pear-
son correlation analysis of the expression of the pseudogene CYP4Z2P
and Nanog in basal-like breast cancer (n =144, P < 0.01). (PDF 3450 kb)

Additional file 9: Figure S3. Transcriptional factor six2 promotes the
expression of CYP4Z1 and the pseudogene CYP4Z2P. (A) Computational
analysis of the CYP4Z2P and CYP4Z1 promoters showed potential
binding sites for six2. (B and C) Fragments of the CYP4Z2P and CYP4Z1
promoters were cloned into the luciferase reporter vector pGL3. MCF-7
cells were co-transfected with six2 and the luciferase constructs or the
control construct. 72 h later, luciferase activity was measured. (D) Relative
luciferase activity was detected in MCF-7 cells co-transfected with the
six2 overexpression vector and CYP4Z1 and CYP4Z2P promoter vectors
with six2 binding sites or mutated six2 binding sites. (E and F) The ex-
pression of CYP4Z2P, CYP4Z1, and six2 in MCF-7-six2 (E) and 231-six2 (F)
cells was examined by gRT-PCR. (G and H) CYP4Z1 protein expression in
MCF-7-six2 (G) and MCF7-Plko-six2 (H) cells was detected by western blot.
The data were presented as the means + SDs, n = 3, **P < 0.01 vs. control
or MCF-7. (PDF 1270 kb)

Additional file 10: Figure S4. The correlation between six2 expression
and the survival of breast cancer patients. (A) KM-plotter survival curves
showed the disease-free survival probability of patients separated into
low and high six2 levels. (B) KM-plotter survival curves showed the OS

survival probability of patients separated into low and high six2 level. (C
and F) KM-plotter survival curves showed the RFS probability of patients
separated into low and high six2 levels (http://hgserverl.amc.nl/cgi-bin/
r2/main.cgi). (PDF 576 kb)

Additional file 11: Figure S5. Transcriptional factor six2 promotes the
stemness of breast cancer cells in vitro. (A) Phase contrast images of
mammospheres formed by MCF-7 cells with or without six2 overexpres-
sion or knockdown and MDA-MB-231 cells with or without six2 knock-
down; spheres were quantified. (B and C) Representative FACS profile of
MCF-7 cells with or without six2 overexpression (B) and MDA-MB-231
cells (C) with or without six2 knockdown, with the CD24~ and CD44"
markers. (D and E) The mRNA expression of stemness markers (ALDHT,
SOX2, OCT4, and Nanog) in MCF-7 (D) or MDA-MB-231(E) cells with six2
stable overexpression or knockdown was detected by qRT-PCR. (F and G)
Cells depicted in D and E were subjected to western blot analysis and
followed by detecting the expression of six2 and stemness markers (ALDH1,
SOX2, and OCT3/4). The data are presented as the mean+SD, n=3,*P <
0.05, **P <001, ***P <0.001 vs. MCF-7 or MDA-MB-231. (PDF 4250 kb)

Additional file 12: Figure S6. Transcriptional factor six2 promotes the
stemness of breast cancer cells partly through the hTERT/PI3K/Akt and
ERK1/2 pathways. (A) Functional annotation analysis of genes
coordinately activated by six2 overexpression. (B and C) Phase contrast
images of mammospheres formed by MCF-7-six2 cells with LY-294002,
VX-11e, or sihTERT treatment (B), and spheres were quantified (C). The
data are presented as the means + SDs, n =3, *P < 0.05 vs. MCF-7-six2. (D)
Representative FACS profile of cells described in B with CD24™ and
CD44" markers. (E and F) Cells depicted in B were subjected to western
blot analysis and followed by detecting the expression of p-Akt/p-ERK1/2
and stemness markers (ALDH1 and OCT3/4). (G) MDA-MB-231 cells with
six2 stable overexpression or knockdown were subjected to western blot
analysis and followed by detecting the expression of p-Akt/p-ERK1/2 and
hTERT. (H) 231-six2 cells with LY-294002, VX-11e, or sihTERT, or si-Z1, or si-
Z2P treatment were subjected to western blot analysis and followed by
detecting the expression of p-Akt/p-ERK1/2 and stemness markers
(ALDH1 and OCT3/4). (PDF 5040 kb)

Additional file 13: Figure S7. CeRNET_CC is sufficient and necessary
for six2-induced effects. (A and B) Phase contrast images of mammo-
spheres formed by MCF-7-Plko-six2 cells with Z1-UTR or Z2P-UTR overex-
pression (A); spheres were quantified (B). The data are presented as the
means + SDs, n =3, *P < 0.05, **P < 0.01 vs. MCF-7 or MCF-7-six2. (C) Rep-
resentative FACS profile of cells described in A with CD24~ and CD44*
markers. (D-G) MCF-7-Plko-six2 (D and F) and 231-Plko-six2 (E and G) cells
with Z1-UTR, Z2P-UTR (D and E), or hTERT (F and G) overexpression were
subjected to western blot analysis and followed by detecting the expres-
sion of p-Akt/p-ERK1/2 and stemness markers (ALDH1 and OCT3/4). The
data were presented as the mean + SD, n =3, *P < 0.05, **P < 0.01 vs.
MCF-7 or MCF-7-six2. (PDF 3760 kb)

Additional file 14: Figure S8. Proposed model in which transcriptional
factor six2-mediated regulation of ceRNET_CC is responsible for breast
CSC formation and thus drug resistance. Transcriptional factor six2 in-
duces the progression of ceRNET_CC by directly binding to the pro-
moters of CYP4Z1 and the pseudogene CYP4Z2P. This six2/ceRNET_CC
regulatory axis results in breast CSC progression and thus enhances drug
sensitivity. (TIF 242 kb)
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