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Abstract

The immune system is the hard-wired host defense mechanism against pathogens as well as cancer. Five years
ago, we pondered the question if the era of cancer immunotherapy was upon us (Li et al., Exp Hem Oncol 2013).
Exciting progresses have been made at all fronts since then, including (1) sweeping approval of six agents by the
US Food and Drug Administration (FDA) to block the PD-1/PD-L1 pathway for treatment of 13 cancer types; (2) a
paradigm shifting indication of PD-1 and CTLA4 blockers for the management of a broad class of cancers with DNA
mismatch repair defect, the first-ever tissue agnostic approval of cancer drugs; (3) real world practice of adoptive T
cell therapy with two CD19-directed chimeric antigen receptor T cell products (CAR-T) for relapsed and/or
refractory B cell malignancies including acute lymphoid leukemia and diffuse large B cell lymphoma, signaling the
birth of a field now known as synthetic immunology; (4) the award of 2018 Nobel Prize in Physiology and Medicine
from the Nobel Committee to Tasuku Honjo and James Allison “for their discovery of cancer medicine by inhibition
of negative immune regulation” (www.nobelprize.org/prizes/medicine/2018); and (5) the emerging new concept of
normalizing rather than amplifying anti-tumor immunity for guiding the next wave of revolution in the field of
immuno-oncology (IO) (Sanmamed and Chen, Cell 2018).
This article will highlight the significant developments of immune-oncology as of October 2018. The US FDA
approved indications of all seven immune checkpoint blockers, and two CD19-directed CAR-T products are
tabulated for easy references. We organized our discussion into the following sections: introduction, cell therapy,
emerging immunotherapeutic strategies, expediting oncology drug development in an era of breakthrough
therapies, new concepts in cancer immunology and immunotherapy, and concluding remarks. Many of these topics
were covered by the 2018 China Cancer Immunotherapy Workshop in Beijing, the fourth annual conference co-
organized by the Chinese American Hematologist and Oncologist Network (CAHON), China FDA (CFDA; now
known as China National Medical Product Administration (NMPA)), and the Tsinghua University. We significantly
expanded our discussion of important IO developments beyond what were covered in the conference, and
proposed a new Three Rs conceptual framework for cancer immunotherapy, which is to reverse tolerance,
rejuvenate the immune system, and restore immune homeostasis. We conclude that the future of immuno-
oncology as a distinct discipline of cancer medicine has arrived.
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Introduction
It is estimated that by 2035, one quarter of the global
populations will be directly affected by cancers (https://
cancerprogressreport.org/Pages/cpr18-cancer-i-
n-2018.aspx). There are five main therapeutic modalities
for cancer: surgery, radiation, chemotherapy, targeted
therapy, and immunotherapy. With a few exceptions, the
first four modalities are focused squarely on cancer itself.
Immunotherapy represents conceptually a unique way of
dealing with cancer which is to focus on eliminating
cancer indirectly by harnessing the power of the host’s
immune system. The concept of cancer immunotherapy
has been there for more than a century [1]. But it is only
after the turn of this century that it has gained traction
thanks to advancements in both basic immunology re-
search [2] and the birth of immuno-oncology (IO) [3]. It
is now established that as a genetically altered entity,
cancer triggers both innate and adaptive immune re-
sponse of the host during its evolution. Immune escape
is recognized as one of the key hallmarks of cancer [4].
The implication of this fundamental and conceptual shift
is significant because it inspires strategies to restore im-
munity to keep cancer permanently at bay, i.e., cure. In-
deed, the discovery of both cellular and molecular
mechanisms of cancer immune evasion fuels the devel-
opment of IO agents, including immune checkpoint
blockers against CTLA4, PD-1, and PD-L1 [5–7]. Im-
portantly, the IO field is still at its early stage. There are
more questions than answers. For example, less than one
quarter of patients overall respond to PD-1/PD-L1
blockers. Frustratingly, there is a lack of biomarkers to
predict who will respond and who will not to these
agents. There has been no clear breakthrough to en-
hance efficacy of immune checkpoint inhibitors (ICIs).
Furthermore, IO is shaking up the field of cancer medi-
cine, but there is no clear and effective strategy to inte-
grate immunotherapy into the conventional strategies
for treating a majority of cancer types. Whereas ICIs
have enjoyed unprecedented success, other immunother-
apeutic strategies are not there yet in prime time. There
are still no effective therapeutic vaccines. Approved cell
therapy is also limited to B cell malignancies. The chal-
lenges IO field imposes to cancer medicine also include
lack of adequate healthcare providers in this emerging
field, and struggles of the regulatory agencies in crafting
guidelines in steering and accelerating the clinical devel-
opment of unconventional immune-regulatory agents. In
light of these excitement and challenges, a much antici-
pated 2018 China Cancer Immunotherapy workshop
was held in Beijing on June 30th and July 1st. This
two-full-day meeting brought together IO experts from
academia, industry, and government regulatory agencies
around the world. This was the fourth time CAHON
has partnered with the China FDA (joined also by

Tsinghua University since 2017) to provide a high-level
IO education conference annually to physicians, scien-
tists, and drug developers in the industry to help ad-
vance IO in China and beyond.

Clinical updates on checkpoint inhibitors
Two sessions of the conference were focused on clinical
updates of ICIs. At the time of the conference (June 30–
July 1, 2018), one CTLA4 blocker (Ipilumimab), two
PD-1 inhibitors (Nivolumab and Pembrolizumab), and
three PD-L1 antagonists (Durvalumab, Atezolizumab,
and Avelumab) were approved by the US FDA for vari-
ous indications (Table 1). Subsequently, the third PD-1
blocker Cemiplimab was approved for the treatment of
patients with metastatic cutaneous squamous cell carcin-
oma (CSCC) or locally advanced CSCC who are not can-
didates for curative surgery or curative radiation. This is
based on encouraging clinical study including the posi-
tive study by Migden et al. who performed an expansion
phase I study as well as the pivotal phase 2 study for pa-
tients with metastatic disease CSCC [8]. Patients re-
ceived cemiplimab i.v. at 3 mg/kg of body weight every
2 weeks and were assessed for clinical response every 8
weeks. Deep response in the phase 1 expansion cohort
of patients was observed in 50% of patients (n = 26),
which was reproduced in the phase 2 study, with re-
sponse rate in 28 of 59 patients (47%; 95% CI, 34 to 61).
This response appeared to be durable, exceeding 6
months in most patients without observed new
immune-related adverse events (irAEs).
Altogether at the time of writing this report (Oct 27,

2018), seven ICIs have been approved collectively for the
standard treatment of a total of 13 cancer types. Excit-
ingly, the US FDA has also granted accelerated approval
for Nivolumab (with and without Ipilumimab) and Pem-
brolizumab for the management of advanced cancers
with DNA mismatch repair deficiency, regardless of the
histology of the cancer types, marking for the first time
the approval of cancer medicine in a tissue-agnostic
fashion. The clinical experiences with these agents were
highlighted in designated talks by Weijing Sun (gastro-
intestinal cancer, University of Kansas), Yiping Yang
(hematological malignancy, Duke University), Jun Zhu
(lymphoma, Beijing University Cancer Hospital), Mario
Sznol (melanoma, Yale University), Jun Guo (melanoma,
Beijing University Cancer Hospital), Yilong Wu (lung
cancer, Guangdong General Hospital), Shukui Qin (he-
patocellular carcinoma, Nanjing PLA Hospital), and
Jingshong Zhang (genitourinary cancer, Lee Moffitt Can-
cer Center). In addition to the agents approved in the
USA, researchers from China also presented exciting
data regarding PD-1 inhibitors and other IO agents de-
veloped in China, by the following companies: Hengrui,
Innovent, Beigene, Jun Shi, 3DMed, Zai Lab, and I-Mab.
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Table 1 US FDA approved immune checkpoint blockers for cancer immunotherapy as of Oct 2018
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Of note, clear differences do exist in both the distribu-
tion and biology of cancers between the West and
the East, underscoring the importance of conducting IO
trials in China rather than totally depending on clinical
experience in other parts of the world, for guiding the
IO approval process. In Asia, liver and upper gastro-
intestinal cancers are epidemics which may have differ-
ent underlying biology. Whereas both acral and mucosal
melanoma are exceedingly rare in the USA at 5% and 1–
2% of all melanomas, Jun Guo pointed out that in China
these two subsets could be 49.4% and 22.6% respectively
[9]. Sznol highlighted the experience with stage IV mel-
anoma with ICIs. Nivolumab plus Ipilimumab is an ap-
proved strategy in this setting. Among all the patients
treated with this combination (N = 94) in the initial
phase I trial at a follow-up of 30.3 to 55.0 months, the
3-year overall survival rate was 63% and median overall
survival had not been reached at the time of the publica-
tion of the analysis [10]. The investigators reported 42%
objective response rate by modified WHO criteria, and
median duration of response was 22.3 months. Unfortu-
nately, the improved efficacy is also accompanied by the
increased incidence of severe (grade 3 and 4)
treatment-related adverse events at 59%. Nonetheless,
the 3-year OS rate of 63% in advanced melanoma
highlighted the significant clinical utility and efficacy of
ICIs. Interestingly, the appearance of CD21low B cells in
the peripheral blood in a study with a small cohort of
patients appears to predict immune-related adverse
events (irAEs) without affecting efficacy [11]. Sznol also
outlined practical principle in the management of irAEs,
by recommending the following: (a) ruling out the possi-
bility of disease progression or infection, (b) following
established guidelines [12–14], (c) having low threshold
to start corticosteroids and admit the patients to the
hospital for inpatient care, (d) maintaining high dose ste-
roids for at least 1 week and tapering slowly over 30–40
days, and (e) discontinuing IO agents permanently for
grade IV irAEs. These points were further underscored
by Helen Chen (US National Cancer Institute), who cau-
tioned of risks of enhanced toxicities with immunother-
apy combinations with targeted agents. Several
interesting combinations have since been discontinued
due to increased toxicities, including durvalumab plus
osimertinib (pneumonitis), tremelimumab plus suniniti-
nib (renal failure), crizotinib plus nivolumab (hepatic
toxicities) [15], and nivolumab plus pazopanib (hepatic
toxicities).

Cell therapy
2018 marked the year when IO enjoys unprecedented
growth at many fronts. In a comprehensive analysis of
the global IO landscape, Tang and colleagues found that
in the span of just 1 year (September 2017 to September

2018), there was a 67% increase in the number of active
agents in the global IO pipeline (2031 versus 3394) [16].
Impressively, the cell therapy class had the largest
growth—a whopping 113% increase in the number of ac-
tive agents. While it may be argued that bone marrow or
hematopoietic stem cell transplantation represents the
best-established cell therapy for human malignancy,
CD19-targeted CAR-T cells for B cell neoplasms open
up the imagination of scientists in the field in perhaps
signaling what more could come in this extraordinary
space. There are two approved CD19-CAR-T cell plat-
forms: Tisagenlecleucel (Kymriah) and Axicabtagene
ciloleucel (Yescarta), which have similarities and differ-
ences (Table 2). Both agents are autologous peripheral T
cells engineered ex vivo to express a transmembrane
chimeric antigen receptor composed of an extracellular
antigen-specific single chain antibody and an intracellu-
lar T cell signaling domain. Both agents utilize single
chain anti-CD19 antibody to target B cells, and CD3ζ
intracellular signaling motif to deliver primary activating
signals to T cells. However, tisagenlecleucel employs
additional CD137 (4-1BB) signaling for co-stimulation as
opposed to axicabtagene which does so with a CD28 sig-
naling cassette. Both agents have been approved in the
USA for the treatment of relapsed or refractory large B
cell lymphoma after two or more lines of systemic ther-
apy. Tisagenlecleucel is additionally approved for the
treatment of patients up to 25 years of age with B cell
precursor acute lymphoblastic leukemia (ALL) that is re-
fractory or in second or later relapse.
The presentation by Patrick Hwu (MD Anderson Can-

cer Center), Ke Liu (US FDA), Weidong Han (Army
Hospital in Beijing), Sen Zhuang (Johnson & Johnson),
and Chunyan Gao (China National Medical Product Ad-
ministration) discussed a number of important issues
about cell therapy, as follows:

Flavors of cell therapy
Cellular products in the clinical application and testing
including hematopoietic stem cells, CAR-T cells against
CD19, and other targets, T cells engineered to express T
cell receptor with known specificity (TCR-T),
tumor-reactive or tumor-infiltrating T cells isolated and
expanded from cancer patients (otherwise known as en-
dogenous T cells, or ETC), polyclonal tumor-reactive T
cells (tumor-infiltrating T cells, or TILs) isolated from
the tumor, NK cells, NKT cells, dendritic cells, etc. Pat-
rick Hwu summarized the MDACC experience in their
TIL therapy program for 74 metastatic melanoma pa-
tients from 2007 to 2017 [17]. They found that the best
overall response for the entire cohort was 42%: 47% in
43 ICIs-naïve patients, 38% when patients were exposed
to anti-CTLA4 alone (21 patients) and 33% if also ex-
posed to anti-PD1 (9 patients) prior to TIL therapy.
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Median overall survival was 17.3 months; 24.6 months in
CTLA4-naïve patients and 8.6 months in patients with
prior CTLA4 blockade. The latter patients were infused
with fewer TILs and experienced a shorter duration of
response. They found that infusion of higher numbers of
TIL with CD8 predominance and expression of BTLA
(B And T Lymphocyte Associated) by the tumor cells
correlated with improved response in anti-CTLA4 naïve
patients, but not in anti-CTLA4 refractory patients.
Baseline serum levels of IL9 predicted response to TIL
therapy, while curiously TIL persistence, tumor

recognition, and mutation burden did not correlate with
outcome. They concluded that there are deleterious ef-
fects of prior exposure to anti-CTLA4 on TIL therapy
response. Hwu discussed a number of strategies to im-
prove TIL cell therapy based on rational thinking and
preclinical data including stably expressing dominant
negative TGFβ receptor II in the TIL products to over-
come immune suppression in the tumor microenviron-
ment [18] and transduction of T cells with CXCR2 to
allow them to better migrate to the tumor sites [19]. Im-
portantly, recent breakthroughs in genomic medicine
and informatics enable the detection of neoantigen epi-
topes and subsequent expansion of antigen-specific TILs
using these antigens in the context of appropriate HLA.
Adoptive transfer with neoantigen-specific T cells has
been shown to mediate objective clinical responses in
patients with metastatic bile duct, colon, and cervical
cancers, as well as triple negative breast cancers [20–23].
The practical challenge of this approach is similar to
what CD19-CAR-T technology faced almost 10 years ago
[24], which is to determine how to move exciting
proof-of-principle science from the academic settings to
real world clinical practice.

Targeting antigens of CAR-T cells
Without doubt, the bottle neck to prevent CAR-T tech-
nology to be widely used clinically is the lack of optimal
target antigens for a majority of cancers like CD19 for B
cell malignancies. Patients with B cell aplasia can live
relatively healthy with maintenance therapy of intraven-
ous immunoglobulins from normal donors. In compari-
son, life cannot be sustained with lack of myeloid cells
which is why CAR-T based strategy has not found sig-
nificant success for the treatment of myelodysplastic
syndrome or acute myelogenous leukemia. To circum-
vent this problem, Kim et al. deleted CD33 from the
normal human hematopoietic stem cells and trans-
planted into rhesus macaques with long-term multiline-
age engraftment with normal myeloid function [25].
These CD33-deficient cells then allow CD33-targeted
CAR-T therapy for efficient elimination of CD33+

leukemia without myelotoxicity. For plasma cell disorder,
it is a different story. One can afford the ablation of nor-
mal plasma cells in order to eradicate malignant plasma
clone with CAR-T based strategy. In this regard, BCMA
(B cell maturation antigen)-CAR-T-based strategy,
LCAR-B38M, was discussed by Sen Zhuang (Johnson
and Johnson). A confirmation clinical trial has started in
the USA, followed by the original encouraging data in
China with 35 patients who participated in the study. In
that study, all patients responded to the therapy, with
94% showing sustained complete or near-complete re-
mission [26, 27]. As of July 2018, a total of 74 patients
have been treated with LCAR-B38M, updated by Frank

Table 2 Comparison of two US FDA approved CAR-T products
for B cell malignancies

Medicine Signaling
motifs

Dosage Indication

YESCARTA
Axicabtagene
ciloleucel
(Yescarta)

CD28
and CD3ζ

2 × 106 CAR-positive
viable T cells per kg
body weight, with a
maximum of 2 ×
108 CAR-positive vi-
able T cells.

• Adult patients
with relapsed or
refractory large B
cell lymphoma
after two or more
lines of systemic
therapy, including
diffuse large B cell
lymphoma
(DLBCL) not
otherwise
specified, primary
mediastinal large B
cell lymphoma,
high grade B cell
lymphoma, and
DLBCL arising
from follicular
lymphoma.

KYMRIAH™
Tisagenlecleucel
(Kymriah)

CD137 (4-
1BB) and
CD3ζ

Pediatric and young
adult B cell ALL (up
to 25 years of age):
• For patients 50 kg
or less, administer
0.2 to 5.0 × 106

CAR-positive vi-
able T cells per kg
body weight
intravenously.

• For patients above
50 kg, administer
0.1 to 2.5 × 108

total CAR-positive
viable T cells (non-
weight based)
intravenously.

Adult relapsed or
refractory diffuse
large B cell
lymphoma:
• Administer 0.6 to
6.0 × 108 CAR-
positive viable T
cells intravenously.

• Patients up to 25
years of age with
B cell precursor
acute
lymphoblastic
leukemia (ALL)
that is refractory
or in second or
later relapse.

• Adult patients
with relapsed or
refractory (r/r)
large B cell
lymphoma after
two or more lines
of systemic
therapy including
diffuse large B cell
lymphoma
(DLBCL) not
otherwise
specified, high
grade B cell
lymphoma and
DLBCL arising
from follicular
lymphoma,
excluding primary
central nervous
system lymphoma.
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Fan (Legend Biotech). In various phases of clinical trials
are also CAR-T cells targeting other cell surface antigens
including GD2, HER2, CD20, EBV antigen, mesothelin,
CD33, CD22, CD30, CD123, EGFR, PSMA, WT1,
GPC3, CD38, EGFRvIII, MUC1, PDL1, and neoantigens
[28].

Dual, switchable, off-the-shelf, SUPRA CAR-T, etc.
Weidong Han discussed multiple efforts in designing
safer and more effective CAR-T strategies [29]. By gene
editing methodology, genes encoding human leukocyte
antigen (HLA) molecules and endogenous T cell recep-
tors (TCRs) can be deleted and these T cells will then be
transduced to express CAR-T construct, followed by ex-
pansion in vitro, cryopreservation, and aliquoting. These
products can then be used for any patients whose cancer
express the target of the CAR-T cells. This effort is on-
going for CD19+ B cell malignancies. One switchable
CAR-T cell strategy is to make these T cells to bind to a
specific peptide that is genetically engrafted onto a
tumor-binding Fab molecule. The “switch” acts as a
bridge between target and effector cells, which can be ti-
trated due to the relatively short half-life of the Fab frag-
ment. It was found that such a strategy worked well in a
preclinical model against human Her2+ cancer in a
mouse xenograft system [30]. Multiple other strategies
have been developed to control CAR-T activity including
using combinatorial antigen-sensing system [31], or en-
gineering a built-in suicide system in the CAR to allow
physicians to switch off CAR-T when unwanted toxic-
ities emerge. Another exciting strategy was the so-called
SUPRA CAR, which is a split, universal, and
programmable system [32]. It has a two-component re-
ceptor system composed of a universal receptor (zip-
CAR) expressed on T cells and a tumor-targeting scFv
adaptor (zipFv). Both the receptor and scFv adaptor con-
tains leucine zipper, allowing targeting of multiple anti-
gens without further genetic manipulations of a patient’s
T cells. This strategy had remarkable successes in pre-
clinical models against several types of cancer by simul-
taneously targeting multiple antigens using one batch of
engineered zipCAR-T cells.

Regulatory challenges
Ke Liu (US FDA) and Chenyan Gao (CFDA) discussed
the regulatory challenges imposed by the intense inter-
ests of the public in CAR-T technology. Like other prod-
ucts, the regulatory agencies uphold three basic
principles when it comes to evaluate cell therapy prod-
ucts for approval: substantial evidence of efficacy, ac-
ceptable safety, and appropriate patient population. Ke
Liu cautioned that both CD19-CAR-T products on the
market carry black box warning for cytokine release syn-
drome and neurotoxicity. He emphasized that much

work needs to be done in solid tumor space with focus
on target identification, understanding and enhancing
CAR-T cell tracking and homing to tumor site, to
maximize the clinical benefit.

Emerging immunotherapeutic strategies
A number of exciting progresses have been made to
usher the field of IO into the next phase, which is be-
yond ICIs against PD-1, PD-L1, and CTLA4. Space is
limited to cover all of the new developments. What were
highlighted in 2018 China Cancer Immunotherapy
Workshop included the following:

Search for other surface-bound immune checkpoint
molecules
Mounting evidence suggest there are additional immune
checkpoint molecules to constrain tumor-reactive T
cells. Through single-cell RNAseq and proteomics ap-
proach, a recent work from Anderson Regev, Kuchroo
and colleagues discovered a module of co-inhibitory re-
ceptors in both CD4+ and CD8+ T cells that includes
PD-1, TIM-3, LAG-3, TIGIT, activated protein C recep-
tor (PROCR), and podoplanin (PDPN) [33]. The module
of co-inhibitory receptors is shared by non-responsive T
cells in several physiological contexts and is driven by
the immunoregulatory cytokine IL-27. Importantly, they
found that PRDM1 and c-MAF serve as cooperative
transcription regulators of the co-inhibitory module.
Chen Dong (Tsinghua University) updated his work on
B7 superfamily member 1 (B7S1), also called B7-H4,
B7x, or VTCN1. They found that the increased B7S1 ex-
pression on myeloid cells from patients with hepatocel-
lular carcinoma correlated with CD8+ T cell dysfunction
[34]. The receptor of B7S1, yet to be defined, is
co-expressed with PD-1 but not Tim-3 on T cells during
activation, which promotes T cell exhaustion. Intri-
guingly, blocking of both B7S1 and PD-1 synergistically
enhanced anti-tumor immune responses. Using a high
throughput functional screening strategy, the team of
Lieping Chen (Yale) discovered a cell surface molecule
that is expressed by a subset of myeloid cells and tumor
cells (ovarian, lung, bladder, pancreas, head, and neck
cancer) called Siglec15 (unpublished). Although the re-
ceptor for Siglec15 on T cells has not been molecularly
defined yet, Siglec clearly plays negative roles for T cell
activation and function by inducing suppressive myeloid
cells. In an unprecedented pace, NC318, a Siglec15 tar-
geting antibody, has already entered a phase 1/2 clinical
trial in patients with advanced or metastatic solid
tumors.

Immunogenomics and precision immunotherapy
Precision immunotherapy requires understanding of
both tumor microenvironment (the tumor) and
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macroenvironment (the host, i.e., the patient). A com-
prehensive presentation was delivered by Elizabeth Jaffee
(Johns Hopkins), Tim Chan (Memorial Sloan-Kettering),
Drew Pardoll (Johns Hopkins), and Siwen Hu-Lieskovan
(UCLA). Immunogenomics is a rapid expanding area
that allows researchers to interrogate and understand
how changes of the cancer genome affect immunity or
treatment responsiveness. For example, understanding
tumor mutation burden (TMB), immunoediting score
etc. will enable researchers and physicians to guide ICI
therapy [35, 36]. Understanding TCR repertoire, neoanti-
gen epitopes and HLA haplotypes will facilitate effort in
neoantigen vaccine development and cell therapy. Jaffee
discussed their meta-analysis results of patients on
anti-PD-1/PD-L1 agents whose exome sequencing infor-
mation were available [37]. They found a strong relation-
ship between the tumor mutational burden and the
activity of anti–PD-1 therapies across multiple cancer
types. Their analysis allowed them to calculate objective
response rate (ORR) with a linear correlation formula:
ORR = 10.8 × loge(X) − 0.7, where “X” is the number of
coding somatic mutations per megabase of DNA. Valid-
ation of this finding with future prospective trials shall
be helpful to guide the selection of patients for ICIs.
Catherine Wu and her colleagues have identified a sub-
cluster of MAGE-A cancer-germline antigens, located
within a narrow 75 kb region of chromosome Xq28, that
predicts resistance uniquely to blockade of CTLA4, but
not PD-1 [38]. Tim Chan discussed the exciting study
from his group that highlighted the importance of muta-
tion of specific genes correlating to ICI responsiveness.
They reported that somatic mutations in SERPINB3 and
SERPINB4 are associated with survival after anti-CTLA4
immunotherapy in two independent cohorts of patients
with melanoma (n = 174), although the underlying
mechanism is unclear [39]. Furthermore, Tim Chan’s
group determined the HLA class I genotype of 1535 ad-
vanced cancer patients treated with ICIs. They found
that maximal heterozygosity at HLA class loci correlated
with improved overall survival compared with patients
who were homozygous for at least one HLA locus. Curi-
ously, in two independent melanoma cohorts, patients
with the HLA-B44 had extended survival, whereas the
HLA-B62 supertype (including HLA-B*15:01) or somatic
loss of heterozygosity at HLA class I was associated with
poor outcome [40]. Hu-Lieskovan discussed several lines
of work in UCLA, including a remarkable 70% clinical
response of patients with desmoplastic melanoma to
PD-1 blockers, which correlated with high tumor muta-
tion burden and frequent NF1 mutations in this unique
subset of melanoma patients [41]. PD-1 blocker-based
therapy ultimately depends on CD8+ T cells and IFNγ
for cancer eradication. Not surprisingly, loss of function
mutations of MHC class I (e.g., loss of β2m) and key

IFNγ signaling molecules JAK1/2 in the cancer are asso-
ciated with intrinsic resistance to anti-PD-1 therapy [42,
43]. Perhaps, a more striking example of impact of can-
cer genomics on ICI treatment is the status of microsat-
ellite instability-high (MSI-H) or DNA mismatch repair
deficiency (dMMR) in the tumors [44–47]. About ~ 50%
patients with advanced cancers and the defect in the
mismatch repair pathway will derive clinical benefit in
response to nivolumab or pembrolizumab. Genomics
study of cancer can also shed light on the mechanism of
immune evasion. For example, a multi-omic analysis of
1211 colorectal cancer primary tumors reveals that it
should be possible to better monitor resistance in the
15% of cases that respond to ICI therapy and also to use
WNT signaling inhibitors to reverse immune exclusion
in the 85% of cases that currently do not [48]. Genomic
and immunologic studies have also uncovered specific
driver mutations correlated with lower (CTNNB1,
NRAS, or IDH1) or higher (BRAF, TP53, or CASP8)
leukocyte levels across all cancers [49]. The oncogenic
pathways [50], such as PTEN loss [51, 52], and activa-
tion of the WNT/β-catenin signaling pathway [53] have
been shown to lead to poor T cell infiltration and func-
tion in the tumor microenvironment.
In the field of personal neoantigen vaccines [54], there

have been several high profile proof-of-principle studies.
Ott et al. demonstrated the feasibility, safety, and im-
munogenicity of a neoantigen vaccine platform (up to 20
personized HLA-A/B-restricted peptides plus poly-ICLC
as adjuvant) that targets advanced melanoma [55]. Evi-
dence for T cells discriminating mutated from wild-type
antigens was shown for some patients. Another group
tested RNA-based poly-neo-epitope approach for pa-
tients with melanoma [56]. They found evidence sug-
gesting that patients developed T cell responses against
multiple vaccine neo-epitopes and increased T cell infil-
tration and neo-epitope-specific killing of autologous
tumor cells in post-vaccination resected metastases. Al-
though the sample size is too low to conclude the clin-
ical utility for all of these studies, the neoantigen-based
approach may prove to be useful in the adjuvant setting,
particularly in combination with ICIs. Pardoll discussed
their allele-integrated deep learning framework for im-
proving class I and class II HLA-binding predictions,
which may be useful for future neoantigen vaccine effort
and also the expansion of tumor antigen-specific T cells
[57]. Jaffee also discussed the Hopkins experience on the
combination of neoantigen vaccine and ICIs and other
IO agents such as CD40 agonist, CXCR4 inhibitor, and
agents that target CD47, CSF1R, IDO, TGF-β, A2A, etc.
But these studies are mostly at the preclinical stage. Un-
doubtedly, effective cancer immunotherapy depends on
robust priming of tumor-specific T cells, enabling T cells
to infiltrate the tumors and ensuring effective
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mechanism to prevent T cell dysfunction due to hostile
tumor microenvironment.

Targeting soluble immune checkpoint
Besides cell surface immune checkpoint molecules, there
are multiple soluble immune suppressive factors that
play important roles in maintaining immune homeosta-
sis. These factors include but, are not limited to, prosta-
glandins, nitric oxide, IL-10, TGF-β, IL-33, IL-35, IL-4,
IL-13, IL-37, and VEGF. Thorsson et al. performed an
extensive immunogenomic analysis of more than 10,000
tumors comprising 33 diverse cancer types by mining
the TCGA data [49]. They identified six immune sub-
types, including wound healing, IFNγ dominant, inflam-
matory, lymphocyte depleted, immunologically quiet,
and TGF-β dominant. The importance of TGF-β in driv-
ing immune suppression and its place in targeted cancer
immunotherapy was discussed by Zihai Li (Medical Uni-
versity of South Carolina). Accumulating evidence sug-
gest that TGF-β is a key mechanism for resistance to
blockade to PD-1/PD-L1 in multiple cancer types in-
cluding bladder cancer [58], colorectal cancer [59], and
others. However, TGF-β targeting alone, either with
small molecule inhibitors of the signaling pathway or
anti-TGF-β antibody, has met with limited clinical suc-
cess due to narrow therapeutic window and heterogen-
eity of cancer biology in patient populations [60].
Recently, a bifunctional molecule targeting both PD-L1
and TGF-β, called M7824, has been developed [61].
M7824 is a chimeric molecule containing the N-terminal
region of fully human IgG1 against human PD-L1 and
the C-terminal TGF-β neutralizing trap component from
the extracellular domain of the human TGF-β receptor
2. Preclinically, M7824 efficiently binds PD-L1 and
TGF-β in vivo and suppressed tumor growth and metas-
tasis more effectively than treatment with either an
anti-PD-L1 antibody or TGF-β trap alone in syngeneic
mouse models. Encouragingly, M7824 treatment re-
sulted in activation of both the innate and adaptive im-
mune systems, and synergize with radiotherapy or
chemotherapy in mouse models. Gulley and his col-
leagues conducted a phase I open-label trial of M7824 in
19 heavily pretreated patients with advanced solid tu-
mors [62]. They found that M7824 hit and saturated the
targets at > 1 mg/kg. Clinical efficacy was seen across all
dose levels, including one ongoing confirmed complete
response (cervical cancer), two durable confirmed partial
responses (PR; pancreatic cancer, anal cancer), one
near-PR (cervical cancer), and two cases of prolonged
stable disease at study entry (pancreatic cancer, carcin-
oid). Ongoing clinical studies of M7824 include treat-
ment of patients with colorectal cancer, HPV+

malignancies, and a planned trial to compare M7824
with pembrolizumab as a first-line treatment in patients

with PD-L1-expressing advanced non-small cell lung
cancer (NSCLC).
Another development in the TGF-β field is the discov-

ery of a cell surface dock receptor for activation of latent
TGF-β, called Glycoprotein A Repetitions Predominant
(GARP) [63]. Encoded by LRRC32, GARP has its re-
stricted expression by regulatory T cells [64, 65] and
platelets [66] in normal individuals. Whether GARP is
expressed by cancer cells and how it impacts cancer
have been investigated. It was found that GARP pro-
motes oncogenesis and immune tolerance by enriching
and activating latent TGF-β in the tumor microenviron-
ment [67]. GARP expression and folding depends on a
pro-oncogenic molecular chaperone gp96 in the endo-
plasmic reticulum [68]. Importantly, by both gain- and
loss-of-function studies using normal mammary gland
epithelial cells and carcinomas, GARP was found to in-
crease the bioactivity of TGF-β and promote malignant
transformation in immune-deficient mice [67]. In
immune-intact mice, over-expression of GARP in mam-
mary carcinomas drives expansion of regulatory T cells,
which contributes to enhanced cancer progression and
metastasis [67]. Intriguingly, Rachidi et al. discovered
that constitutive expression of GARP on platelets is the
most important mechanism of TGF-β activation in vivo,
placing platelets squarely in the immune suppressive
workforce [69]. Finally, several GARP-specific monoclo-
nal antibodies have been reported. In one case,
GARP-targeted antibody was shown to reduce regulatory
T cell function in vivo [70]. In another case, a competi-
tive anti-GARP antibody to block the binding between
GARP and LTGF-β showed significant activity to perturb
metastasis in an orthotopic breast cancer model [67].
Thus, a gp96-GARP-TGF-β switch is a novel oncogenic
mechanism that can be exploited for both diagnostic
and therapeutic purposes.

Rational combination therapy
The success of ICIs against the broad spectrum of can-
cers has now reset the baseline of IO. The focus of the
IO field for the last 5 years has not been on replacing
ICIs but on how to improve their efficacy for a greater
proportion of patients. This topic became the central
theme of the conference and was touched upon by al-
most all the speakers especially Lei Zheng (Johns Hop-
kins), Yang-Xin Fu (UT Southwestern), and Elizabeth
Jaffee (Johns Hopkins). There are existing approved
combination therapies with nivolumab and ipilimumab
for treatment of advanced melanoma, renal cell carcin-
oma, MSI high tumors, etc. (Table 1). The first-line
treatment of patients with metastatic NSCLC, without
EGFR or ALK genomic tumor aberrations, is also in
combination with pemetrexed and platinum chemother-
apy. Not surprisingly, there has been an impressive
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increase in new combination studies in the past 5 years.
Analyses of the Cancer Research Institute database by
Tang and his colleagues show that in 2017 alone, 469
new studies were started, with a target enrollment of
52,539 patients, principally being combined with
anti-PD-1/L1 agents [71]. For example, a phase 1b clin-
ical trial was conducted to study the impact of oncolytic
virotherapy with talimogene laherparepvec in combin-
ation with pembrolizumab for advanced melanoma [72].
Confirmed objective response rate was 62%, with a
complete response rate of 33% per immune-related re-
sponse criteria. Responders had increased CD8+ T cells,
elevated PD-L1 protein expression, as well as IFN-γ gene
expression on several cell subsets in the tumors [72]. Ex-
citingly, during the 2018 European Society for Medical
Oncology (ESMO) annual meeting, a positive result of
Phase 3 KEYNOTE-426 trial was announced by the
study sponsors. This study tests pembrolizumab plus
axitinib versus sunitinib alone in treatment-naive ad-
vanced/metastatic renal cell carcinoma (mRCC)
(NCT02853331). A total of 861 patients with advanced
or metastatic RCC were randomized to receive frontline
treatment with pembrolizumab (200 mg IV every 3
weeks) plus axitinib (5 mg orally twice daily) for up to
24months, or sunitinib (50 mg orally once daily for 4
weeks followed by no treatment for 2 weeks, continu-
ously). No new safety concerns were raised. Although
the final data is not available yet, the earlier study lead-
ing to the trial indeed offered encouraging results to po-
tentially change the standard of practice for the
treatment of advanced RCC [73]. There are also interests
in combining cytokine-directed therapy with ICIs, as in
the case of M7824 mentioned above to block TGFβ and
PD-L1 simultaneously. The roles of common γ-chain cy-
tokines including second generation IL-2 and IL-15 in
boosting ICIs have also gained attention. For example,
one encouraging phase Ib study has shown the utility of
the combination of nivolumab and ALT-803 for patients
with metastatic NSCLC [74]. ALT-803 is a homo-dimer
of IL-15Rα-Fc (IgG1) bound with recombinant
IL-15N72D [75]. A pegylated IL-2, NKTR-214, which is a
pro-drug and has the preferential release of the active
IL-2 in the tumor microenvironment, has an excellent
preclinical activity [76] and is now being tested in com-
bination with ICIs for multiple malignancies in multiple
settings. However, abundant evidence also sends a cau-
tionary note to the field that the effective combination
therapy is easy said than done. Indoleamine 2,3-dioxy-
genase 1 (IDO1) is a rate-limiting enzyme in the trypto-
phan catabolism and plays important roles in immune
suppression [77]. It makes rational sense to combine in-
hibitors of PD-1 and IDO for cancer immunotherapy.
However, despite the encouraging early phase data [78,
79], a recent phase III ECHO 301 trial testing the

combination of epacadostat (an orally bioavailable IDO
inhibitor) with pembrolizumab in melanoma did not
show superior outcome compared to pembrolizumab
alone [80].
Lei Zheng (Johns Hopkins) discussed rational thought

process in designing combination therapy. Ideally, the
two combined agents or modalities shall have single
agent efficacy (such as PD-1 and CTLA4 inhibitors),
non-overlapping mechanism of actions and toxicities
(e.g., ICIs and cytotoxic agents), and being used for the
right populations of patients selected carefully based on
precision biomarkers. The last point is important for IO
agents because, for example, one would not want to
treat T cell excluded tumors with agents that reverse T
cell exhaustion only [81]. In patients when the frequency
of tumor-reactive T cells is low, strategies need to be
brought forward with vaccinations (proper antigens with
new generation of adjuvants), adoptive transfer of
tumor-reactive T cells, and mechanisms to amplify T cell
responses with co-stimulatory agents (such as CD137
agonist), survival cytokines, and means to tame immune
tolerance mechanisms such as turning off regulatory T
cells.
Yang-Xin Fu (UT Southwestern) discussed several

novel agents and their application preclinically by target-
ing both innate and adaptive immunity, which
highlighted a number of important principles for devel-
oping future IP agents. LIGHT (TNFSF14) is immune
stimulatory cytokine. A bifunctional molecule has been
generated to link anti-EGFR antibody on the one arm
with a three tandem LIGHT fused with Fc domain on
the other arm. This α-EGFR-LIGHT fusion protein was
shown to be able to overcome resistance to anti-PD-1
and convert non-T cell infiltrating (“cold”) tumor to tu-
mors with increased infiltrating T cells (“hot”) tumor.
Interestingly, a series of works from Fu and his col-
leagues showed that therapeutic roles of commonly used
antibodies in oncology (against Her2, EGFR and CD20
for example) are dependent on T cells [82–84], providing
a rationale for combining these antibodies with ICIs for
cancer immunotherapy. Another intriguing strategy is
targeting CD47, a “do not-eat-me” signal on macro-
phages and other antigen-presenting cells for cancer im-
munotherapy [85, 86]. A humanized anti-CD47
antibody, Hu5F9-G4, has demonstrated therapeutic effi-
cacy in vitro and in vivo in patient-derived orthotopic
xenograft models on five aggressive pediatric brain tu-
mors [87]. The roles of CD47-targeting monotherapy
might be problematic due to the significant side effect of
causing red blood cell destruction and lack of preference
of targeting tumor-infiltrating macrophages. However,
by priming (1 mg/kg) and maintenance (10–30 mg/kg
weekly starting week 2) dosing, the anemia induced by
Hu5F9-G4 can be mitigated. When it was combined
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with rituximab, promising activity was seen in patients
with refractory B cell lymphoma in a phase 1b study in-
volving 22 patients [88]. Liu et al. recently revealed that
CD47 and PD-L1 on tumor cells coordinately suppress
innate and adaptive sensing to evade immune control.
Targeted blockade of both CD47 and PD-L1 on tumor
cells with a bispecific anti-PD-L1-SIRPα agent showed
significantly enhanced tumor targeting and therapeutic
efficacy comparing with monotherapy [89]. This finding
makes sense because the cancer therapeutic effect of tar-
geting CD47 also depends on CD8+ T cells [90].

Expediting oncology drug development in an era of
breakthrough therapies
Richard Pazdur (US FDA) provided unique perspectives
on oncology drug development including in the area of
IO. The FDA oversees medical and food industries that
are a quarter of the America’s expenditures. It is respon-
sible for assurance of the safety, efficacy, and security of
these products. The hematology and oncology division
has established disease-specific structure that is akin to
current academic models, including Division of Oncology
Products 1 (dealing with genitourinary, breast, and gyne-
cologic cancer), Division of Oncology Products 2 (thor-
acic, head and neck, gastrointestinal, melanoma-sarcoma,
pediatric/neuroendocrine/rare tumors), Division of
Hematology Products (benign hematology products,
lymphoma, leukemias, and transplant), and Division of
Hematology and Oncology Toxicology (toxicologists sup-
porting each division). Oncology drug development and
approval are unique comparing with other therapeutic
areas in that cancer deals with severe and life-threatening
diseases, it has a large public interest which needs to ex-
pedite drugs, the area has different risk tolerance for side
effects, there are strong active advocacy groups, the area
enjoys one of the most active biomedical research, 50% of
breakthrough therapies are in oncology space, and the on-
cology drug approval often utilizes biomarkers for sub-
group patient selection. Regarding efficacy endpoints,
FDA has moved away from overall response rate and tran-
sitioned to more emphasis on overall survival which
means putting more weight on how patients “feel, func-
tion, or survive.” The explosion of IO field also coincides
with the introduction of FDA expedited programs, leading
from fast track to breakthrough therapy, to priority review,
and eventually to accelerated approval. All ICIs now have
indications based on the accelerated approval mechanism
which requires post-marketing clinical trials to be under-
way at the time of approval. FDA also welcomes novel
seamless trial design in drug development as opposed to
the traditional rigid three discrete phases of clinical trials
(I, II, and III). This is especially important for IO drug
such as CD19-CAR-T which cannot be ethically tested in
the phase III trial setting against relapsed and refractory B

cell leukemia and lymphoma because the standard care of-
fers negligible hope for controlling these diseases. Yang-
min Ning (US FDA) discussed in details the nuts and
bolts of the “Breakthrough Therapy Designation” program
which started in 2012. It is designed to accelerate the ap-
proval of life-saving drugs with confirmed evidence that
likely changes the standard of care for patients. There are
two requirements for designating Breakthrough Therapy:
(a) life-threatening diseases with unmet medical needs
and (b) preliminary clinical evidence showing substantial
improvement over available or existing therapies. It is im-
portant to keep in mind that such a designation does not
mean an approval for marketing and implication of cure
and is not restricted to oncology.
Zhimin Yang (China’s NMPA) discussed the oncology

drug approval approach in China which mirrors the
practice in the USA. Leading up to June 25, 2018, there
were 193 trials with PD-1 blockers in China that were
listed in Clinicaltrials.gov. She discussed a number of is-
sues that are not new but made more prominent in the
approval consideration for IO medicine: patient selection
(cancer types, histology, biomarkers, upfront vs salvage
therapy, etc.), efficacy, monotherapy vs combination
therapy, and manageable toxicity. Regarding clinical trial
design, for cancer types or stages that do not have a
standard care option, NMPA also allows single-arm trial
to gain regulatory approval. Undoubtedly, the future of
regulation of IO development will be more dependent
on bio-marker selection of patients, rather than histo-
logical types of diseases. It will also be based on mech-
anistic insights of the medicine rather than empiric
reasoning. All of these considerations will hopefully lead
to the launch of much more effective and less toxic IO
medicine into the clinics.

New concept in cancer immunology and immunotherapy
Cancer immunotherapy has come a long way. It has
been fueled by the basic understanding of the immune
system and the unveiling of the dynamic interaction be-
tween the host immunity and the transformed cells dur-
ing oncogenesis. Experimental data coupled with human
epidemiology studies have established that during the
ontogeny of cancer, immune response against cancer
undergoes three functional phases, namely elimination
of the cancer cells, equilibrium between cancer and the
host immunity, and escape of cancers from the immuno-
logical attack [2] (Fig. 1a). This three Es model is helpful
for guiding the development of immunotherapeutic
strategies which deal primarily with cancer immune es-
cape. Accordingly, in principle, cancer immunotherapy
can be summarized with a framework of three Rs, which
are to reverse tolerance, rejuvenate the immune system,
and restore the immune homeostasis (Fig. 1b). Each of
the modalities has its unique characteristics with the
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first 2 Rs associated with significant toxicities and a
limited scope of application at present. The Holy
Grail of cancer immunotherapy is the third R, as ar-
gued and championed by Lieping Chen (Yale Univer-
sity) to be the process of normalizing the immune
response (i.e., dial back the immune editing to the
elimination phase). This idea, presented at the confer-
ence and further elaborated elegantly in a recent pub-
lication by Sanmamed and Chen [3], emphasizes the
concept of normalization of anti-tumor immunity in
the tumor microenvironment that has aberrant ex-
pression of tumor-associated immune regulatory mol-
ecules. We would like to coin the term TAICHI for
tumor-associated immune checkpoint inhibitory mole-
cules to describe these molecular entities. PD-L1 is a
prime example of TAICHI. It is important to point
out that the Three R strategies may need to be de-
ployed at the same time, or given sequentially in
order to maximize the chance of cancer cure.
In an attempt to discover more TAICHI for cancer im-

munotherapy, Lieping Chen and his colleagues per-
formed functional screening for cell surface molecules
that inhibit T cell activation. As discussed above, they
found that Siglec-15 has previously unknown immuno-
suppressive roles through promoting the survival and
differentiation of suppressive myeloid cells and nega-
tively regulates T cell function. Anti-Siglec antibody has
already entered the clinical trial for the dose-defining
study in patients with advanced solid tumors.

ICIs, CAR-T cells, etc., are currently used primarily in
patients with advanced cancers. Drew Pardoll (Johns
Hopkins) argued that the maximal benefit of these
agents has not been realized. Immunotherapy of early
stage of cancers before intervention by conventional
strategies might induce the best benefit and shall be con-
sidered. This concept is supported by encouraging re-
sults with ICIs used in the neoadjuvant settings, for the
treatment of cancers such as melanoma [91], bladder
cancer [92], and head and neck cancer [93].
To determine what anti-PD-1 agents do to the tumor

microenvironment in early-stage diseases, Forde et al.
tested the roles of nivolumab in the neoadjuvant setting
for adults with untreated, surgically resectable early
(stages I, II, or IIIA) NSCLC. Nivolumab was associated
with few side effects, did not delay surgery, and induced a
major pathological response in 45% of resected tumors.
As predicted, the tumor mutational burden correlates with
the pathological response to PD-1 blockade, and the treat-
ment induced expansion of neoantigen-specific T-cell
clones in peripheral blood [94]. Future studies will need to
address if upfront immunotherapy can change the natural
history of the diseases and if so what will be the roles
(or lack of ) of surgery if pathological complete re-
sponses can be accomplished. Conceptually, studies
like this will push IO experts and the regulatory
agencies to move IO medicine much earlier in the
management of cancer rather than using it as the last
reserve of treatment.

Fig. 1 Principles of immunoediting and immunotherapy of cancer. a The 3Es model of cancer immunoediting is schematically shown, along with
examples of the immune response and the trade-offs in each phase. b The 3Rs model of cancer immunotherapy divides treatment modalities
into three distinct mode of actions: to reverse, rejuvenate, and restore anti-cancer immunity
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Weiping Zou (University of Michigan) discussed the hol-
istic approach in cancer immunotherapy, by examining not
only tumor microenvironment for genomic alterations and
changes of immune infiltration pattern, but also looking at
the macroenvironment of the patients, including metabol-
ism, microbiome, and other co-morbidities. Regarding
PD-1/L-1-based immunotherapy, work from Arlene
Sharpe, Weiping Zou, Yang-Xin Fu, and others showed that
PD-L1 expression on tumor-associated professional
antigen-presenting cells, as opposed tumor cells, could be
the major target for anti-PD-1/L1 responsiveness for some
cancers [95–97]. Zou and his colleagues also asked a pro-
vocative question regarding the roles of the immune system
in chemoresistance. They found that CD8+ T cells, via the
JAK/STAT1 pathway, can abrogate fibroblast-mediated
chemoresistance in ovarian cancer model through upregu-
lation of gamma-glutamyltransferases and repression of sys-
tem xc(−) cystine and glutamate antiporter [98]. In colon
cancer, it was found that Fusobacterium (F.) nucleatum in
the gut was able to promote colorectal cancer resistance to
chemotherapy by activating innate immunity and the au-
tophagy pathway and thereby altering colorectal cancer
chemotherapeutic response. Thus, how chemotherapy and
microbiome contribute to reducing cancer burden and
death shall also be re-examined in the era of IO. Finally, a
case was made to effectively target regulatory T cells
(Tregs) as a major path forward for immunotherapy [99].
Multiple agents have been tested for depleting Tregs or in-
activating Treg function, including antibodies that block
CTLA-4, GITR, GARP, CCR4, CD25, PD-1, OX-40, and
LAG3, and small molecule inhibitors against PI3Kδ, PTEN,
IDO, EZH2, and ZAP70 [99, 100]. However, a cautionary
note was provided that even apoptotic Tregs can release
high levels of ATP, which are then converted to adenosine
via CD39 and CD73 to suppress T cell immunity [101].
Finally, the unique and distinct role of non-profit orga-

nizations in promoting and supporting IO development
was shared by representatives from American Associa-
ton of Cancer Research (AACR) (Elizabeth Jaffee), Soci-
ety of Immunotherapy of Cancer (SITC) (Mario Sznol),
Cancer Drug Development Forum (CDDF) (Heinz
Zwierzina), Parker Institute for Cancer Immunother-
apy (PICI) (Ramy Ibrahim), Chinese Society of Clinical
Oncology (CSCO) (Jin Li), and National Foundation for
Cancer Research (NFCR) (Sajuan Ba).

Conclusive remarks
Without a doubt, the era of immuno-oncology is upon
us. The true significance of IO medicine in the battle of
mankind against cancer may still not be fully appreciated
until a decade or so later. The broad activity of PD-1/
PD-L1 agents against cancer has cemented the notion
that immune escape is indeed a fundamental hallmark of
cancer. Such a revelation raises hope and lifts the cloud

of years’ frustration and failure over the field of cancer im-
munology. Thus, the Nobel Committee is right to ac-
knowledge that the work of blocking inhibitory signals for
treatment of cancer is Nobel-worthy. It is the long-term
and painstaking basic research in immunology that has
made this feat possible. James Allison has relentlessly pur-
sued anti-CTLA4 antibody for cancer immunotherapy
[102, 103] and has been the champion leading the current
IO revolution. Studying basic mechanism of
activation-induced cell death of lymphocytes, Tasuko
Honjo cloned PD-1 [104] and showed later the import-
ance of PD-1 pathway in negatively regulating T cell func-
tion [105–107]. However, the list of mavericks and
pioneers of IO who have contributed to the Nobel-worthy
work is long, including Lieping Chen who first cloned
PD-L1 (also known as B7-H1) [108] and showed its inhibi-
tory function [109, 110], IFNγ-inducibility [109], and its
roles in constraining T cell immunity against cancer [109];
Gordon Freeman who collaborated with Honjo to estab-
lish the receptor-ligand interaction between PD-1 and
PD-L1 [106]; Pierre Goldstein who first cloned CTLA4
[111]; and Jeffrey Bluestone [112, 113], Tak Mak [114],
and Arlene Sharpe [113] who demonstrated the inhibitory
function of CTLA4. Thanks to the work of those and
others, the stage of IO has been set and the script has
been written. We are here for a remarkable thriller which
we hope will put smiles on face of all of our patients.
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