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Abstract

Background: As a well-characterized key player in various signal transduction networks, extracellular-signal-regulated
kinase (ERK1/2) has been widely implicated in the development of many malignancies. We previously found that
Leucine-rich repeat containing 4 (LRRC4) was a tumor suppressor and a negative regulator of the ERK/MAPK pathway
in glioma tumorigenesis. However, the precise molecular role of LRRC4 in ERK signal transmission is unclear.

Methods: The interaction between LRRC4 and ERK1/2 was assessed by co-immunoprecipitation and GST pull-down
assays in vivo and in vitro. We also investigated the interaction of LRRC4 and ERK1/2 and the role of the D domain in
ERK activation in glioma cells.

Results: Here, we showed that LRRC4 and ERK1/2 interact via the D domain and CD domain, respectively. Following

EGF stimuli, the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and abrogates ERK1/2 activation and nuclear
translocation. In glioblastoma cells, ectopic LRRC4 expression competitively inhibited the interaction of endogenous

cascade activation.

mitogen-activated protein kinase (MEK) and ERK1/2. Mutation of the D domain decreased the LRRC4-mediated
inhibition of MAPK signaling and its anti-proliferation and anti-invasion roles.

Conclusions: Our results demonstrated that the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and
competitively inhibits MEK/ERK activation in glioma cells. These findings identify a new mechanism underlying
glioblastoma progression and suggest a novel therapeutic strategy by restoring the activity of LRRC4 to decrease MAPK
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Background

ERK (extracellular-signal-regulated kinase)/ MAPKs (mito-
gen-activated protein kinases) are cytoplasmic serine/
threonine kinases that transduce signals from the surface
to the interior of the cell [1]. ERK1/2 is activated in re-
sponse to multiple stimuli, including those that regulate
cellular proliferation, differentiation, and survival [1].
Once activated, ERK1/2 disperses throughout the cell and
phosphorylates a broad spectrum of substrates localized in
different subcellular compartments, including the nucleus,
and the cytoplasm [2]. The balance between the
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cytoplasmic and nuclear components of ERK1/2 signaling
is critical for the biological outcomes resulting from
ERK1/2 activation [3, 4]. Dysregulation of ERK/MAPK
signaling is closely correlated with multiple diseases, in-
cluding cancer, autoimmunity, and Alzheimer’s disease
[5]. Increased ERK1/2 activity is found in majority of can-
cers and is a key event in tumor cell survival and prolifera-
tion [6]. The RAS/RAF/MEK/ERK/MAPK pathway has
been reported to be activated in over 88 % of gliomas [7].
Both the RAS and RAF oncogenes are believed to promote
initiation of human cancers by activating the ERK/MAPK
signaling pathway [8, 9]. The aberrant nuclear accumula-
tion of activated ERKs leads to tumor progression [10].
Leucine-rich repeat C4 protein (LRRC4), also known
as netrin-G ligand-2 (NGL-2) [11], is a member of the
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leucine-rich repeat (LRR) superfamily [12]. It is predom-
inantly localized to the postsynaptic side of excitatory
synapses and is involved in early nervous system devel-
opment and differentiation, especially synapse formation
[11, 13-15]. LRRC4 regulates the formation of excitatory
synapses through the recruitment of pre- and post-
synaptic proteins [16], participates in the differenti-
ation of neuron and glial cells, and promotes neurite
outgrowth [17].

LRRC4 also is a tumor suppressor gene, and it is de-
creased in World Health Organization (WHO) grades II
and III gliomas and absent in glioblastoma (WHO, grade
IV) [18]. Promoter hypermethylation and miRNA dys-
regulation (miR-182, miR-381, and miR-185) have been
identified as mechanisms underlying LRRC4 inactivation
in glioma [19-21]. Enforced expression of LRRC4 re-
duced the activity of the Ras/c-Raf/ERK/MAPK and PI-
3 K/AKT signaling pathways and inhibited cell prolifera-
tion and invasion in glioblastoma cells [22, 23].

Here, we demonstrated that amino acids 499-513 of
the C-terminal of LRRC4 bind to ERK1/2 and constitute
a reverse docking domain (D domain) with a consensus
sequence: (R/K);_5-(X),.6-DA-X-OB (where @A and OB
are Leu, Ile, or Val) [24, 25]. LRRC4 abolished ERK1/2
activation and inhibited ERK1/2 nuclear translocation
through a direct interaction with ERK1/2 via the D do-
main, which inhibited ERK1/2 binding to MEK. Our re-
sults provided a novel regulatory mechanism for ERK1/2
activation and identified LRRC4 as a key modulator in
ERK1/2 nuclear translocation.

Results

LRRC4 interacts with ERK1/2

Scansite 2.0 (version 2.0) software was used to screen for
potential motifs or functional domains in LRRC4. When
the high stringency criteria were used, a docking domain
(D domain), an ERK-binding site, was found in the C-
terminus of LRRC4. Therefore, we first determined
whether LRRC4 co-localized with ERK1/2. HEK293 cells
are good tools and useful for detecting the interaction of
exogenous transfected proteins. We hypothesized that
the interaction between LRRC4 and ERK1/2 is a natural
existing state in normal human cells, and we used
HEK293 cells to corroborate this hypothesis. We co-
expressed green fluorescent protein (GFP)-LRRC4 with
red fluorescent protein (RFP)-ERK1 in HEK293 cells and
analyzed their co-localization by confocal fluorescence
microscopy (Fig. 1a). In cells transfected with the GFP-
LRRC4 and the RFP-ERK1/2 expression plasmids, ERK
was co-localized with LRRC4 and was targeted almost
exclusively to the plasma membrane with a perinuclear
cytoplasmic distribution (Fig. 1a, merge). To determine
whether LRRC4 and endogenous ERK1 could be co-
immunoprecipitated from cells, a full-length LRRC4
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protein expression vector was transfected in HEK293 cells.
The endogenous ERK1 was co-immunoprecipitated with
LRRC4 (Fig. 1b). Additionally, LRRC4 was co-
immunoprecipitated with endogenous ERK1 (Fig. 1b).
Moreover, LRRC4 and ERK2 also co-localized in the cyto-
plasm and plasma membrane of the cells (Fig. 1c, merge).
LRRC4 and endogenous ERK2 co-immunoprecipitated
with each other (Fig. 1d). Collectively, these results dem-
onstrate that LRRC4 interacts with ERK1/2.

A docking domain of the C-terminus of LRRC4 mediates
the LRRC4-ERK1/2 binding and anchors ERK1/2 in the
cytoplasm

The activity and specificity of MAP kinases must be
tightly regulated to ensure proper integration of diverse
biological stimuli and generation of appropriate cellular
responses. The major mechanism to confer specificity
and efficiency in MAP kinase signaling is through dock-
ing interactions between individual MAP kinases and
their cognate activating kinases, inactivating phospha-
tases, scaffolding proteins, and substrates [24, 25]. A
docking domain (D domain) sequence, (R/K);.»-X;.6-
D 4-X-Op, was found in the C-terminus of LRRC4, which
has been recognized in MAP kinase/ERK kinases, MAP
kinase phosphatases (MKPs), scaffolding proteins, and
MAP kinase substrates, where @, and @ are hydropho-
bic residues, such as Leu, Ile, or Val, and X is any amino
acid (Fig. 2a).

To determine whether LRRC4 interacts with ERK1/2
through the D domain, we constructed an LRRC4 mu-
tant (LRRC4-AD) with a deletion of the D domain in the
full-length LRRC4 protein and a D domain fusion pro-
tein (GST-LRRC4-D) (Fig. 2b). We co-expressed GFP-
LRRC4-AD with RFP-ERK1 or RFP-ERK2 in HEK293
cells and analyzed the transfected cells by confocal fluor-
escence microscopy. Compared with the co-distribution
of wild type LRRC4 and ERK1/2, the cell distribution of
GFP-LRRC4-AD was consistent with that of wild type
LRRC4, but the subcellular distribution of RFP-ERK1
and RFP-ERK2 was altered when the D domain of
LRRC4 was deleted. ERK1 and ERK2 were not only tar-
geted to the plasma membrane and had a perinuclear
cytoplasmic location but also translocated into the nu-
cleus (Fig. 2c¢).

Almost no detectable nuclear ERK1/2 was observed in
GFP-LRRC4 cells compared with that in GFP-LRRC4-
AD cells. When the D domain of LRRC4 was deleted,
the HEK293 cells retained a higher level of nuclear
ERK1/2, despite detectable cytoplasmic ERK1/2 signals.
The above observation showed that the D domain is
critical for co-localization of LRRC4 and ERK1/2. After
D domain deletion, ERK1 or ERK2 did not completely
co-localize with LRRC4 in the cytoplasm, and the major-
ity of ERK1 or ERK2 translocated to the nucleus. At the
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Fig. 1 LRRC4 interacts with ERK1/2. a Confocal fluorescence microscopy of HEK293 cells co-transfected with GFP-LRRC4 (green) and RFP-ERKT (red). The merged
image shows co-localization of LRRC4 and ERK1 in the cytoplasm. The LRRC4 and ERK1 signals were measured by ImageJ software (scale bars, 50 um). b
HEK293 cells were transfected with pcDNA3.1(+)-LRRC4. Co-immunoprecipitation showed the interaction between LRRC4 and endogenous ERK1 in HEK293
cells. ¢ Confocal fluorescence microscopy of HEK293 cells co-transfected with GFP-LRRC4 (green) and RFP-ERK2 (red). The merged image shows the
co-localizations of LRRC4 and ERK2 in the cytoplasm. The LRRC4 and ERK2 signals were measured by ImageJ software (scale bars, 50 um). d HEK293 cells were
transfected with pcDNA3.1(+)-LRRC4. Co-immunoprecipitation showed the interaction between LRRC4 and endogenous ERK2 in HEK293 cells
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Fig. 2 The D domain of LRRC4 mediates the LRRC4-ERK1/2 binding and anchors ERK1/2 in cytoplasm. a Alignments of the D domain sequences from
LRRC4 and other proteins that contain the D domain, including MEKs, phosphatases, and substrates. b Schematic of the full-length LRRC4 protein, the
LRRC4-AD mutant protein, and the GST-LRRC4-D fusion protein. ¢ Confocal fluorescence microscopy of HEK293 cells co-transfected with different plasmids
to assess the effect of D domain deletion on the co-localization of LRRC4 and ERK1/2. The merged image shows that ERK1 or ERK2 underwent nuclear
translocation after the D domain of LRRC4 was deleted. d Co-immunoprecipitation showed that mutation of the D domain disrupted the interaction of
LRRC4 and ERK1/2. (WCL: whole-cell lysate). @ GST pull-down assays showed that the D domain of LRRC4 pulled down ERK1 and ERK2. Western blot and
Coomassie blue staining analysis of whole-cell lysates (WCL) showed the expression of the GST fusion protein. (— : IPTG negative; + : IPTG positive)
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Fig. 3 The CD domain of ERK1/2 mediates LRRC4-ERK1/2 binding and its cytoplasm localization. a Schematic of the ERK1 (ERK2) full-length pro-
tein, the ERK1 (ERK2)-ACD mutant protein, and the GST-ERK1 (ERK2)-D fusion protein. b Confocal fluorescence microscopy of HEK293 cells
co-transfected with different plasmids to assess the effect of ERK1/2 CD domain deletion on the localization of LRRC4 and ERK1/2. The merged
image shows that ERK1 or ERK2 underwent nuclear translocation after the CD domain of ERK1 or ERK2 was deleted. The signals were measured
by ImageJ software. Scale bars, 50 um. ¢ GST pull-down assays showed that the CD domain of ERK1/2 pulled down LRRC4. Western blot and
Coomassie blue staining analysis of whole-cell lysate (WCL) showed the expression of the GST fusion protein. (— : IPTG negative; + : IPTG positive)
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same time, after D domain deletion, the LRRC4-AD mu-
tant did not co-immunoprecipitate with ERK1 or ERK2
(Fig. 2d). Similarly, a glutathione-S-transferase (GST)
pull-down assay was performed with a fusion between
ERK1/2 and a D domain (residues 499-513) of LRRCA4.
Wild-type ERK1 or ERK2 was precipitated with this
GST-fused LRRC4-D peptide sequence (Fig. 2e). Overall,
these data demonstrated that LRRC4 binds ERK1/2, and

the D domain of the C-terminus of LRRC4 directly me-
diates the binding and anchoring of ERK1/2 in the
cytoplasm.

A conserved docking domain in ERK1/2 mediates the
LRRC4-ERK1/2 binding and its cytoplasmic localization

A conserved docking domain (CD domain) that is
present in the major members of the MAPK family, such
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as ERK, p38, and JNK, interacts with the D domain of
the proteins. The CD domain is the near C-terminal re-
gion outside the catalytic domain of ERK1/2 [24]. We
investigated whether ERK1/2 could interact with LRRC4
through its CD domain. We constructed a mutant with
a deleted CD domain named ERK1-ACD or ERK2-ACD
and a CD domain fusion protein (GST-ERK1-CD or
GST-ERK2-CD) (Fig. 3a).

We co-expressed green fluorescent protein (GFP)-
LRRC4 with red fluorescent protein (RFP) -ERK1-ACD
or ERK2-ACD in HEK293 cells and analyzed the trans-
fected cells by confocal fluorescence microscopy. After
the CD domain of ERK1/2 was deleted, RFP-ERK1 or
RFP-ERK2 did not co-localize with GFP-LRRC4. ERK1/2
was targeted to the plasma membrane and had a peri-
nuclear cytoplasmic location and also translocated into
the nucleus (Fig. 3b), but the CD domain deletion of
ERK1/2 did not influence the subcellular localization of
LRRC4. These observations indicated that the CD do-
main of ERK1/2 is critical for co-localization of LRRC4
and ERK1/2 in the cytoplasm. LRRC4 cannot anchor
ERK1/2 in the cytoplasm without the CD domain of
ERK1/2. At the same time, we also performed
glutathione-S-transferase (GST) pull-down assays. Our
results showed that both the CD domain of the GST-
fused peptide of ERK1 and ERK2 can pull down the full-
length LRRC4 protein (Fig. 3c). The data confirmed that
LRRC4 binds ERK1/2 and anchors ERK1/2 in the cyto-
plasm via the D domain and CD domain, respectively.

LRRC4 inhibits ERK1/2 activation and nuclear
translocation via the D domain

To investigate whether the interaction between LRRC4
and ERK1/2 affects ERK1/2 activation and nuclear trans-
location, we used EGF and PMA to stimulate the cells.
HEK293 cells are LRRC4-negative and do not express
LRRC4 with or without external stimuli (Fig. 4a, line 3,
left). However, when HEK293 cells were transfected with
GFP-LRRC4 (1 pg), EGF stimuli increased the expres-
sion of LRRC4 (Fig. 4a, line 3, right). Without LRRC4,
EGF stimulation increased the expression of phosphory-
lated ERK1/2 (pERK1/2) (Fig. 4a, lines 1 and 2, left). Al-
though LRRC4 had no effect on the expression of total
ERK and pERK1/2 without EGF stimuli, LRRC4 inhib-
ited EGF-induced expression of total ERK1/2 and
pERK1/2 (Fig. 4a, lines 1 and 2, right). PMA had no ef-
fect on the activation of ERK1/2 with or without LRRC4
in the HEK293 cells (Fig. 4b).

Next, we isolated the cytoplasmic and nuclear frac-
tions. Without LRRC4, EGF stimulation increased
pERK1/2 in both the cytoplasm and nucleus, and there
was no statistically significant difference (Fig. 4c). How-
ever, in the cells transfected with LRRC4, pERK1/2 was
decreased in the cytoplasm and nucleus following EGF
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stimulation (Fig. 4d). Thus, LRRC4 inhibited EGEF-
induced pERK1/2 expression and nuclear translocation.
Interestingly, without EGF, LRRC4 had no effect on the
activation of ERK1/2 in the HEK293 cells (Fig. 4e).
Taken together, LRRC4 expression reduced the ERK1/2
phosphorylation both in cytoplasm and nucleus after
EGF treatment.

Next, we investigated whether the D domain regulates
ERK1/2 activation and nuclear translocation. In the
presence of EGF, wild-type LRRC4 reduced the pERK1/2
expression, and when the D domain was deleted, this in-
hibition was weakened (Fig. 5a). As shown in Fig. 5b, in
the presence of EGF, pERK1/2 in the nucleus (Fig. 5a,
line 4, middle) was higher than that in the cytoplasm
(Fig. 5a, line 2, middle). Compared to the vector group,
wild-type LRRC4 inhibited pERK1/2 both in the cyto-
plasm and nucleus, and when the D domain of LRRC4
was deleted, the pERK1/2 level was increased in both
the cytoplasm and nucleus. We hypothesized that
LRRC4 inhibited EGF-induced pERK1/2 expression and
nuclear translocation, and the D domain is the key motif
for LRRC4 to inhibit the pERK1/2 expression and nu-
clear translocation. Confocal fluorescence microscopy
also indicated that wild-type LRRC4 anchored ERK1/2
in the cytoplasm and inhibited the nuclear translocation
of ERK1 in the presence of EGF. When the D domain
was deleted, the mutant protein could not inhibit the
nuclear translocation of ERK1, ERK1 did not completely
co-localize with LRRC4 in the cytoplasm, and a majority
of ERK1 translocated to the nucleus (Fig. 5¢c). These data
further demonstrated that LRRC4 decreases ERK1/2 ac-
tivation and prevents ERK translocation to the nucleus,
and the D domain plays an important role in LRRC4 an-
choring of ERK1/2 in the cytoplasm.

LRRC4 prevents MEK binding to ERK1/2 in glioblastoma
cells
Since MEK1/2 binds to ERK1/2 and phosphorylates
ERK1/2 through the D domain [26-28], we examined
whether LRRC4 competes with MEK1/2 to bind ERK1/2
and prevents the ERK1/2 phosphorylation and nucleus
translocation. We analyzed the ability of MEK1/2 to
interact with ERK1/2 in U251 cells. Notably, MEK inter-
acted with ERK1/2 in U251 cells (Fig. 6a). When U251
cells were transfected with a low dose of the LRRC4
plasmid (1 pg), LRRC4 affected the expression of total
ERK1/2. When U251 cells were transfected with a high
dose of the plasmid (4 pg), the expression of total ERK1/
2 was also increased (Fig. 6a). With the increase in
LRRC4 plasmids, the phosphorylation level of ERK1/2
diminished gradually (Fig. 6b).

Subsequently, we tested the effect of LRRC4 on the
capacity of MEK1/2 binding to ERK1/2. As shown in
Fig. 6c, following transfection with GFP-LRRC4, the
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ERK1/2 interaction with MEK1/2 was found to be di-
minished dramatically, suggesting that LRRC4 blocked
the interaction of ERK1/2 with MEK1/2.

Then, we used the purified proteins to validate our
conclusions in vitro. As shown in Fig. 6d, the interaction
of MEK1/2 and ERK1/2 was stronger with increasing
MEK1/2 concentration. Therefore, purified LRRC4 pro-
teins were mixed in vitro. It was clear that the combin-
ation of MEK1/2 and ERK1/2 was reduced with
increases in the LRRC4 concentration (Fig. 6e).

LRRC4 abolishes ERK-mediated substrate activation and
cell proliferation via the D domain

Upon activation and dimerization, ERK translocates to
the nucleus, where it phosphorylates downstream sub-
strates, such as the transcription factors ELK1 [29] and
FOXO3a [30] and the tyrosine protein phosphatase
CDC25a [31, 32]. Enforced LRRC4 expression inhibited
the phosphorylation of ELK1, FOXO3a, and CDC25a,
while deletion of D domain in LRRC4 restored the phos-
phorylation level of these proteins (Fig. 7a), suggesting
that LRRC4 is a key inhibitor of ERK activation and de-
creased the phosphorylation level of ERK’s downstream
substrates. Thus, the D domain is the key domain for
LRRC4. We further assessed the effect of the D domain
in LRRC4 on cell proliferation and invasion. Compared
with wild-type LRRC4, deletion of the D domain weak-
ened the LRRC4-mediated inhibition of cell proliferation
and invasion (Fig. 7b, c). We also used U87 cells to as-
sess the role of the D domain of LRRC4 in regulating
the cell proliferation (Additional file 1: Figure S1b) and

invasion (Additional file 1: Figure Slc) of GBM cells.
Moreover, deletion of the D domain in LRRC4 restored
the phosphorylation levels of ELK1, FOXO3a and
CDC25a in U87 cells, and these results were consistent
with those of the U251 cells.

Discussion
The LRRC4 gene was first characterized from human
chromosome 7q31-32 by our group [12, 18, 33]. Our
studies indicated that LRRC4 is specifically expressed in
brain tissue [12] and decreases in primary brain tumor
biopsies, especially in gliomas (up to 87.5%) [12, 18].
The absence of LRRC4 expression contributes to late
events in the pathogenesis of malignant glioblastoma.
Studies have shown that the low expression of LRRC4 is
due to the loss of heterozygosity on chromosome 7q32,
promoter hypermethylation, and miRNA dysregulation
in U251 cells [18, 34]. Ectopic LRRC4 expression inhib-
ited glioblastoma cell proliferation and invasion in an
ERK-dependent manner. Therefore, LRRC4 may act as
upstream of ERK1/2 [18]. In this study, we found that
LRRC4 binds with ERK1/2 and anchors ERK1/2 in the
cytoplasm in HEK293 cells. The ectopic expression of
LRRC4 abrogated the MEK1/2-ERK1/2 interaction in
U251 cells. LRRC4 competitively inhibited the binding
of ERK1/2 with MEK1/2 and prevented the phosphoryl-
ation of ERK1/2 and nuclear translocation, which further
suppressed ERK-mediated activation of the downstream
transcripts to inhibit cell proliferation and invasion.
These data further supported our previous hypothesis
[18] that decreased LRRC4 accelerated the initiation and
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phosphorylation level of ERK1/2 both in the cytoplasm and in the nucleus. ¢ Confocal fluorescence microscopy of HEK293 cells co-transfected
with different plasmids to assess the effect on localization of ERK1 and LRRC4 (LRRC4-AD) after EGF stimuli. The merged image shows that the
translocation of active ERK1 to the nucleus was more significant after deletion of the D domain. The signals were measured by ImageJ software.
(Scale bars, 50 um.). The data represent the mean+SD of three replicates. Bar in the graph represents the s.e.m. One-way ANOVA, *p < 0.05;
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progression of glioblastoma [18, 34]. Following ex-
ogenous signaling stimulation, such as EGF, bFGE,
IGF, and PDGF [35], the decreased LRRC4 also
failed to block the ERK 1/2-MEK1/2 interaction, pre-
venting MEK1/2 from sustaining activation for
ERK1/2. Moreover, the epidermal growth factor re-
ceptor (EGFR) is overexpressed and/or mutated in at
least 50% of GBM cases [36], which can further pro-
mote MEK/ERK/MAPK signal pathway activation.
However, the MEK/ERK/MAPK pathway is one of
the most frequently aberrantly activated signaling
pathways in human cancers [37], including over 88%
of gliomas [7].

Our studies also showed that LRRC4 binds to the
CD domain of ERK1/2 via the D domain of the C-
terminus. The D domain, also known as the kinase
interaction motif (KIM), is a conserved amino acid
sequence that has since been identified in nearly
every MAPK regulatory protein, including MEKs,
phosphatases, and substrates. The D domain is char-
acterized by a consensus sequence: (R/K)1-2-(X)2-6-
DA-X-OB (where @A and @B are Leu, Ile, or Val)
[25]. The CD domain is the docking domain in the
C-terminal lobe of MAPKs that determines binding
specificity with substrate proteins [24, 38]. ERK1/2
and other MAPKs contain the CD domain, which
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Fig. 6 LRRC4 prevents MEK1/2 binding to ERK1/2 in U251 cells. a Co-immunoprecipitation of MEK1/2 and endogenous ERK1/2 in U251 cells. b
U251 cells were transfected with different concentration of GFP-LRRC4. Western blot analysis showed that LRRC4 inhibits ERK1/2 activation, and
the inhibition is dose-dependent. ¢ U251 cells were transfected with GFP or GFP-LRRC4. The interaction of MEK 1/2 with ERK 1/2 in the presence
of LRRC4 (different titrates) was analyzed by co-immunoprecipitation. d Co-immunoprecipitation of the purified MEK1/2 and ERK1/2 in vitro. The
interaction of MEK1/2 and ERK1/2 became stronger with increasing MEK1/2 concentration. e The purified LRRC4 protein prevents MEK binding to

ERK1/2 in vitro. The combination of the MEK1/2 and ERK1/2 was reduced with the increase in LRRC4 concentration

includes aspartate residues 316 and 319 (labeled for
ERK2) that are located on the opposite side of the
TXY activation loop [24, 39] and mediate interactions
with the D domains [39-41]. The D domain within
Schnurri-3 mediated the interaction with ERK and in-
hibition of ERK activity and osteoblast differentiation
[42]. Human scribble (hScrib) interacts with ERK
through two D domain docking sites and decreases
activation of ERK [43]. Ephrin-B3 (eB3), which con-
tains a D domain, regulates synapse density by dir-
ectly binding to ERK1/2 to inhibit postsynaptic Ras/
MAPK signaling, and knockdown of eB3 resulted in a
significant increase in the percentage of neurons with
nuclear ERK1/2 localization [44]. In this study, we
found that LRRC4 competitively binds the CD do-
main of ERK1/2 via the D domain, anchors ERK1/2
in the cytoplasm and prevents the activation induced
by MEK.

Moreover, LRRC4 suppressed EGF-induced ERK1/2
phosphorylation and the activation of downstream
transcription factors, such as ELK1l, FOXO3a, and
CDC25a, by preventing ERK1/2 translocation into
the nucleus. ELK1 is a member of the Ets family of
transcription factors and of the ternary complex fac-
tor subfamily [45, 46]. Activation of the ELK1 led to
increased survival and proliferation following EGF
stimulation in the U138 glioblastoma cells [47].
FOXO3a belongs to the forkhead family of transcrip-
tion factors, which are characterized by a distinct
forkhead domain [48, 49]. FOXO3a is an important

regulator of proliferation and apoptosis in mantle
cell lymphoma [49]. FOXO3a functions as a growth
factor and promotes the proliferation of serum-
deprived hepatocellular carcinoma cells [50]. CDC25a,
a member of the CDC25 family of phosphatases, is
required for progression from G1 to the S phase of
the cell cycle [51, 52]. Interfering with CDC25a sup-
presses the growth and invasion in tumor cells [51,
53, 54]. Our results indicated that enforced LRRC4
expression prevents the activation of ERK downstream
transcription factors to inhibit glioblastoma cell prolif-
eration and invasion. The D domain is a critical do-
main for the LRRC4 anti-proliferation and anti-
invasion activities.

Conclusions

In conclusion, LRRC4 is an important tumor suppres-
sor that directly interacts with ERK1/2 to disrupt the
MEK1/2-ERK1/2 interaction and anchors ERK1/2 in
the cytoplasm to mediate ERK1/2 inactivation, thus
blocking ERK-mediated activation of the downstream
substrates to suppress cell proliferation and invasion
in glioblastoma cells (Fig. 8). Decreasing or silencing
LRRC4 reduced its ability to inhibit the activation of
ERK1/2 and nuclear translocation and then promoted
tumorigenesis and progression of glioblastoma. These
findings provided promising insights into developing
novel cancer therapies by restoring the activity of
LRRC4 to obstruct the MAPK cascade activation.
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Fig. 7 LRRC4 inhibits ERK-mediated activation of the downstream substrates to inhibit U251 cell proliferation via the D domain. a U251 cells were
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Methods

Cells culture and reagents

The human glioblastoma cell line U251 and human em-
bryonic kidney (HEK) 293 cells were maintained in
DMEM medium with high glucose and sodium pyruvate
and supplemented with 10% fetal bovine serum and anti-
biotics (100 units/ml penicillin and 100 mg/ml strepto-
mycin). Cells were incubated at 37 °C in a humidified
atmosphere of 5% CO,. Antibodies against ELK-1
(BM0191) and phospho-ELK-1 (BM1095) were pur-
chased from Abzoom Biolabs, Inc. (Dallas, TX, USA).
Antibodies against MEK1/2 (#9122) and phospho-ERK1/
2 (#9101) were purchased from Cell Signaling Technol-
ogy (Beverly, MA, USA). Antibodies against ERK1 (sc-
94), ERK2 (sc-154), and GAPDH (sc-32233) were from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). Anti-
bodies against CDC25a (DP0870), phospho-CDC25a
(DP0150), FOXO3a (DR1805), and phospho-FOXO3a
(DP0315) were from UcallM Biotechnology Co., Ltd.
(Wuxi, China). Antibodies against GFP (AG281), GST
(AG768), and Histone H3 (AH433) were purchased from
Beyotime Institute of Biotechnology (Jiangsu, China).

Cell transfection

Cell transfection was performed using Lipofectamine
2000 (Invitrogen—Life Technologies, Carlsbad, CA, USA)
using the manufacturer’s instructions.

Confocal and image analysis

The cultured cells were plated on coverslips and trans-
fected with plasmids. After transfection for 48 h, the
cells were washed with PBS, fixed in 4% paraformalde-
hyde (PFA) at room temperature for 30 min, and incu-
bated with 0.1% Triton X-100 in PBS for 10 min.
Nuclear staining was performed with DAPI (Beyotime
Institute of Biotechnology, Jiangsu, China). Coverslips
were mounted and examined using a confocal laser
scanning microscope (UltraView, Perkin Elmer, Cam-
bridge, UK). Images were analyzed with Image] v1.440
(National Institutes of Health, Bethesda, MD).

Immunoprecipitation

Lysates in RIPA buffer were incubated with antibody
(0.3-0.6 mg) overnight at 4 °C with gentle rotation. A
total of 80 ml of protein A Sepharose CL-4B beads (for
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2 activation of ERK1/2

Proliferation
Invasion

Fig. 8 Schematic diagram of LRRC4 as a tumor suppressor in glioblastoma. The MEK/ERK/MAPK pathway is one of the most frequently aberrantly
activated signaling pathways, and LRRC4 is an important tumor suppressor and has decreased expression in glioblastoma. Ectopic expression of
LRRC4 abrogates the MEK1/2-ERK1/2 interaction. LRRC4 competitively inhibits the binding of ERK1/2 with MEK1/2 and prevents the
phosphorylation of ERK1/2 and nucleus translocation. This further suppresses the ERK-mediated activation of the downstream transcripts to inhibit
cell proliferation and invasion. In glioblastoma, the decrease or loss of LRRC4 failed to block the ERK 1/2-MEK 1/2 interaction and prevents MEK1/

rabbit immunoglobulin G [IgG]) or protein G Sepharose
CL-4B beads (for mouse IgG) was added to the tubes
and rotated at 4 °C for 2 h. Beads were precipitated by
centrifugation at 16,000xg for 30 s and washed three
times with cold RIPA buffer containing 150 mM NaCl.
The pellets were resuspended in 2x Laemmli buffer and
incubated at 100 °C for 5 min. The supernatants were
used for western blot analysis.

Western blotting

For total cell lysates, cells were lysed in lysis buffer that
contained 25 mM Tris (pH 7.4), 2 mM NaVO,, 10 mM
NaF, 10 mM Na,P,0,, 1 mM EGTA, 1 mM EDTA, and
1% NP-40. A protease inhibitor cocktail and PhosSTOP
were added fresh to the lysis buffer before each experi-
ment. Equivalent concentrations of protein (ranging 1-
3 mg/ml) from each sample were placed in 1.5-ml tubes.

Proteins were denatured in 1x Laemmli buffer by boiling
at 100 °C for 5 min. The tubes were incubated at room
temperature for 15 min before separation using SDS-
PAGE. After resolving the proteins in SDS-PAGE, they
were transferred onto a polyvinylidene fluoride (PVDEF)
membrane. The membrane was blocked in Tris-buffered
saline (TBS; pH 7.4) with the 10% blocking reagent pro-
vided with the BM Chemiluminescence Blotting Sub-
strate (POD) assay system for 1 hr, followed by
incubation with primary antibody in TBS-Tween (TBST;
pH 7.4) with 5% blocking reagent at 4 °C overnight.
After the incubation, the membrane was washed three
times in TBST, followed by incubation with secondary
antibody in TBST 10% blocking reagent for 1 h, and
washed again in TBST (three times for 20 min). Immu-
noblots were developed using ChemicalDoc™ XRS+
(Bio-Rad, Berkeley, CA, USA). The intensity of the
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protein bands was quantified using Quantity One soft-
ware (Bio-Rad, Berkeley, CA, USA).

GST pull-down assay

Bacterial cells were lysed using the following buffer:
20 mmol/L Tris-Cl, 150 mmol/L NaCl, 2 mmol/L EDTA,
0.5% NP40, pH 7.5. To determine the interaction be-
tween the D domain (CD domain) and ERK1/2 (LRRC4),
bacterial lysates containing GST-D domain were incu-
bated with glutathione-Sepharose 4B beads at 4 °C for
1 h. The beads were washed and incubated with bacter-
ial cell lysates containing ERK1/2 (LRRC4), allowing the
interaction between GST-D domain (GST-CD domain)
and ERK1/2 (LRRC4). After washing, the GST-D domain
and the bound ERK1/2 were eluted from the beads and
subjected to electrophoresis.

Nuclear protein extraction

For nuclear protein extraction from cells in 6 cm plates,
cells were removed from the dishes by scraping with
300 ml of cytoplasmic lysis buffer (10 mM HEPES
[pH 7.5], 2 mM MgCl,, 1 mM EDTA, 1 mM EGTA,
10 mM KCl, 10 mM NaF, 0.1 mM NazVO,, protease in-
hibitor cocktail, and PhosSTOP). Following 15 min of
incubation on ice, 25 ml of 10% NP-40 was added and
vortexed for 10 s. The cells were centrifuged for 1 min
at 16,000xg, and supernatants were collected to obtain
the cytoplasmic fractions. The pellets were resuspended
in 200 ml of nuclear lysis buffer (25 mM HEPES
[pH 7.5], 500 mM NaCl, 10 mM NaF, 10% glycerol, 0
2% NP-40, 5 mM MgCl,, and 10 mM dithiothreitol
[DTT]). RIPA buffer was used instead of nuclear lysis
buffer for immunoprecipitation experiments. The sus-
pension was incubated on ice for 30 min. During this in-
cubation, lysates were vortexed every 10 min. Finally,
cells were centrifuged for 10 min at 16,000xg to obtain
nuclear proteins. For nuclear extraction from liver tis-
sues, 50 mg of liver tissue was cut in small pieces and
washed once with ice-cold PBS. Nuclear proteins were
isolated using a commercially available kit from Pierce
according to the manufacturer’s instructions, with no
modifications.

CCK8 assay

Cell viability was determined with CCK8 assays. Briefly,
2000 cells/well were seeded into 96-well plates and were
treated by plasmid vector transient transfection, and the
absorptions of the cells were measured using a CCK8 kit
(Beyotime Institute of Biotechnology, Jiangsu, China) ac-
cording to the manufacturer’s instruction at different in-
dicated time points. Data were derived from three
separate experiments with four replicates each time.
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Matrigel chamber invasion assay

Diluted matrigel (BD Biosciences) was added to the
upper well of the Transwell chamber (Corning Inc.,
Corning, NY) and reconstituted for 1 h at 37 °C. The
cells were starved overnight in serum-free medium
and resuspended at a concentration of 2.5x10° cells/
ml in serum-free medium containing 0.1% bovine
serum albumin. Then, 0.2 ml cell suspension was
added to the top of each well, and a 10 mg/ml fibro-
nectin solution was added to the bottom well of the
chamber as a chemoattractant. After 36 h, the cells
that had not invaded were removed from the upper
surface of the filters using a cotton swab. The cells
that had invaded to the lower surface of the filter
were fixed with methanol and stained with H&E, and
5 random fields (409) were counted. The data are
expressed as the mean value of cells per field in trip-
licate in two independent experiments.

Statistical analysis

All experiments were performed three times, and the
data were analyzed with GraphPad Prism 5 (La Jolla,
CA, USA). Differences between the variables of the
groups were tested using Student’s ¢ test or one-way
ANOVA, using the SPSS 15.0 program. A p-value of
<0.05 was statistically significant.

Additional file

Additional file 1: Figure S1. LRRC4 inhibits ERK-mediated activation of
the downstream substrates to inhibit U87 cell proliferation via the D do-
main. (TIF 14723 kb)
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