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Abstract

Shuttling of specific proteins out of the nucleus is essential for the regulation of the cell cycle and proliferation of
both normal and malignant tissues. Dysregulation of this fundamental process may affect many other important
cellular processes such as tumor growth, inflammatory response, cell cycle, and apoptosis. It is known that XPO1
(Exportin-1/Chromosome Region Maintenance 1/CRM1) is the main mediator of nuclear export in many cell types.
Nuclear proteins exported to the cytoplasm by XPO1 include the drug targets topoisomerase lla (topo lla) and
BCR-ABL and tumor suppressor proteins such as Rb, APC, p53, p21, and p27. XPO1 can mediate cell proliferation
through several pathways: (i) the sub-cellular localization of NES-containing oncogenes and tumor suppressor
proteins, (ii) the control of the mitotic apparatus and chromosome segregation, and (iii) the maintenance of
nuclear and chromosomal structures. The XPO1 protein is elevated in ovarian carcinoma, glioma, osteosarcoma,
pancreatic and cervical cancer. There is a growing body of research indicating that XPO1 may have an important role
as a prognostic marker in solid tumors. Because of this, nuclear export inhibition through XPO1 is a potential target for
therapeutic intervention in many cancers. The best understood XPO1 inhibitors are the small molecule nuclear export
inhibitors (NEls; Leptomycin B and derivatives, ratjiadones, PKF050-638, valtrate, ACA, CBS9106, selinexor/KPT-330, and
verdinexor/KPT-335). Selinexor and verdinexor are orally bioavailable, highly potent, small molecules that are classified

Cancer treatment

as Selective Inhibitors of Nuclear Export (SINE). KPT-330 is the only NEI currently in Phase I/l human clinical trials in
hematological and solid cancers. Of all the potential targets in nuclear cytoplasmic transport, the nuclear
export receptor XPO1 remains the best understood and most advanced therapeutic target for the treatment of cancer.
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Introduction

Export of mRNA and specific proteins from the nucleus
is a key step in intracellular signaling and can lead to cell
proliferation or apoptosis [1]. Cancer cells utilize the
processes of nuclear-cytoplasmic transport through the
nuclear pore complex to stimulate tumor growth and to
effectively evade apoptotic mechanisms [1]. It is known
that XPO1 (Exportin-1/Chromosome Region Maintenance
1/CRM1) is the main mediator of nuclear export in many
cell types. XPO1 interacts with nucleoporins (NUP214 and
NUP88) in the nuclear pore complex [2] and transports
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cargo proteins containing nuclear export signals (NES)
out of the cell nucleus [3]. NES are short leucine-rich
sequences that can be found in many shuttling proteins, in-
cluding numerous tumor suppressors and oncogenes [3]
(see NESdb database; http://www4.utsouthwestern.edu/
chooklab/resources.htm). XPO1 protein mediates cell pro-
liferation through several pathways: (i) the sub-cellular
localization of NES-containing oncogenes and tumors
suppressor proteins, (ii) the control of the mitotic apparatus
and chromosome segregation, and (iii) the maintenance of
nuclear and chromosomal structures.

The level of XPO1 protein remains constant through-
out the cell cycle [4] and is mainly localized to the nu-
clear envelope in highly specialized cellular bodies called
CRM1 nucleolar bodies (CNoBs) [5,6]. CNoBs depend on
RNA polymerase I activity, indicating a role in ribosome
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biogenesis [7]. Shuttling of specific proteins out of the nu-
cleus is essential for the regulation of cell cycle and prolif-
eration of both normal and malignant tissues [8-11].
Examples of nuclear effectors which are exported into the
cytoplasm in cancer include the drug targets topoisomer-
ase Ila [12] and BCR-ABL [13] and tumor suppressor pro-
teins such as Rb [14], APC [15], p53 [16], p21 [17], and
p27 [18] (reviewed in Table 1). This makes nuclear export
inhibition a potential target for therapeutic intervention in
cancer [19,20].

Prognostic role of XPO1 in solid tumors
The XPOL1 protein is elevated in ovarian carcinoma, gli-
oma, osteosarcoma, pancreatic, cervical and gastric can-
cers and may have an important role as prognostic marker
in solid and hematologic tumors [11,21-28]. XPO1 protein
expression is increased in osteosarcoma when compared
to non-tumor tissue [23]. High serum levels of alkaline
phosphatase (ALP) are associated with increased expres-
sion of XPO1. From a clinical point of view, elevated ex-
pression of XPO1 is associated with increased tumor size
and negative histological grade. High XPO1 protein ex-
pression is correlated with both poor progression-free
(PFS) and overall survival (OS) in human osteosarcoma.
In ovarian [21] and cervical cancer [25], increased XPO1
nuclear and cytoplasmic protein expression was observed
in malignant tissues when compared to benign lesions.
XPOL1 protein was also found differentially expressed in
borderline tumors with respect to malignant ovarian can-
cer [21]. These findings suggest a continuum of expression
from benign to malignant lesions encompassing more
favorable outcomes for cervical cancer patients [25].
Cytoplasmic XPO1 protein expression was correlated with
increased mitotic index, more aggressive tumor growth,
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advanced tumor stage, and poor OS [25]. XPO1 was
shown to export COX-2 from the nucleus [29]. Jang
and colleagues suggested that elevated expression of the
XPO1 protein may cause COX-2 up-regulation [29]. In
cervical cancer cell lines, silencing of the XPO1 protein by
RNA interference resulted in increased cell death. This ef-
fect was found to be correlated with nuclear retention of
p53 [16,29,30].

In patients suffering from Stage I and II pancreatic
cancer, increased XPO1 protein expression was detected
in malignant tissues [24]. Serum CEA and CA19.9 levels,
two well-known prognostic markers in pancreatic can-
cer, correlated with increased XPO1 protein expression
in human tissues. In addition, tumor size and presence
of distant metastasis also correlated with increased levels
of XPO1 protein. Therefore, it may be possible to use
high XPO1 expression as a clinical parameter for predicting
poor PFS and OS in pancreatic cancer. High XPO1 protein
expression was significantly associated with high expression
of phospho-serinel0-p27, but reduced abundance of p27.
Increased XPOL1 led to increased cytoplasmic localization
and degradation of p27, while phospho-serinel0-p27 was
resistant to XPO1-mediated nuclear export. Considered
together, these results provide direct evidence of XPO1
nuclear export of p27 in pancreatic cancer.

A prognostic role of the XPO1 protein was established
in gastric cancer (GC) [28]. A higher XPO1 expression
rate (57.8%) was found in tissue derived from malignant
lesions when compared to adjacent noncancerous tissues
(6.7%). XPO1 protein expression was correlated with in-
creased serum level of CEA, more advanced tumor stages,
positive Her2 status, and distant metastasis. Using multi-
variate analysis, it was determined that high XPO1 expres-
sion was an independent indicator for GC survival.

Table 1 Molecular consequences associated with XPO1 inhibition

Target (nuclear accumulation) Biological effects References
Cyclin D1 Protein degradation, reduction of cell proliferation and increased apoptosis [17,31]
p21 Reduction of cell proliferation [17]
p27 Reduction of cell proliferation [18,34]
p53 Restoration of nuclear p53 and p53-mediated response to stress [16,30,33,59]
FOXO proteins Activates the transcription of genes that promote cell cycle arrest, apoptosis and [30,34-39]
down-modulate Wnt/B-catenin signals
IkB Attenuates constitutively activated NF-kB and causes apoptosis in cancer cells [40-42]
BRCA1 Resistance versus PARP inhibitors [43-45]
Survivin Increased apoptosis [46-51]
Fow?7 Degrades nuclear Notch-1 leading to decreased tumor promoting markers such [52]
as C-Myc, Cyclin-D1, Hes1 and VEGF.
Topo lla Sensitization to Topoisomerase Il poisons [53]
Nucleophosmin Once within the nucleus it could, in principle drive Bax translocation. [54-56]
FAS activation Activation of intrinsic apoptosis pathway [57,58,60,61]
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Molecular signals associated with XPO1 inhibition

The physical separation of the genome from the cyto-
plasm by the nuclear envelope (NE) is a hallmark of the
eukaryotic cell requiring the transport of macromole-
cules across the nuclear membrane to mediate their nor-
mal functions (Figure 1la). It is known that intracellular
localization is deregulated in cancer [10,11] (Figure 1b).
Targeting nucleo-cytoplasmic transport could restore
normal localization and function of tumor suppressor
and oncoproteins (Figure 1c). The targeting of XPO1 by
nuclear export inhibitors (NEI) induces apoptosis in
cancer cell lines and slows tumor growth in xenograft
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mouse models. There are many different mechanisms
which achieve this in cancer cells [16-18,31-61]. These
mechanisms are highlighted in Table 1.

Small molecule nuclear export inhibitors (NEls) and
anti-cancer activity

Of all the potential targets in nuclear-cytoplasmic trans-
port, the nuclear export receptor XPO1l remains the
most promising therapeutic target. Figure 2 summarizes
some of the small molecule nuclear export inhibitors
(NEIs) described in this review. Leptomycin B (LMB;
Figure 2a) is the first specific NEI discovered [62]. LMB
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(c) Inhibition of nuclear export by NEIs in cancer cells.

Figure 1 Nucleo-cytoplasmic transport as therapeutic target in cancer. The balance of nuclear transport in (a) normal and (b) cancer cells.
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is a small molecule capable of disrupting protein-protein
interactions that are typically difficult to target. When
therapeutically evaluated in a single Phase I clinical trial
in humans, LMB was found to exhibit severe dose-limiting
toxicity, resulting in profound anorexia and malaise, which
are potentially off-target effects [63]. In attempts to reduce
the potential off-target effects of LMB, different derivatives
were developed with improved pharmacological properties
(Figure 2b) [64-72]. Several different natural products as
well as semi-synthetic and synthetic compounds were
identified, although they have not been tested in humans.
The long LMB lactone polyketide almost fills up the NES
groove lengthwise and XPO1 adopts a conformation that is
an intermediate space between open and closed conforma-
tions [73]. The polyketide of LMB interacts hydrophobically
with the same XPO1 groove residues that contact NES se-
quences. LMB analogs, anguinomycins (Figures 2c and d)
display selective cytotoxicity against transformed cells at
picomolar concentrations [65]. A truncated anguinomycin
analog was still capable of blocking nuclear export [64].
Based on these findings, goniothalamin (Figure 2e) was
identified as a nuclear export inhibitor [66]. A medicinal
chemistry approach using a modified LMB yielded several
semi-synthetic LMB derivatives which maintained the
high potency of LMB, but were up to 16-fold less toxic
than LMB in vivo [64]. The most potent derivative, KOS-
2464 (Figure 2f), showed substantial efficacy in multiple

mouse xenograft models, without affecting normal lung fi-
broblasts [64]. Furthermore, the treatment of several p53
wild-type cell lines with this potent derivative led to the
up-regulation and nuclear localization of p53 [64]. These
data suggest that toxicity associated with LMB may be
linked to off-target effects and provides proof that nuclear
export can be inhibited with manageable toxicities in vivo.

Anti-cancer/anti-fungal XPO1 inhibitors have been iso-
lated from myxobacterium Sorangium cellulosum in a
soil sample collected in Cala Ratjada (Mallorca, Spain) by
Hofle, Reichenbach and others in 1995 [67-71]. Ratjadones
(Figure 2g and h) have similar chemical structures to LMB
and employ an identical molecular mechanism to inhibit
XPO1 [67-69]. Cells treated with ratjadones manifest a
significant increase in the size of their nuclei, further indi-
cating an effective block of nuclear export [68]. Cell-cycle
analysis of these cells showed that ratjadone compounds
arrest the cells in G1 phase [70]. Synthetic ratjadone ana-
log C (Figure 2h) inhibits nuclear export of topo Ila and
sensitizes drug-resistant human multiple myeloma cells
to the topo Ila inhibitors doxorubicin and etoposide
when used at nanomolar concentrations [72]. There-
fore, blocking XPO1 nuclear export may sensitize can-
cer cells either by preventing export of additional
tumor suppressors or by preventing cell cycle progres-
sion. To date, ratjadones compounds have not been
tested in vivo.
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Daelemans et al. identified the synthetic small molecule
PKF050-638 (Figure 2i) with a molecular mass of 292.7
kDa that reversibly disrupts XPO1-NES interaction in the
micromolar range and demonstrates strict structural re-
quirements for its activity [74]. Structural studies on
PKF050-638 indicated XPOL1 inhibition and highlighted
that the activity of these compounds was not solely corre-
lated to the targeted cysteine in XPO1. This suggests that
more structural elements in the NES binding domain are
involved [74].

Other natural compounds that bind to Cysteine 528 of
XPOlwere identified, including valtrate (Figure 2j) and
acetoxychavicolacetate (ACA; Figure 2k) isolated from
Valeriana faurieiand Alpiniagalangal, respectively [75,76].
Although valtrate and ACA were developed as anti-viral
compounds, they might be useful as anti-cancer agents.

An orally-active synthetic small molecule, CBS9106
(Figure 21), which reversibly blocks XPO1-mediated nu-
clear export, is currently being developed as a preclinical
anti-cancer agent [77]. Its mechanism of action remains
to be fully elucidated. CBS9106 is able to reduce XPO1
protein levels without affecting its mRNA expression. This
effect is reversed by adding bortezomib, suggesting that
CBS9106-mediated XPO1 inhibition results in proteasome-
dependent XPO1 degradation. XPO1 protein degradation
mediated by CBS9106 encompasses are large portion of
the inhibitory activity of this compound [77,78]. In cells,
CBS9106 caused a reversible arrest of the cell cycle and
induced apoptosis in a time- and dose-dependent manner
across a broad spectrum of cancer cells. Oral administra-
tion of CBS9106 suppressed tumor growth and prolonged
survival in myeloma-bearing mice without causing signifi-
cant weight loss [77]. A reduced level of XPO1 protein
was also observed in tumor xenografts isolated from
CBS-9106-treated mice. Toxicology studies will need to
be completed in order to determine whether this prom-
ising pre-clinical candidate could be advanced to human
clinical trials.

Selective Inhibitors of Nuclear Export (SINE™)

The use of novel computational methods has recently facili-
tated the discovery of orally-bioavailable and highly-potent
small molecules classified as Selective Inhibitors of Nuclear
Export (SINE) [79]. The most advanced molecule in this
series, selinexor (KPT-330; Figure 2m) is currently in Phase
I/II clinical trials [80-89]. X-ray crystal structures of various
SINE compounds were elucidated and indicate that they co-
valently bind to Cysteine 528 of XPO1 in a slowly-reversible
and highly-selective manner (KPT-185; Figure 2n) [90,91].
SINE compounds showed broad activity when tested in
in vitro cytotoxicity experiments in hematological and solid
tumor cell lines. In these experiments, the ICs, values
ranged from 20 to 2000 nM with 95% of the cells tested
having ICsy values below 500 nM. There was minimal
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toxicity to normal cells, indicating that the cytotoxicity of
SINE compounds specifically targets malignant cells [90,91].

SINE compounds were able to overcome the protect-
ive micro-environment effects in studies using multiple
myeloma and chronic lymphocytic leukemia cell viability
assays conducted in the presence of bone marrow stro-
mal cells (BMSC) [90,92]. The in vivo efficacy of SINE
compounds was established in numerous pre-clinical
murine xenograft, orthotopic, primagraft, and leukemo-
graft models [26,61,90-102]. SINE compounds displayed
single-agent activity and provided a statistically significant
survival advantage in hematological malignancies, specific-
ally in models of non-Hodgkin lymphoma, chronic lympho-
cytic leukemia, acute myeloid leukemia, acute lymphocytic
leukemia, and multiple myeloma [26,90-96]. Selinexor also
demonstrated robust single-agent efficacy in solid tumour
xenografts including kidney, pancreas, prostate, breast,
lung, melanoma, colon, gastric, ovarian, neuroblastoma,
and sarcomas [61,97-105]. Marked synergy was observed
when selinexor was used with a variety of chemotherapies
and targeted therapies including platinum and taxanes
[60], topoisomerase I and II inhibitors [53,106], dexa-
methasone [87], cytarabine [107], proteasome inhibitors
[53], and various tyrosine kinase inhibitors (TKIs) [108].

A structurally-related SINE compound, verdinexor
(KPT-335; Figure 20), is currently being developed for
canine lymphoma [109-112]. Verdinexor has shown po-
tent cytotoxic activity in canine NHL and melanoma cells
when administered 2-3 times a week to companion dogs
with spontaneously-occurring B- and T-cell lymphomas.
Lymphomas are some of the most common malignancies
in companion dogs and the diseases are characterized by
rapid progression; dogs may live up to only a few weeks if
left untreated [109]. In Phase I/II canine clinical trial in
companion dogs with NHL (naive or relapsed), verdinexor
was orally administered at doses of 1.0 — 1.75 mg/kg and
was generally very well-tolerated, with anorexia as the
most common toxicity indicator [112]. In the Phase II
study, verdinexor displayed single-agent activity with an
overall objective response rate of 34% (20/58 dogs). This
included 19 partial responses and one complete response
(in a dog with T-cell lymphoma).

First human Phase I studies of selinexor in advanced
hematological and solid malignancies were initiated as of
June 2012 (clinicaltrials.gov). Selinexor was orally admin-
istered 2-3 times per week in doses between 3 and 85
mg/m®. Selinexor was rapidly absorbed and showed dose-
proportional pharmacokinetics with no accumulation.
Preliminary results suggest that selinexor is generally well-
tolerated, with nausea, anorexia and fatigue being the
primary side-effects. Side-effects were mostly Grade I and
II in nature, reversible and manageable with supportive
care. In line with the pre-clinical animal model results
mentioned above, preliminary signals of efficacy were
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observed particularly with hematological malignancies
including AML, CLL, NHL, and MM [80-82]. For solid
malignancies, selinexor also displayed single-agent activity
in prostate [88], ovarian [84,85], cervical [84], and colorec-
tal [83,84] cancers and showed prolonged disease control
in patients with head and neck cancer [89], as well as sar-
coma [86]. Based on the encouraging results from the
Phase I studies, several Phase II studies of selinexor have
been initiated in patients with AML, GBM, melanoma,
prostate, ovarian, cervical, and endometrial malignancies
(a complete list of the on-going clinical trials is available
at clinicaltrials.gov). Taken together, these results suggest
that selinexor can be safely administered for prolonged
periods to heavily pre-treated, relapsed and/or refractory
patients with manageable side-effect profiles.

Conclusions

Nuclear import and export is a highly-coordinated process
involving numerous proteins and large complexes working
in concert at the nuclear envelope. This process deli-
cately balances cell growth and death mechanisms in
cells. One of the central proteins in nuclear export is
XPO1, or exportin-1. XPO1 mediates cell proliferation
through several pathways: (i) the subcellular localization
of NES cargoes, (ii) the control of the mitotic apparatus
and chromosome segregation, and (iii) the maintenance of
nuclear and chromosomal structures. Nuclear export
through XPO1 is up-regulated in different cancer types
and may be used as prognostic indicator. XPO1 dysregula-
tion of intracellular localization of crucial suppressors and
oncogenic proteins (p53, Rb, FOXO, p21, IkB, NFkB, and
others) contributes to cancer development and progres-
sion. Because of this, XPO1 represents a pre-clinical and
clinical target under active investigation.

To date, numerous small molecule NEIs have been de-
veloped. Selinexor represents the most advanced pharma-
cological agent currently being evaluated in Phase I/II
human clinical trials in hematological and solid cancers.
Although interfering with nuclear-cytoplasmic transport
machinery could be detrimental to all active cells, SINE
compounds have been shown to preferentially suppress or
eliminate tumor cells and spare normal cells both in the
pre-clinical and clinical setting. Continued evaluation of
selinexor will establish the safety of targeting nuclear ex-
port through XPO1 and help pave the way for targeting
other keystone cellular processes.
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