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Abstract 

A growing body of evidence suggests that intractable pain reduces both the quality of life and survival in cancer 
patients. In the present study, we evaluated whether chronic pain stimuli could directly affect cancer pathology 
using tumor-bearing mice. For this purpose, we used two different models of chronic pain in mice, neuropathic pain 
and persistent postsurgical pain, with Lewis lung carcinoma (LLC) as tumor cells. We found that tumor growth was 
dramatically promoted in these pain models. As well as these pain models, tumor growth of LLC, severe osteosarcoma 
(AXT) and B16 melanoma cells was significantly promoted by concomitant activation of sensory neurons in AAV6-
hM3Dq-injected mice treated with the designer drug clozapine-N-oxide (CNO). Significant increases in mRNA levels 
of vascular endothelial growth factor-A (Vegfa), tachykinin precursor 1 (Tac1) and calcitonin-related polypeptide alpha 
(Calca) in the ipsilateral side of dorsal root ganglion of AAV6-hM3Dq-injected mice were observed by concomitant 
activation of sensory neurons due to CNO administration. Moreover, in a model of bone cancer pain in which mice 
were implanted with AXT cells into the right femoral bone marrow cavity, the survival period was significantly pro-
longed by repeated inhibition of sensory neurons of AAV6-hM4Di-injected mice by CNO administration. These find-
ings suggest that persistent pain signals may promote tumor growth by the increased expression of sensory-located 
peptides and growth factors, and controlling cancer pain may prolong cancer survival.
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Introduction
Cancer pain is caused by pressure from the tumor on 
bones, nerves, or other organs in the body [1]. Cancer 
treatment, such as surgery, radiation therapy or chemo-
therapy, may also produce pain [1, 2]. In late-stage can-
cer, bone metastases often produce even more severe 
pain [3, 4]. Cancer pain may be difficult to manage 
because it can be caused by a variety of factors. It has 
been reported that more than half of cancer patients 
experience pain, and in the late stage most cancer 
patients experience moderate to severe pain [5, 6]. 
Recent studies have shown that persistent pain reduces 
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patients’ quality of life (QOL) and decreases survival 
rates in a variety of diseases [7–11]. These reports sug-
gest that cancer pain contributes to worsening of the 
cancer pathology. Furthermore, among patients with 
metastatic non-small-cell lung cancer, early palliative 
care can lead to significant improvements in QOL [12]. 
However, while pain relief is a critical component of 
care for cancer patients, pain is often not easily relieved 
by currently available drug therapies.

It has recently been documented that peripheral 
nerves extend into the tumor tissue and play a role in 
the control of cancer progression [13, 14]. These sen-
sory neurons are also believed to partly correspond to 
tumor progression by interacting with various cells that 
constitute the tumor microenvironment [15].

In the present study, we investigated whether persis-
tent pain stimuli could aggravate cancer pathology in 
tumor-bearing mice. Additionally, we also evaluated 
whether concomitant activation of sensory neurons 
by chemogenetic manipulation could lead to changes 
in sensory neurons of tumor-bearing mice. Finally, we 
demonstrated whether the repeated inhibition of sen-
sory neurons could improve the survival period in a 
model of bone cancer pain.

Materials and methods
Animals
Male C57BL/6J mice (6–23  weeks old) (Tokyo Labo-
ratory Animals Science Co., Ltd., Tokyo, Japan) used 
in the present study were allowed access to food and 
water ad  libitum and maintained on a 12 h:12 h light/
dark cycle (light on at 8 a.m.) in a temperature- and 
humidity-controlled room (24 ± 1  °C, 55 ± 5%). All 
mice were housed in groups of 2–6 mice. All experi-
ments were conducted in accordance with the Guide 
for the Care and Use of Laboratory Animals of Hoshi 
University School of Pharmacy and Pharmaceutical 
Sciences, which is accredited by the Ministry of Educa-
tion, Culture, Sports and Technology of Japan.

Production of a model of neuropathic pain by sciatic nerve 
ligation
Under 3% isoflurane anesthesia (FUJIFILM Wako Pure 
Chemical Co. LTD, Osaka, Japan), tight ligation of the 
sciatic nerve in the right hind limb of mice was per-
formed by using 8-0 silk suture around approximately 
one-half of the diameter of the nerve, as previously 
described [16, 17]. In sham-operated mice, the sciatic 
nerve was just exposed but not ligated. To prevent 
dehydration after surgery, water and food were avail-
able ad libitum.

Creation of a model of persistent postsurgical pain 
by electrocautery
Under isoflurane anesthesia, a 3-mm longitudinal inci-
sion was made in the skin and fascia of the right hind paw 
of a mouse using a No. 23 scalpel blade from 3 mm from 
the proximal end of the heel to the toe. Next, with the use 
of a monopolar electrosurgery unit (at 50 W; Vetroson® 
V-10; Summit Hill Laboratories, NJ, USA) with a dis-
persive electrode pad placed under the mouse’s body, a 
3-mm longitudinal incision was made on the plantaris 
muscle, as previously described [18]. Electrocautery was 
performed while maintaining coagulation and hemosta-
sis of the incision during dissection. The skin was stitched 
with two mattress sutures of 7-0 nylon. In sham operated 
mice, the plantaris muscle was exposed without the inci-
sion, and the skin was stitched with a simple interrupted 
suture of 7-0 nylon.

Chemogenetic manipulation of sensory neurons
Under isoflurane anesthesia, a 1–2  cm longitudinal 
incision was made in the skin and the connective tis-
sue between the gluteus superficialis and biceps femoris 
muscles to expose the sciatic nerve in the right hind limb 
(ipsilateral side) of a mouse, as previously described [19]. 
Next, an internal cannula (Eicom Co., Kyoto, Japan) was 
inserted into the sciatic nerve and adeno-associated virus 
(AAV) vector was microinjected at 1  µL/min for 4  min 
(4 µL total volume) with a glass micropipette and an air 
pressure injector system (Micro-syringe Pump-Model 
ESP-32; Eicom Co.). After the surgical procedures, mice 
were intraperitoneally injected with clozapine N-oxide 
(CNO) (3  mg/kg, t.i.d., abcam, Cambridge, UK) for 
2  weeks. The following viruses were used in this study: 
AAV6-hSyn-hM3Dq-mCherry, AAV6-hSyn-hM4Di-
mCherry, AAV6-hSyn-EGFP and AAV6-hSyn-mCherry. 
AAV6-hSyn-EGFP and AAV6-hSyn-mCherry were used 
as a control vector. All of the viruses used in this study 
were kindly provided by Dr. Akihiro Yamanaka (Nagoya 
University, Nagoya, Japan).

Immunohistochemistry
Immunohistochemistry was performed according to 
a previously reported protocol [17]. Over 2  weeks after 
AAV injection, mice were anesthetized with 3% isoflurane 
and intracardially perfused with 4% paraformaldehyde 
in 0.1 M PBS (pH 7.4; PFA). After perfusion, the lumbar 
spinal cord and the lumbar dorsal root ganglion (DRG) 
were quickly removed and post-fixed with PFA and cryo-
protected in 20–30 (w/v) % sucrose (FUJIFILM Wako). 
The tissue sections were embedded in  an O.C.T.  com-
pound (Sakura Finetec USA. Inc., CA, USA), and the 
sections were cut on a cryostat (15  μm for spinal cord, 
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8–10 μm for DRG) (CM1860; Leica Microsystems, Hei-
delberg, Germany). The slices were blocked in 3% normal 
goat serum (NGS: Vector laboratories, Inc., CA, USA) or 
normal horse serum (Vector laboratories)/0.1–0.2% Tri-
ton X-100 in 0.01 M PBS or 5% NGS for 1 h at RT. Then 
incubated with the primary antibodies used were as fol-
lows: rabbit anti-mCherry (1:1000, abcam), chicken anti-
mCherry (1:2500, abcam), sheep anti-CGRP (1:1000, 
Enzo Life Sciences, PA, USA), rabbit anti-substance P 
(1:1000, ImmunoStar, WI, USA), goat anti-peripherin 
(1:50, Santa Cruz Biotechnology, TX, USA.) for 48  h at 
4 °C or 24 h at RT. Following washes, they were incubated 
in goat anti-rabbit Alexa 546 (1:10,000; Thermo Fisher 
Scientific Inc., MA, USA), goat anti-chicken Alexa 546 
(1:10,000; Thermo Fisher Scientific), donkey anti-sheep 
Alexa 488 (1:750; Thermo Fisher Scientific), chicken anti-
rabbit Alexa 488 (1:700; Thermo Fisher Scientific), don-
key anti-goat Alexa 488 (1:400; Thermo Fisher Scientific) 
conjugated secondary antibodies for 2 h at RT. Immuno-
fluorescence was detected by a light microscope (BX53, 
Olympus, Tokyo, Japan) and captured using a high-sen-
sitivity digital CCD camera (MD-695; Molecular Devices, 
CA, USA). Imaging analysis was performed using Meta-
morph 7.8 software (Molecular Devices).

Plantar test
The latency of the hind paw withdrawal in response to 
nociceptive stimulation was measured by focusing a ther-
mal stimulus on the plantar surface of the hind paw of 
mice using a thermal stimulus apparatus (model 33 Anal-
gesia Meter; IITC/Life Science Instruments, CA, USA) as 
described previously [20]. Before the experiments, mice 
were habituated for 1  h in an acrylic cylinder (15  cm 
height and 8 cm in diameter).

Measurement of mechanical allodynia
Mechanical allodynia was assessed by a plantar electronic 
von Frey Anesthesiometer (ALMEMO 2450 Ahlborn; 
IITC/Life Science). Briefly, a chip attached to the device 
was applied vertically to the plantar surface of the hind 
paw of mice, and the pressure (g) until the hind paw was 
flicked off was recorded as the pain threshold. Before this 
assessment, mice were habituated for 1  h in an acrylic 
cylinder (15 cm height and 8 cm diameter) on an elevated 
mesh floor.

Cell culture
Lewis lung carcinoma (LLC), LLC-luc and B16 mela-
noma (B16) cells were cultured in Minimum Essential 
Medium Alpha (α-MEM) (Thermo Fisher Scientific) sup-
plemented with 10% fetal bovine serum (FBS) (Thermo 
Fisher Scientific) and 1% penicillin/streptomycin 
(Thermo Fisher Scientific). LLC-luc cells were generated 

by infection of LLC cells with lentiviral vector express-
ing ff-Luc genes. Mouse severe osteosarcoma (AXT) cells 
were established as previously described [21, 22]. AXT 
cells and AXT-luc cells were cultured under 5% CO2 at 
37  °C in Iscove’s modified Dulbecco’s medium (IMDM) 
(Thermo Fisher Scientific) supplemented with 10% FBS.

Graft tumor growth assay
LLC, LLC-luc, B16 and AXT cells were counted 
after trypsinization and then resuspended in a mix-
ture of extracellular matrix gel (Sigma-Aldrich  Inc., 
MO, USA)  and Hank’s Balanced Salt Solution (HBSS) 
(Thermo Fisher Scientific) at a concentration of 5 × 105 
cells/0.15  mL as appropriate, according to a previously 
reported protocol [23, 24]. These suspensions in a vol-
ume of 0.15 mL were inoculated subcutaneously into the 
right thigh close to the sciatic nerve of mice under 3% 
isoflurane anesthesia. Tumor size was measured using a 
caliper and tumor volume was calculated as (L × W2)/2, 
where L = length and W = width.

Cancer pain model mice
To establish tumor xenografts, AXT-luc cells (1 × 106 
cells) suspended in 50 μL of IMDM were injected into the 
right femoral bone marrow cavity of syngeneic C57BL/6J 
mice, as previously described [16]. Briefly, the knee joint 
was flexed to 90° and the distal side of the femur was 
exposed by incising the skin. A 23-gauge needle was 
inserted into the bone marrow cavity to make a small 
hole, into which AXT-luc cells or medium alone were 
injected. All procedures were performed under inhala-
tional anesthesia with 3% isoflurane.

In vivo imaging system (IVIS)
Approximately 10  min before imaging, the substrate 
luciferin was injected into the intraperitoneally at 4.5 mg/
mouse (15  mg/ml, FUJIFILM Wako). Mice were anes-
thetized with isoflurane/oxygen and placed on the imag-
ing stage. Dorsal images were acquired using the IVIS® 
Lumina Series III (PerkinElmer Inc., MA, USA).

Quantitative reverse transcription polymerase chain 
reaction (RT‑qPCR)
RT-qPCR was performed according to our previous 
report [18]. For RT-qPCR analysis, total RNAs were 
isolated from the ipsilateral side of the mouse dorsal 
root ganglions (DRG) (L3–L5) and then first-strand 
cDNAs were synthesized. Glyceraldehyde 3-phosphate 
dehydrogenase (Gapdh) was used as an internal con-
trol. Additional file  1: Table  S1 represents a complete 
list of all primers used in this study.
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Statistical analysis
The results are shown as the mean ± standard error 
of the mean (S.E.M.). We analyzed and described the 
statistical significance of differences between groups 
according to an unpaired t-test and one-way or two-
way analysis of variance followed by the Bonferroni 
multiple comparisons test. The data were subjected 
to a comparative analysis by testing the null hypoth-
esis for the Pearson product moment correlation. For 
survival analysis, the Log-rank (Mantel-Cox) test was 
used. All statistical analyses were performed with 
Prism version 9.0 (GraphPad software, CA, USA).

Results
Effect of persistent pain induced by sciatic nerve ligation 
or paw electrocautery operation on tumor growth
We first investigated the influence of activated sensory 
neurons as a result of sciatic nerve ligation on tumor 
growth (Fig.  1A). We produced partial sciatic nerve 
ligation as a model of neuropathic pain. Next, to cre-
ate tumor-bearing mice, LLC cells were subcutaneously 
implanted around the sciatic nerve-ligated region at 
7 days after the operation. Under these conditions, the 
pain threshold and tumor volume in these mice were 
evaluated. As a result, a significant thermal hyperalge-
sia response was observed in the ipsilateral side of the 
sciatic nerve ligation group from 7 days after surgery by 
a plantar test (Fig. 1B, ***p < 0.001 vs. Sham + LLC/Ipsi). 
Under these conditions, tumor volume was significantly 
increased in the sciatic nerve ligation group at 20 days 
after LLC implantation compared to that in sham-oper-
ated mice (Fig. 1C, **p < 0.01 vs. Sham + LLC). Next, to 
investigate the effects on tumor growth in different pain 
models, we investigated the influence of activated sen-
sory neurons by electrocautery surgery of a hind paw 
as a model of persistent postsurgical pain on tumor 
growth (Fig. 1D). In the same experimental schedule as 
sciatic nerve ligation, LLC cells were implanted 7 days 
after surgery, and changes in pain thresholds and tumor 
volume were evaluated. A significant tactile allodynia 
was observed in the ipsilateral side of the electrocau-
tery group from 7  days after surgery by the von Frey 
test (Fig.  1E, ***p < 0.001 vs. Sham + LLC/Ipsi). Under 
these conditions, tumor volume was significantly 
increased in the electrocautery group at 18  days after 
LLC implantation compared to that in sham-operated 
mice (Fig. 1F, ***p < 0.001 vs. Sham + LLC).

Induction of transient hyperalgesia by chemogenetic 
manipulation of sensory nerves
AAV6-hSyn-hM3Dq-mCherry or control vector was 
injected into the sciatic nerves of mice. We confirmed 

the expression of hM3Dq-mCherry in the lumbar spi-
nal cord and DRG as the projection of sensory nerves 
over 2 weeks after AAV injection (Fig. 2A). In addition, 
the expression of hM3Dq-mCherry in the DRG of AAV-
injected mice was highly co-localized with markers for 
peptidergic C fiber neurons, calcitonin gene-related 
peptide (CGRP) and substance P (SP), and a marker for 
small unmyelinated C fiber and thinly myelinated Aδ 
fiber neurons, peripherin [25, 26] (Fig. 2B). Under these 
conditions, we found that the Gq-DREADD-mediated 
activation of sensory nerves by  CNO administration 
caused thermal hyperalgesia on the ipsilateral side, but 
not on the contralateral side, from 30 min to 10 h after 
CNO administration at over 2  weeks after AAV injec-
tion (Fig.  2C, ***p < 0.001 vs. Control vector/Ipsi). On 
the other hand, these mice did not show spontaneous 
pain-like behaviors (data not shown).

Effect on tumor growth under the chemogenetic 
manipulation of sensory nerves
After we confirmed that CNO administration induced 
pain, LLC cells were subcutaneously implanted around 
the sciatic nerve region over 2 weeks after AAV injec-
tion (Fig.  2D). At 7 and 14  days after LLC implanta-
tion, thermal hyperalgesia was observed at 30 min after 
CNO administration (Fig.  2E, ***p < 0.001 vs. Control 
vector/Ipsi). Under these conditions, the repeated 
administration of CNO significantly increased tumor 
volume in hM3Dq-expressing mice compared to that 
in control mice (Fig.  2F, **p < 0.01 vs. Control + LLC). 
Furthermore, to investigate the luminescence inten-
sity in tumors, LLC-luc cells were subcutaneously 
implanted around the sciatic nerve of AAV-injected 
mice. The luminescence of luciferase in tumors was 
induced by intraperitoneal administration of the ligand 
of luciferase, luciferin. Under these conditions, the 
luminescence intensity was dramatically increased in 
hM3Dq-expressing mice compared to that in control 
mice at 2  weeks after tumor implantation (Fig.  2G). 
In other tumor-bearing models, B16 cells and AXT 
cells, tumor volume was significantly increased in 
hM3Dq-expressed mice compared to those in control 
mice (Fig. 2H and I, H; **p < 0.01, ***p < 0.001 vs. Con-
trol + B16, I; *p < 0.05, **p < 0.01 vs. Control + AXT).

Influence of chemogenetic manipulation of sensory 
nerves on gene expression profiling of DRG neurons 
in tumor‑bearing AAV‑injected mice
The mRNA levels of vascular endothelial growth fac-
tor a (Vegfa), tachykinin precursor 1 (Tac1), encoding 
SP, and calcitonin-related polypeptide alpha (Calca), 
encoding CGRP, were significantly increased in the 
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Fig. 1  Persistent pain induced by sciatic nerve ligation or paw electrocautery operation promotes tumor growth. A Experimental timeline. B 
Changes in the pain threshold induced by sciatic nerve ligation under the tumor-bearing state, measured by a plantar test (n = 7–10, Two-way 
repeated measures ANOVA with the post-hoc Bonferroni test, ***p < 0.001 vs. Sham + LLC/Ipsi). Contra: Contralateral paw, Ipsi: Ipsilateral paw. C 
Quantitative analysis of tumor volume in the Sham + LLC and Ligation + LLC groups (n = 13–15, Two-way repeated measures ANOVA with the 
post-hoc Bonferroni test, **p < 0.01 vs. Sham + LLC). D Experimental timeline. E Changes in the pain threshold induced by paw electrocautery 
operation in the tumor-bearing state, measured by the von Frey test (n = 16, Two-way repeated measures ANOVA with the post-hoc Bonferroni test, 
***p < 0.001 vs. Sham + LLC/Ipsi). F Quantitative analysis of tumor volume in the Sham + LLC and Electrocautery + LLC groups (n = 16, Two-way 
repeated measures ANOVA with the post-hoc Bonferroni test, ***p < 0.001 vs. Sham + LLC)
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ipsilateral side of lumbar DRG at 15  days after LLC 
implantation in hM3Dq-expressing mice compared 
to those in control mice (Fig.  3A, *p < 0.05 vs. Con-
trol + LLC). Moreover, in the tumor-bearing condi-
tion, the mRNA level of Calca was significantly and 
positively correlated with tumor volume (Fig.  3B,  
r = 0.6108, p = 0.0203).

Influence of the suppression of sensory neurons 
on survival under a cancer pain‑state
To selectively inhibit the activity of sensory nerves, 
AAV-hSyn-hM4Di-mCherry or control vector was 
injected into the sciatic nerves of mice. We confirmed 
the expression of hM4Di-mCherry in the lumbar spi-
nal cord and DRG as the projection of sensory nerves, 
and also confirmed the co-localization with periph-
erin over 2  weeks after AAV injection (Fig.  4A and 
B). At this point, we implanted AXT-luc cells into the 
intrafemoral bone marrow of AAV-injected mice to 
produce a model of bone cancer pain (Fig.  4C). We 
found that the Gi-DREADD-mediated inhibition of 
sensory nerves via the administration of CNO signifi-
cantly inhibited thermal hyperalgesia on the ipsilateral 
side of AXT-luc implanted mice (Fig.  4D, *p < 0.05, 
**p < 0.01, ***p < 0.001, vs. Control vector + AXT-luc/
Contra, #p < 0.05, ###p < 0.001, hM4Di + AXT-luc/
Ipsi vs. Control vector + AXT-luc/Ipsi). Under these 
conditions, the survival period of hM4Di-expressing 
mice was significantly prolonged by the DREADD-
mediated inhibition of sensory nerves compared to 
that in control mice after tumor implantation (Fig. 4E, 
p = 0.0072).

Discussion
It has been reported that up to 40% of cancer patients 
suffer from neuropathic pain [27]. This cancer-related 
neuropathic pain is caused by both cancer treatments 
such as surgery or chemotherapy and tissue destruction 

due to tumor growth, leading to increases in pain inten-
sity and analgesic consumption, and to a reduced QOL 
[2, 27]. These reports suggest that neuropathic pain may 
correspond to the cancer pathology. In the present study, 
we first investigated whether persistent pain in a stand-
ard mouse model of neuropathic pain could affect tumor 
growth. We produced partial sciatic nerve ligation to 
induce neuropathic pain, and LLC cells were subcutane-
ously implanted around the sciatic nerve-ligated region at 
7 days after the operation. We found that tumor volume 
in sciatic nerve-ligated mice was significantly increased 
compared to that in sham mice, suggesting that sustained 
activation of sensory nerves under a neuropathic pain-
like state may promote tumor growth.

In general, the first choice for cancer treatment is sur-
gery, which frequently triggers postsurgical pain [28, 29]. 
Moreover, it has been reported that persistent postsur-
gical pain due to cancer surgery results in a poor prog-
nosis with less analgesic [30]. These findings suggest 
that perioperative pain management in cancer patients 
is important not only for preventing the persistence of 
postsurgical pain, but also for inhibiting cancer progres-
sion and worsening life expectancy. Therefore, we next 
used a model of persistent postsurgical pain induced 
by electrocautery [18] to further assess the influence of 
pain signaling on tumor growth. In the present study, the 
tumor volume in electrocautery-treated mice was sig-
nificantly increased compared to that in sham-operated 
mice. Taken together, the present results suggest that, 
regardless of the type of pain, accelerated tumor growth 
can be induced in the presence of persistent pain.

With the aim of producing painful stimuli without 
inflammation, we attempted to establish a model that 
could induce nerve firing specifically in sensory nerves 
according to a chemogenetic approach. As a result, the 
activation of both peptidergic C fibers and thinly myeli-
nated Aδ fibers by genetic manipulation with an AAV 
vector induced transient hyperalgesia when its specific 
ligand, CNO, was administered. Under these conditions, 

(See figure on next page.)
Fig. 2  Chemogenetic manipulation of sensory nerves promotes tumor growth. A Qualitative observation of hM3Dq-mCherry fluorescence in 
histological sections. hM3Dq-mCherry (red) was expressed in the lumbar spinal cord [scale bar: 100 μm (A-i)] and lumbar DRG [scale bar: 50 μm 
(A-ii)]. B Lumbar DRG sections were stained with antibodies specific for CGRP,  SP or peripherin (all shown in green). hM3Dq: red, overlay: yellow. 
Scale bars: 50 μm. C Changes in the pain threshold induced by the activation of sensory neurons of hM3Dq-expressed mice by CNO administration, 
measured by a plantar test (n = 6, Two-way repeated measures ANOVA with the post-hoc Bonferroni test, ***p < 0.001 vs. Control vector/Ipsi). 
D Experimental timeline. E Changes in the pain threshold induced by the activation of sensory neurons of hM3Dq-expressed mice by CNO 
administration under the tumor-bearing state, measured by a plantar test (n = 6, Two-way repeated measures ANOVA with the post-hoc Bonferroni 
test, ***p < 0.001 vs. Control vector/Ipsi). F Quantitative analysis of tumor volume in the Control + LLC and hM3Dq + LLC groups (n = 10, Two-way 
repeated measures ANOVA with the post-hoc Bonferroni test, **p < 0.01 vs. Control + LLC). G Bioluminescent images of LLC-luc tumor were used 
to determine the tumor size at two weeks after the implantation of LLC-luc cells. H Quantitative analysis of tumor volume in the Control + B16 and 
hM3Dq + B16 groups (n = 24–27, Two-way repeated measures ANOVA with the post-hoc Bonferroni test, **p < 0.01, ***p < 0.001 vs. Control + B16). 
I Quantitative analysis of tumor volume in the Control + AXT and hM3Dq + AXT groups (n = 10, Two-way repeated measures ANOVA with the 
post-hoc Bonferroni test, *p < 0.05, **p < 0.01 vs. Control + AXT)
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Fig. 2  (See legend on previous page.)
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we demonstrated that the tumor volume in hM3Dq-
expressing mice was dramatically increased compared 
to that in control mice, regardless of which cancer types, 
LLC, B16, or AXT cells, were used. These findings sug-
gest that tumor enlargement in many types of tumor cells 
could be induced by the prolonged hyperactivity of sen-
sory nerves.

To elucidate the mechanism of accelerated tumor 
growth driven by the hyperactivity of sensory neu-
rons, we performed transcriptome profiling in DRG 
neurons of hM3Dq-expressing mice by RT-qPCR. We 
found that the mRNAs of Vegfa, Tac1 and Calca were 
significantly increased in hM3Dq-expressing mice by 
the concomitant activation of sensory nerves. VEGF 
in the tumor microenvironment (TME) is well known 
to induce angiogenesis and contributes to tumor ini-
tiation, promoting cancer progression [31–33]. On the 

other hand, the functions of SP and CGRP in the TME 
were poorly understood. However, several recent stud-
ies have reported that both SP and CGRP may directly 
affect cancer progression [34–36]. In particular, it has 
been known that CGRP may promote tumor growth 
via activation of extracellular signal-regulated kinases 
(ERKs)/Signal transducer and activator of transcrip-
tion 3 (STAT3) signaling in cancer cells [37]. In fact, 
our result showed that there was a significant and 
strong positive correlation between the mRNA expres-
sion level of CGRP and tumor volume. These findings 
suggest that repeated activation of sensory nerves may 
facilitate tumor growth via an increase in the release of 
VEGF, SP and especially CGRP from sensory neurons 
at the TME.

Finally, we investigated whether the inhibition of sen-
sory nerve activity could improve the survival period in 
a model of bone cancer pain. We found that the thermal 
hyperalgesia induced by AXT-luc implantation into the 
intrafemoral bone marrow was significantly inhibited by 
the repeated administration of CNO. Under these con-
ditions, the survival period was prolonged by the DRE-
ADD-mediated inhibition of sensory nerves compared to 
that in control mice. Taken together, these findings sug-
gest that the neural activity of sensory neurons involved 
in pain transmission may play a crucial role in cancer 
survival.

Recently, centrifugal signals from the brain have been 
considered to be important for the regulation of systemic 
dynamics such as immune function [38]. In addition, it is 
widely accepted that pain signals are transmitted to the 
brain, and persistent pain may cause dysfunction of the 
central nervous system. Therefore, the activity in brain 
regions related to immune regulation could be affected 
under a state of persistent pain. Although this notion 
needs to be further verified by future studies, such cen-
tral and peripheral modulations may orchestrally con-
tribute to the promotion of tumor growth by persistent 
pain.

In conclusion, we demonstrated here that persistent 
pain signals promoted tumor growth in mice. Further-
more, activated sensory neurons in tumor-bearing mice 
may induce the increased expression of pain-related 
peptides, such as SP, CGRP, and VEGF in sensory neu-
rons, which could promote tumor growth. Moreover, we 
revealed that the inhibition of pain transmission was suf-
ficient to improve the survival period under severe can-
cer pain. These findings provide evidence that controlling 
the activity of sensory neurons at the early stage of can-
cer is a key strategy for cancer patients to suppress tumor 
progression.
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Fig. 3  Gene expression analysis of lumbar DRG in tumor-bearing 
mice. A The mRNA levels of Vegfa, Gdnf, Bdnf, Ngf, Tac1 and Calca in 
the lumbar DRG at 15 days after LLC implantation were measured 
by RT-qPCR (n = 7, unpaired t-test, *p < 0.05 vs. Control + LLC). B 
Correlation between the mRNA levels of Calca in the lumbar DRG 
at 15 days after LLC implantation and tumor volume (r = 0.6108, 
p = 0.0203). The data were subjected to a comparative analysis 
by testing the null hypothesis for the Pearson product moment 
correlation. Each dot represents an individual mouse, and the line 
represents the regression line
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