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Abstract 

Chronic postsurgical pain (CPSP) is a serious problem. We developed a mouse model of CPSP induced by electrocau-
tery and examined the mechanism of CPSP. In this mouse model, while both incision and electrocautery each pro-
duced acute allodynia, persistent allodynia was only observed after electrocautery. Under these conditions, we found 
that the mRNA levels of Small proline rich protein 1A (Sprr1a) and Annexin A10 (Anxa10), which are the key modula-
tors of neuropathic pain, in the spinal cord were more potently and persistently increased by electrocautery than 
by incision. Furthermore, these genes were overexpressed almost exclusively in chronic postsurgical pain-activated 
neurons. This event was associated with decreased levels of tri-methylated histone H3 at Lys27 and increased levels of 
acetylated histone H3 at Lys27 at their promoter regions. On the other hand, persistent allodynia and overexpression 
of Sprr1a and Anxa10 after electrocautery were dramatically suppressed by systemic administration of GSK-J4, which 
is a selective H3K27 demethylase inhibitor. These results suggest that the effects of electrocautery contribute to CPSP 
along with synaptic plasticity and epigenetic modification.
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Introduction
Pain, which is a common medical problem, is an unpleas-
ant sensation caused by illness or injury. Although acute 
pain itself alerts us to the presence of noxious stim-
uli, persistent pain does not provide a similar warning 

function. Chronic pain is defined as pain that lasts longer 
than several months, and can be caused by various fac-
tors (e.g., tissue injuries, aging accompanied by joint and 
bone damage, nerve injuries and surgical incisions) [1]. 
Such ongoing pain, which is resistant to medical treat-
ment, reduces the patient’s quality of life (QOL) and 
could be a risk factor for depression [2, 3]. Thus, prevent-
ing the development of chronic pain is an important tac-
tic for improving the QOL of patients.

In most cases, acute postsurgical pain, which is a form 
of nociceptive pain that is temporarily observed after 
surgery, can be controlled by analgesic medications and 
disappears with healing. On the other hand, chronic 
postsurgical pain (CPSP) is believed to be associated with 
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nerve injury during surgery [4]. However, the mechanism 
that underlies the establishment of CPSP after surgery 
remains unclear, and options for the treatment of CPSP 
are far from satisfactory.

Electrocautery is a well-known routine surgical pro-
cedure that enables faster surgeries, achieves better 
hemostasis, removes abnormal tissue growth and pre-
vents infection. However, it also generates heat and pro-
duces tissue and neuronal damage, which may result in 
CPSP [5, 6]. Therefore, there may be intrinsic differences 
between traditional incision and electrocautery with 
respect to the induction of CPSP. While some studies 
have compared postsurgical pain resulting from incision 
by scalpel to that caused by electrocautery, they focused 
on acute postsurgical pain.

To better understand the mechanism of persistent pain, 
several animal models have been developed. Particularly, 
Brennan et  al. [7] established a model of postsurgical 
pain using rats that involved incision into the plantar sur-
face of the hind paw, which induces allodynia in response 
to mechanical stimuli. However, there is no animal model 
for studying the progress of pain after electrocautery. In 
the present study, we compared the relative maintenance 
of allodynia after incision according to Brennan’s model 
[7] and electrocautery in the hind paw of mice.

Recently, epigenetic modifications have been reported 
to contribute to prolongation of pathophysiological pain. 
In our previous study, we found that increased expression 
of chemokine (C–C motif ) ligand 7 (Ccl7, also known 
as monocyte chemotactic protein 3) in spinal astrocytes 
associated with decreased trimethylation of histone H3 at 
Lys27 (H3K27me3) at the Ccl7 promoter was induced by 
nerve injury [8]. Furthermore, such epigenetic changes 
promoted pain sensation via enhanced interaction 
between astrocytes and microglia in the spinal dorsal 
horn [8]. These findings suggest that histone modifica-
tions may also play a role in the prolongation of postsur-
gical pain. Therefore, we investigated possible epigenetic 
modifications associated with persistent pain in spinal 
cord cells induced by electrocautery.

Methods
Animals
Male C57BL/6  J mice (7–10  weeks old) (Jackson Labo-
ratory, Bar Harbor, ME, USA) and female cFos-EGFP 
mice (6–23  weeks old) were used. Female cFos-EGFP 
mice were obtained by breeding cFos-2AiCreERT2 
(C57BL/6-Fos < tm1(icreERT2)Phsh >) mice (Cyagen Bio-
sciences Inc., Santa Clara, CA, USA) with LSL-EGFP/
Rpl10a (B6;129S4-Gt(ROSA)26Sor < tm9(EGFP/Rpl10a)
Amc > /J) mice (Stock No. 024750, Jackson Laboratory) 
[9]. Mice had access to food and water ad  libitum in a 
temperature- and humidity-controlled room (24 ± 1  °C, 

55 ± 5%, relative humidity) under a 12-h light–dark cycle 
(light on at 8 a.m.). The behavioral tests were performed 
during the light phase.

Generation of Fos‑2A‑iCreERT2 knock‑in mice
C57BL/6-Fos < tm1(icreERT2)Phsh > (cFos-2AiCre-
ERT2) mice, which were based on a C57BL/6 genetic 
background, were generated at Cyagen Biosciences. 
The mouse Fos gene (NCBI Reference Sequence: 
NM_010234.2) is located on mouse chromosome 12. 
Four exons have been identified, with the ATG start 
codon in exon 1 and the TGA stop codon in exon 4 
(Transcript: Fos-201 ENSMUST00000021674.6). To cre-
ate the P2A-iCreERT2 knock-in at the mouse Fos locus 
in C57BL/6 mice, a mixture of Cas9 mRNA, sgRNA, and 
each targeting vector was injected into fertilized mouse 
eggs, which were then transferred to surrogate mothers 
to obtain founder knock-in mice on the B6 background; 
the TGA stop codon was replaced with the P2A-iCreERT2 
cassette by CRISPR/Cas-mediated genome engineering.

Drug administration
Mice received either vehicle or GSK-J4 HCl (2.0 mg/kg, 
i.p.; Selleck, Houston, TX, USA) 1 h before plantar inci-
sion and 4 times per day starting the day after surgery. 
GSK-J4 was prepared daily, in saline (0.9% NaCl) con-
taining 1% DMSO (FUJIFILM Wako Pure Chemical Co. 
LTD, Osaka, Japan), and mixed at room temperature for 
at least 1 h before use. Saline containing 1% DMSO used 
to prepare GSK-J4 was used as a vehicle.

Plantar incision
Under isoflurane anesthesia (3% inhalation; FUJIFILM 
Wako Pure Chemical Co. LTD), a 3-mm longitudinal 
incision of the skin and fascia of the plantar aspect of the 
hind paw of mice was conducted with a number 23 scal-
pel blade, starting 3 mm from the proximal edge of the 
heel and extending toward the toes. To reproduce Bren-
nan’s model [7] in the mouse, a 3-mm longitudinal inci-
sion of the plantaris muscle was made with the scalpel 
blade, and the skin was then stitched with two mattress 
sutures of 7–0 nylon. For electrosurgery, longitudinal 
incision of the skin and fascia of the plantar aspect of the 
hind paw of mice was performed in a similar manner, and 
then a 3-mm longitudinal incision of the plantaris mus-
cle was made using a monopolar electrosurgery unit (at 
50 W: Vetroson® V-10; Summit Hill Laboratories, Tinton 
Falls, NJ, USA) with a dispersive electrode pad placed 
under the body of the mouse. Electrosurgery was con-
ducted while maintaining coagulation and hemostasis of 
the incision during dissection. The skin was stitched with 
two mattress sutures of 7–0 nylon (Fig.  1A). In sham-
operated mice, the plantaris muscle was exposed without 
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Fig. 1  Effect of electrocautery treatment on incision-induced mechanical allodynia in mice. A Schematic diagram of the electrocautery operation. 
(1) A 3 mm longitudinal incision of the skin and fascia of the plantar aspect of the right hind paw of mice was conducted with a number 23 scalpel 
blade. (2) A 3 mm longitudinal incision of the plantaris muscle was made using a monopolar electrosurgery unit. Finally, the skin was stitched with 
two mattress sutures of 7–0 nylon. The red circle shows where the von Frey filament was applied (Testing area). B Protocol for measurement of 
the pain threshold. C Changes in the pain threshold as measured by the von Frey test (0.16 g). Each point represents the mean ± S.E.M. of 12–13 
mice (Two-way repeated measures ANOVA with post-hoc Bonferroni test, **p < 0.01, ***p < 0.001 vs. Sham group. #p < 0.05, ##p < 0.01, ###p < 0.001 
vs. incision group). D, E mRNA levels of Sprr1a D or Anxa10 E in the ipsilateral side of the spinal cord were measured at 3, 7 or 11 days after incision 
or electrocautery. Each column represents the mean ± S.E.M. of 3–9 independent experiments (One-way ANOVA with post-hoc Bonferroni test, 
**p < 0.01, ***p < 0.001 vs. Sham group, ##p < 0.01, ###p < 0.001 vs. incision group)
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the incision. After surgery, the animals were allowed to 
recover in their home cages.

von Frey test for mechanical allodynia
Mechanical allodynia was assessed by the von Frey 
monofilament test. Briefly, von Frey filaments (0.16  g) 
were used to poke the mouse hind paw for a maximum 
of 3  s, and this assessment was conducted three times 
at 5  s intervals. The withdrawal response of each hind 
paw after a tactile stimulus was evaluated by scoring as 
follows: 0, no response; 1, a slow and slight withdrawal 
response without prolonged flexion (slight lifting of the 
paw once within 3 s after the stimulus); 2, a slow and pro-
longed flexion withdrawal response (lifting of the paw 
within 3  s after the stimulus with sustained lifting dur-
ing the stimulus); 3, a quick withdrawal response (lifting 
of the paw immediately after the stimulus with sustained 
lifting during the stimulus) without flinching or licking; 4, 
a quick withdrawal response (lifting of the paw immedi-
ately after the stimulus) with brisk flinching and/or lick-
ing. These withdrawal behaviors were measured twice, 
and the two scores were averaged. Paw movements asso-
ciated with locomotion or weight-shifting were omitted 
from the results. To allow mice to become accustomed 
to their environment, they were habituated in an acrylic 
cylinder (15 cm height and 8 cm diameter) on an elevated  
mesh floor  for 1 h before assessment.

Quantitative reverse transcription polymerase chain 
reaction (RT‑qPCR)
For RT-qPCR analysis, total RNAs were isolated using 
the mirVana™ miRNA Isolation Kit (Thermo Fisher Sci-
entific Inc., Waltham, MA, USA) from the ipsilateral side 
of the mouse spinal cord and then first-strand cDNAs 
were synthesized using the SuperScript® VILO™ cDNA 
Synthesis Kit (Thermo Fisher). RT-qPCR was conducted 
using primer pairs and Fast SYBR® Green Master Mix 
(Thermo Fisher). Glyceraldehyde 3-phosphate dehy-
drogenase (Gapdh) was used as an internal control for 
quantification of each sample. Additional file 1: Table S1 
contains a complete list of all primers used in this study.

Labeling and isolation of pain‑activated neurons
Eleven days after electrocautery and sham operation 
in the hind paw of cFos-EGFP mice, these mice were 
injected with 4-hydroxytamoxifen (4-OHT; 50  mg/
kg, i.p.). Two hours after 4-OHT injection, mechani-
cal stimulation was applied to the hind paw by a plantar 
electronic von Frey Anesthesiometer (ALMEMO® 2450 
Ahlborn; IITC, Woodland Hills, CA, USA). The pres-
sure of mechanical stimulation by an electronic von Frey 
Anesthesiometer was increased until the mouse withdrew 
its hind paw (cut-off pressure: 3.5  g). Seven days after 

4-OHT injection, the ipsilateral side of the lumbar spinal 
cord was collected from cFos-EGFP mice and separated 
into single cells; debris was removed using an Adult Brain 
Dissociation kit (Miltenyi Biotec, Bergisch Gladbach, 
Germany). Hematopoietic cells and their committed 
precursors were then depleted from single-cell suspen-
sion using a Lineage cell depletion kit (Miltenyi Biotec) 
with magnetic-activated cell sorting (MACS) (autoMACS 
Pro Separator; Miltenyi Biotec). Neural cells were iso-
lated using a Neuron Isolation kit (Miltenyi Biotec) with 
MACS and these fractions including neuron-like cells 
were stained with anti-mouse CD90.2 (Thy1.2)-APC 
antibody (1:200, BioLegend Inc., San Diego, CA, USA). 
Subsequently, Thy1.2-APC and cFos-EGFP-positive cells 
were finally sorted by fluorescence-activated cell sorting 
(FACS) (FACS Aria III; BD Biosciences, San Jose, CA, 
USA). Total RNA derived from these sorted neurons was 
extracted using a PicoPure RNA Isolation Kit (Thermo 
Fisher) according to the protocol for RNA extraction, and 
then RT-qPCR was performed after specific transcripts 
were pre-amplified for 18 cycles using PreAmp Master 
Mix (Fluidigm Co., South San Francisco, CA, USA).

Chromatin immunoprecipitation (ChIP)
We performed a chromatin immunoprecipitation assay 
according to previous studies [8, 10, 11] with minor 
modifications. Thirty μg of chromatin extracted from 
the mouse lumbar spinal cord, which was sonicated with 
a Bioruptor (Sonicbio Co., Ltd., Kanagawa, Japan), was 
incubated with specific antibodies against acetylated his-
tone H3 at Lys27 (H3K27ac; Abcam, Cambridge, UK) 
or tri-methylated histone H3 at Lys27 (H3K27me3; Cell 
Signaling Technology Inc., Danvers, MA, USA) over-
night at 4  °C. The immunocomplex was collected with 
the use of Dynabeads® Protein A (Invitrogen, Carlsbad, 
CA, USA), and DNA was recovered by treatment with 
RNaseA and proteinase K refined by phenol/chloroform 
extraction and isopropanol precipitation. Quantitative 
PCR was performed as described previously [8, 12]. The 
detailed primer sequences for Sprr1a and Anxa10 were 
as follows: Sprr1a forward, 5′-CAC​CTG​GGT​TCT​CTG​
TCA​CC-3′, and reverse, 5′-CAG​GAC​CAC​TTC​AAC​
CCT​CC-3′; Anxa10 forward, 5′-CTC​CTG​CTT​ATG​CGT​
TGG​TT-3′, and reverse, 5′-GCT​CAG​AGC​CTA​ATC​
AGC​TTACC-3′.

Statistics
All data are presented as the mean ± S.E.M. We analyzed 
and described the statistical significance of differences 
between groups according to an unpaired t-test and one-
way or two-way analysis of variance followed by the Bon-
ferroni multiple comparisons test. Data were carried out 
with GraphPad Prism 8.0 (GraphPad Software, La Jolla, 
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CA, USA). A p value of < 0.05 was considered to reflect 
significance.

Results
Effects of incision and electrocautery on allodynia in mice
We first attempted to develop a new mouse model of 
persistent postsurgical pain by electrocautery treatment 
(Fig. 1A), and measured mechanical allodynia in the elec-
trocautery, incision (Brennan’s model) and sham control 
groups by the von Frey test (Fig.  1B). While only tran-
sient allodynia was observed in incision-treated mice 
in response to mechanical stimuli, both persistent allo-
dynia and transient allodynia were observed in response 
to mechanical stimuli in electrocautery-treated mice 
(Fig.  1C, Two-way repeated measures ANOVA with 
post-hoc Bonferroni test, **p < 0.01, ***p < 0.001 vs. Sham 
group, #p < 0.05, ##p < 0.01, ###p < 0.001 vs. incision group).

Changes in mRNA expression of Sprr1a and Anxa10 
after electrocautery treatment
Our preliminary RNA-seq study to examine upregu-
lated mRNA levels after electrocautery indicated that 
the levels of Sprr1a and Anxa10 in the spinal cord were 
potently increased after electrocautery (data not shown). 
To investigate the relationship between Sprr1a or Anxa10 
and pain-processing in electrocautery-treated mice, we 
analyzed the expression of these genes by RT-qPCR in 
the ipsilateral side of the spinal cord. These experiments 
showed that the mRNA level of Sprr1a was significantly 
increased at 3 to 11 days after surgery in electrocautery-
treated mice (Fig.  1D, One-way ANOVA with post-hoc 
Bonferroni test, **p < 0.01, ***p < 0.001 vs. Sham group, 
##p < 0.01, ###p < 0.001 vs. incision group), whereas it 
was significantly increased at 3  days (Fig.  1D, One-way 
ANOVA with post-hoc Bonferroni test, **p < 0.01 vs. 
Sham group), but not at 7 or 11  days, after surgery in 
incision-treated mice. In addition, the mRNA level of 

Anxa10 was significantly and dramatically increased at 
7 and 11 days (Fig. 1E, One-way ANOVA with post-hoc 
Bonferroni test, ***p < 0.001 vs. Sham group, ###p < 0.001 
vs. incision group) after surgery in electrocautery-treated 
mice, whereas it was not significantly changed at 3 to 
11 days after surgery in incision-treated mice.

Analysis of chronic postsurgical pain‑activated neurons
To investigate whether the increase in the expression of 
these genes is caused in neurons activated by electrocau-
tery-induced pain signaling, we next analyzed chronic 
postsurgical pain-activated neurons by targeted recombi-
nation in active populations (TRAP)-labeling. To gener-
ate cFos-2AiCreERT2 mice that expressed P2A-iCreERT2 
under the control of the immediate-early gene, cFos 
promoter, we inserted the P2A-iCreERT2 cassette at the 
mouse Fos locus [13] in C57BL/6 mice by CRISPR/Cas-
mediated genome engineering (Fig.  2A). To label pain-
activated cells, we next crossed cFos-2AiCreERT2 mice 
with LSL-EGFP/Rpl10a mice that expressed enhanced 
green fluorescent protein (EGFP) after Cre-mediated 
deletion of a loxP-flanked STOP cassette, and generated 
cFos-EGFP mice that specifically expressed EGFP in neu-
rons, where iCreERT2 expression was induced by nerve 
firing in the presence of 4-OHT (Fig.  2B). Eleven days 
after electrocautery treatment of the hind paw of cFos-
EGFP mice, these mice were injected with 4-OHT and 
pain-activated cells were labeled with EGFP (Fig. 2B, C). 
Seven days after 4-OHT injection, we performed FACS 
to isolate electrocautery-activated cFos-positive neu-
rons (EGFP+) and cFos-negative neurons (EGFP−) in the 
ipsilateral side of the lumbar spinal cord of cFos-EGFP 
mice (Fig.  2D) followed by RT-qPCR to assess changes 
in gene expression by electrocautery. A recent single-
cell sequencing study found that the excitatory neu-
rons in the spinal dorsal horn can generally be divided 
into 15 subpopulations (“Glut” type 1 ~ 15) based on the 

(See figure on next page.)
Fig. 2  Analysis of chronic postsurgical pain-activated neurons. A Targeting strategy for the Fos-2A-iCreERT2 KI allele. PAM, protospacer adjacent 
motif. HDR, homology directed repair. Star; Two synonymous mutations (377L (CTG to TTA) and 378L (CTG to TTA)) were introduced to prevent 
binding and re-cutting of the sequence by gRNA after HDR. B Schematic diagram of EGFP labeling of electrocautery-activated neurons. iCreERT2 
expression is driven by the activity-dependent cFos promoter to mediate 4-OHT-dependent recombination that permanently labels the active 
neurons with EGFP. (cFos-negative neurons: EGFP−, cFos-positive neurons: EGFP+) C Protocol for EGFP-labeling of electrocautery-activated neurons. 
Workflow for isolation of electrocautery-activated neurons from the ipsilateral side of the spinal cord by MACS and FACS. D-ii Representative FACS 
plot. Fluorescence from cells double-labeled for Thy1 (APC on Y axis) and cFos-EGFP (X axis) logarithmic plots (a log10 scale). In Thy1-labeled 
neurons, cFos-negative (EGFP−) and cFos-positive (EGFP+) neurons (left and right gates, respectively) on the X axis were represented by blue (left 
gate, cFos-negative (EGFP−)) and red (right gate, cFos-positive (EGFP+)) dots. E mRNA expression levels of markers of Slc17a6+ excitatory neurons 
in the spinal dorsal horn in electrocautery-activated neurons (cFos-positive neurons) compared to those in cFos-negative neurons. (n = 4–5 
animals per sample, unpaired t-test, *p < 0.05, **p < 0.01 vs. cFos-negative neurons) F Heat map analysis of transcriptional profiles related to the 
subpopulation (“Glut 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14- or 15-type”) of Slc17a6+ excitatory neurons in electrocautery-activated 
neurons. G, H Quantitative analysis of mRNA levels of Sprr1a G and Anxa10 H in cFos-positive neurons as compared to cFos-negative neurons. Each 
column represents the mean ± S.E.M. of 3 samples (n = 4–5 animals per sample, unpaired t-test, *p < 0.05 vs. cFos-negative neurons)
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Fig. 2  (See legend on previous page.)
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similarity of their gene expression profiles [14]. After 
isolating electrocautery-activated cFos-positive neurons 
(EGFP+), we analyzed which types of neurons could be 
activated by the electrocautery. As a result, we revealed 
that the mRNA levels of cholecystokinin (Cck) identified 
as “Glut 1-, 2- and 3-types”, tachykinin 2 (Tac2) identified 
as “Glut 5- and 6-types”, neuromedin U (Nmu) identified 
as “Glut 6- and 7-types”, tachykinin 1 (Tac1) identified 
as “Glut 10-type”, and ELAV-like RNA binding protein 4 
(Elavl4) and Ly6/Plaur domain containing 1 (Lypd1) iden-
tified as “Glut 15-type” in cFos-positive neurons were 
significantly higher than those in cFos-negative neu-
rons (Fig.  2E, F, unpaired t-test, *p < 0.05, **p < 0.01 vs. 
cFos-negative neurons). The mRNA level of avian mus-
culoaponeurotic fibrosarcoma oncogene homolog (Maf) 
identified as “Glut 1-type” in cFos-positive neurons was 
higher, albeit not significantly, than that in cFos-neg-
ative neurons (Fig.  2E, F). Among them, the expression 
of Elavl4 and Lypd1 was mostly and markedly predomi-
nant in cFos-positive neurons. Taken together with 15 
subpopulations of spinal cord neurons based on gene 
expression profiles, these findings suggest that most of 
the electrocautery-activated cFos-positive neurons could 
be classified as “Glut 15-type” neurons. Under these 
conditions, the mRNA levels of Sprr1a and Anxa10 in 
cFos-positive neurons of electrocautery-treated mice at 
11 days after surgery were significantly higher than those 
in cFos-negative neurons (Fig.  2G, H, unpaired t-test, 
*p < 0.05 vs. cFos-negative neurons).

Long‑lasting histone modifications of Sprr1a and Anxa10 
genes after electrocautery treatment
To investigate whether epigenetic modifications could 
be involved in the increased expression of these genes, 
we performed chromatin immunoprecipitation assays 
and quantified the amount of DNA modified with 
H3K27me3, which is known to suppress gene expression, 
or H3K27ac, which is known to promote gene expres-
sion in the ipsilateral side of the spinal cord collected 
at 11  days after the electrocautery operation (Fig.  3A–
C). As a result, electrocautery-treatment significantly 
decreased the level of H3K27me3 at the promoter region 
of the Sprr1a and Anxa10 genes in the ipsilateral side of 
the spinal cord compared with that in sham-operated 
mice, while it produced a significant increase in the level 

of H3K27ac at the promoter region of the Sprr1a and 
Anxa10 genes in the ipsilateral side of the spinal cord 
(Fig.  3D, unpaired t-test, *p < 0.05, ***p < 0.001 vs Sham 
group).

Effect of an H3K27 demethylase inhibitor 
on electrocautery‑induced allodynia
Finally, to investigate whether such histone modifications 
could affect pain thresholds in electrocautery-treated 
mice, we evaluated the effect of GSK-J4 [15], a selective 
H3K27 demethylase inhibitor, on the electrocautery-
induced tactile allodynia response following the von 
Frey test (Fig.  4A, B). Interestingly, persistent allodynia 
at 17  days after electrocautery was dramatically sup-
pressed in GSK-J4-treated mice compared to that in 
vehicle-treated mice (Fig.  4C, Two-way repeated meas-
ures ANOVA with post-hoc Bonferroni test, *p < 0.05, 
**p < 0.01, ***p < 0.001 vs. Sham-Vehicle group, #p < 0.05 
vs. Electrocautery-Vehicle group). Consistent with our 
behavioral data, electrocautery-induced overexpres-
sion of Sprr1a and Anxa10 was significantly reduced 
by systemic administration of GSK-J4 (Fig.  4D, E, One-
way ANOVA with post-hoc Bonferroni test, *p < 0.05, 
***p < 0.001 vs. Sham-Vehicle group, #p < 0.05, ###p < 0.001 
vs. Electrocautery-Vehicle group).

Discussion
Electrocautery can be used in most surgical procedures. 
Unlike with an incision created using a scalpel, the use of 
a heated electrode separates living (soft) tissues, includ-
ing neurons, accompanied by hemostasis. Even if neu-
rons are damaged by injury and/or incision, most acute 
pain during the healing period will respond to treatment 
with an analgesic medication [16]. On the other hand, the 
difficulty of recovery from tissue and neuronal damage 
caused by electrocautery can lead to chronic pain caused 
by changes in the nociception-related neuronal system 
[17]. In the present study, thermal allodynia produced 
after plantar incisions was observed with both a scalpel 
and electrocautery (data not shown), whereas prolonged 
mechanical allodynia was recognized only after electro-
cautery, indicating that electrocautery may influence the 
persistent hypersensitivity in response to mechanical 
stimuli after surgery.

Fig. 3  Long-lasting histone modification of Sprr1a and Anxa10 genes in the lumbar spinal cord after electrocautery treatment. A Schematic 
diagram of gene expression regulation by histone modification. B Workflow for experimental timeline. C Schematic diagram of ChIP-qPCR method. 
D Quantitative measurement of the levels of H3K27me3 (left) and H3K27ac (right) at the promoter region of the Sprr1a (black bar) and Anxa10 (gray 
bar) genes in the ipsilateral side of the lumber spinal cord at 11 days after electrocautery treatment. Each column represents the mean ± S.E.M. of 6 
samples (H3K27me3, n = 5 animals per sample) or 3 samples (H3K27ac, n = 5 animals per sample) (unpaired t-test, *p < 0.05, ***p < 0.001 vs. sham 
group)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Fig. 4  Effect of an H3K27 demethylase inhibitor on electrocautery-induced allodynia. A Schematic diagram of the mechanism of action of GSK-J4. 
B Protocol for measurement of the pain threshold and drug administration. C Changes in the pain threshold as measured by the von Frey test 
(0.16 g). Each point represents the mean ± S.E.M. of 5 mice (Two-way repeated measures ANOVA with post-hoc Bonferroni test, *p < 0.05, **p < 0.01, 
***p < 0.001 vs. Sham-Vehicle group, #p < 0.05 vs. Electrocautery-Vehicle group). D, E The mRNA levels of Sprr1a D or Anxa10 E in the ipsilateral side 
of the spinal cord were measured at 18 days after surgery. Each column represents the mean ± S.E.M. of 5 independent experiments (One-way 
ANOVA with post-hoc Bonferroni test, *p < 0.05, ***p < 0.001 vs. Sham-Vehicle group, #p < 0.05, ###p < 0.001 vs. Electrocautery-Vehicle group)
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The spinal cord is an important relay site for trans-
mitting peripheral pain stimuli to the brain, and is an 
important target of medication to relieve pain. There-
fore, we focused on gene expression in the spinal cord 
after incisions. It has been demonstrated that Sprr1a 
protein is only expressed in injured neurons and axons, 
and prompts axonal outgrowth [18]. Anxa10 is a mem-
ber of the annexin family and plays an important role in 
various physiological processes such as cell differentia-
tion and proliferation [19]. In recent studies, Anxa10 has 
been implicated in the development of neuropathic pain 
[20–22]. The mRNA level of Anxa10 has been shown to 
be persistently increased in the spinal cord after sciatic 
nerve ligation [20]. In the present study, we found that 
the mRNA levels of both Sprr1a and Anxa10 in the spi-
nal cord were more potently and persistently increased 
by electrocautery than by incision. Taken together, these 
results suggest that increased levels of both Sprr1a and 
Anxa10 in the spinal cord may be, at least in part, associ-
ated with the establishment of CPSP after surgery.

Phosphorylation of phosphorylated-protein kinase 
C (PKC) located in the dorsal horn is critical for neuro-
pathic pain [23–25]. Furthermore, PKCγ in interneurons 
transmits injury-induced mechanical allodynia [26]. In 
our preliminary study, immunoreactivity for phospho-
rylated pan-PKC (including PKCγ) in the spinal cord 
was dramatically enhanced by electrocautery (data not 
shown). Notably, there is some co-localization of PKCγ 
and Sprr1a in the spinal cord [27]. A growing body of evi-
dence suggests that the activity of PKC is generally asso-
ciated with the activity of extracellular regulatory kinase 
(ERK) in the spinal cord under a chronic pain-like state 
[28]. Spinal ERK signaling and subsequent release of 
tumor necrosis factor-α (TNF-α) and interleukin-1β has 
been reported to be a downstream pathway of Anxa10 
[21]. The spinal Anxa10/NF-κB/MMP-9 pathway has 
also been shown to be involved in sciatic nerve ligation-
induced neuropathic pain [22]. These findings suggest 
that electrocautery-activated neurons in the dorsal horn 
of the spinal cord may express Sprr1a and Anxa10.

To confirm whether Sprr1a and Anxa10 could play a 
critical role in long-lasting pain sensation after electro-
cautery, we next identified and characterized electrocau-
tery-activated neurons in the spinal cord using FACS to 
isolate cFos-positive neurons in the ipsilateral side of the 
spinal cord of cFos-EGFP mice with electrocautery. As a 
result, the mRNA levels of Sprr1a and Anxa10 in cFos-
positive neurons obtained from mice after electrocautery 
were much higher than those in cFos-negative neurons. It 
has been considered that the spinal dorsal horn neurons 
are a heterogeneous population. More recently, Häring 
et  al. [14] identified 15 inhibitory and 15 excitatory 
molecular subtypes of spinal dorsal horn neurons and 

validated the existence of all of these identified neuron 
types in vivo. Thus, using the markers identified for each 
“subtype”, we found that most of the electrocautery-acti-
vated cFos-positive neurons could be classified as “Glut 
15-type” neurons. “Glut 15-type” neurons, which highly 
express Lypd1, are located not only in superficial layers 
but also in deeper laminae. Moreover, “Glut 15-type” 
neurons have been shown to be activated by both noxious 
heat and cold stimuli, and account for the vast majority 
of spinobrachial projection neurons [14]. The parabra-
chial nucleus (PBN) is the most prominent locus of cal-
citonin gene-related peptide (CGRP)-expressing neurons 
in the brain and has been associated with the induction 
of threat memories and pain-related behaviors [29, 30]. 
Another study demonstrated that prolonged nociceptive 
signaling following nerve injury elicits the plasticity and 
sensitization of glutamatergic lateral PBN neurons, which 
leads to the development of persistent neuropathic pain 
[31]. These findings suggest that severe damage to tissues 
and neurons during electrocautery may contribute to 
CPSP through the activation of spinal neurons projecting 
to the parabrachial nucleus, which induces threat memo-
ries and the development of persistent pain, concurrent 
with the excessive production of core pain-related mol-
ecules, such as Sprr1a and Anxa10.

It has been widely accepted that epigenetic modulation 
persistently changes gene expression with no changes in 
the primary DNA sequence. A growing body of recent 
evidence suggests that epigenetic phenomena contribute 
to chronic pain as well as learning, memory, depression 
and drug addiction [32, 33]. Acetylation of most histone 
subunits, at any of several Lys residues, including Lys27 
of histone 3 (H3), leads to the promotion of gene tran-
scription, whereas histone methylation at Lys27 of H3 
is well recognized to be strongly associated with gene 
repression. Here, we demonstrated that electrocautery 
significantly decreased the level of H3K27me3 with a sig-
nificant increase in the level of H3K27ac at the promoter 
region of the Sprr1a and Anxa10 genes in the spinal 
cord. In addition, we found that treatment with GSK-J4, 
a selective H3K27 demethylase inhibitor, significantly 
suppressed electrocautery-induced persistent allodynia 
and overexpression of Sprr1a and Anxa10 mRNA. These 
findings suggest that the persistent production of core 
pain-related molecules, Sprr1a and Anxa10, with histone 
modifications in spinal cord neurons may be an essential 
mechanism underlying electrocautery-induced CPSP.

Conclusion
We found for the first time that the concomitant expres-
sion of core pain-related molecules, Sprr1a and Anxa10, 
in the spinal cord was observed almost exclusively 
in electrocautery-activated neurons due to histone 
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modifications. The present study suggests that neuronal 
damage associated with electrocautery leads to CPSP 
along with epigenetic modifications.
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