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Abstract

Alzheimer’s disease (AD) is an aging-related neurological disorder characterized by synaptic loss and dementia.
Wnt/β-catenin signaling is an essential signal transduction pathway that regulates numerous cellular processes
including cell survival. In brain, Wnt/β-catenin signaling is not only crucial for neuronal survival and neurogenesis,
but it plays important roles in regulating synaptic plasticity and blood-brain barrier integrity and function. Moreover,
activation of Wnt/β-catenin signaling inhibits amyloid-β production and tau protein hyperphosphorylation in the
brain. Critically, Wnt/β-catenin signaling is greatly suppressed in AD brain via multiple pathogenic mechanisms. As
such, restoring Wnt/β-catenin signaling represents a unique opportunity for the rational design of novel AD
therapies.
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Introduction
Alzheimer’s disease (AD) is the most common form of
dementia accompanied by detrimental cognitive deficits
and pathological accumulation of amyloid-β (Aβ) pla-
ques and tau-containing neurofibrillary tangles [1]. As
one of the most important medical and social problems,
there is an urgent need for effective therapies. The amyl-
oid hypothesis is based on neuropathological evidence
showing Aβ aggregates (amyloid plaques) in AD brain
and on the identification of over 200 mutations in the
amyloid precursor protein (APP) and presenilin (PSEN)
genes that cause familial AD (FAD) [1, 2]. The amyloid
hypothesis has been the main driver of drug discovery
efforts in the past 25 years; however, all clinical trials
using anti-Aβ drugs as a treatment for AD have ended
in failure [3]. Therefore, current paradigms in AD drug
discovery have shifted to the development of drugs that
target the multiple disease processes that support the
progression of AD pathology, and novel targeted therap-
ies are urgently needed to prevent and treat AD [3–5].
The Wnt/β-catenin signaling pathway is a significant

pathway regulating cell proliferation, migration and

differentiation, and Wnt proteins are key drivers of adult
stem cells in mammals [6]. Studies have shown that dys-
regulated Wnt/β-catenin signaling plays an important
role in the pathogenesis of AD [7]. In this review, we
summarize our current understanding of regulation and
function of the Wnt/β-catenin signaling pathway in AD
brain and provide evidence indicating that the Wnt/β-
catenin signaling pathway represents a new attractive
therapeutic target for drug discovery in AD.

Roles of Wnt/β-catenin signaling in physiological
and pathophysiological processes in the brain
Wnt proteins are secreted glycoproteins that bind to the
extracellular cysteine-rich domain of the Frizzled (Fzd)
receptor family and Wnt co-receptor low density lipo-
protein receptor-related protein 5 (LRP5) or LRP6 to ac-
tivate the canonical Wnt/β-catenin signaling pathway.
Binding of Wnt to the Fzd/LRP5/6 receptor complex re-
sults in inhibition of glycogen synthase kinase 3β
(GSK3β) and stabilization of cytosolic β-catenin. Stabi-
lized β-catenin then translocates into the nucleus, inter-
acts with T-cell factor/lymphoid enhancing factor (TCF/
LEF), and induces the expression of specific target genes
(Fig. 1) [6]. Wnt/β-catenin signaling is tightly regulated
at the cell surface by various secreted proteins and
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receptors. While Zinc and ring finger 3 (ZNRF3) and
ring finger protein 43 (RNF43) promote LRP5/6 degrad-
ation [8–10], the extracellular molecule R-spondin
(Rspo) together with its receptors leucine rich repeat
containing G protein-coupled receptor 4/5/6 (LGR4/5/6)
induces ZNRF3/RNF43 turnover, making LRP5/6 avail-
able on the cell surface for activation of the Wnt/β-ca-
tenin signaling pathway (Fig. 1) [11]. Moreover,
Dickkopf (DKK) and soluble Frizzled-related protein
(sFRP) bind to LRP5/6 and Fzd, respectively, and prevent
LRP-Wnt-Fz complex formation in response to Wnts
(Fig. 1 b) [6].
In the rest of this section, we summarize our current

understanding of the roles of Wnt/β-catenin signaling
on multiple physiological and pathophysiological pro-
cesses in AD brain (Fig. 2).

Wnt/β-catenin signaling promotes neuronal survival and
neurogenesis
The neurodegenerative process in AD is initially charac-
terized by synaptic damage followed by neuronal loss
[12]. The Wnt/β-catenin signaling pathway is a key path-
way controlling cell death and survival [6]. Indeed, loss
of Wnt/β-catenin signaling renders neuron more suscep-
tible to Aβ-induced apoptosis [13], and activation of
Wnt/β-catenin signaling rescues Aβ-induced neuronal
death and behavioral deficits [14–17].

While there is a debate of the presence of neurogen-
esis in human adult brain [18], emerging evidence sug-
gests that human hippocampus neurogenesis persists in
aged adult brain and declines dramatically in AD brain
[19–23]. Importantly, numerous studies have demon-
strated that Wnt/β-catenin signaling is a key regulator of
adult hippocampal neurogenesis [24–34]. Wnt7a plays a
critical role in multiple steps of neurogenesis by activat-
ing Wnt/β-catenin signaling and specific downstream
target genes involved in cell cycle control and neuronal
differentiation [32]. Moreover, astrocyte-secreted Wnt
proteins are decreased in aged mice, leading to suppres-
sion of Wnt/β-catenin signaling, down-regulation of sur-
vivin levels in neural progenitor cells (NPCs) and
impaired adult neurogenesis during aging [29, 33]. Inter-
estingly, neurogenesis induced by anti-aggregant tau mu-
tant is associated with the activation of Wnt/β-catenin
signaling [34]. Mechanistically, transcriptional activation
of the mitotic regulator survivin, the basic helix-loop-
helix transcription factor NeuroD1 and prospero-related
homeodomain transcription factor Prox1, which all are
essential for the generation of granule cells in the hippo-
campus, is dependent on activation of the Wnt/β-ca-
tenin signaling pathway [25, 26, 33, 35].

Wnt/β-catenin signaling enhances synaptic plasticity
Synaptic plasticity is associated with higher brain
functions such as learning and memory. Synapse loss,

Fig. 1 The Wnt/β-catenin signaling pathway. a When Wnt proteins bind to LRP5/6 and FZD, the phosphorylation and degradation of β-catenin is
blocked, resulting in stabilization, accumulation and nuclear translocation of β-catenin and subsequent activation of the pathway. b When Wnt
binding to receptors is blocked by Wnt antagonist Dkk1, SOST and sFRP, β-catenin is phosphorylated by Ck1 and GSK3β, and subsequently
degraded by the 26S proteasome. Wnt receptor Fzd and Wnt co-receptor LRP5/6 are positively regulated by Rspo proteins and their receptors
LGR4, LGR5 and LGR6, and negatively regulated by E3 ubiquitin ligases RNF43 and ZNRF3 at the cell surface
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which occurs prior to neuronal death at early stages
in AD brain, is a major correlate of cognitive impair-
ment in AD brain [36, 37]. Recent studies have found
that Wnt/β-catenin signaling is essential for synaptic
plasticity [38, 39]. Wnt proteins are not only required
for synapse formation, but they can modulate neuro-
transmission by acting both pre- and post-synaptically
[38]. Long-term potentiation (LTP) is considered a
cellular correlate of learning [40], and studies have
demonstrated that Wnt proteins can promote LTP
[41–44]. Significantly, neuronal activity can induce
the release of several Wnt proteins such as Wnt1,
Wnt2, Wnt3A and Wnt7a/b [41, 44–46] and decrease
the expression of Wnt antagonist sFRP3 [28]; while
LTP is severely impaired by functional blockade of
endogenous Wnt proteins with Wnt antagonists
DKK1 and SFRPs [43, 44, 47].
LRP6 is an essential Wnt co-receptor for activation

of Wnt/β-catenin signaling on the cell surface. LRP6
is selectively localized to excitatory synapses, and is
required for excitatory synapse development in vitro
and in vivo [48]. Moreover, neuronal deficiency of
LRP6 results in synaptic and cognitive abnormalities
in aged mice [49]. All together, these studies indicate

that neuronal LRP6-mediated Wnt/β-catenin signaling
plays an important role in synaptic function and
cognition.
DKK1 binds to LRP6 and blocks Wnt/β-catenin signal-

ing on the cell surface. Mice with a dorsal hippocampal
infusion of DKK1 exhibited impaired hippocampal-
dependent novel object recognition memory with rapidly
decreasing levels of key Wnt/β-catenin signaling pro-
teins, including β-catenin, Cyclin D1, c-myc, Wnt7a, and
PSD95 [50]. Induction of DKK1 expression in the hippo-
campus triggers synapse loss, synaptic dysfunction and
memory impairment, all of which can be fully restored
by reactivation of Wnt/β-catenin signaling after cessa-
tion of DKK1 expression in the hippocampus [43]. Col-
lectively, these findings further demonstrate the critical
role of LRP6-mediated Wnt/β-catenin signaling in syn-
aptic plasticity.

Wnt/β-catenin signaling is essential for the integrity and
function of the blood-brain barrier (BBB)
The BBB protects the brain from exposure to neurotoxic
blood-derived debris, cells and microbial pathogens.
Therefore, BBB disruption allows influx of harmful sub-
stances into the brain, induces inflammatory and immune

Fig. 2 Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for AD. Wnt/β-catenin signaling is able to regulate multiple different
pathways in Alzheimer disease (AD) pathogenesis. Restoring Wnt/β-catenin signaling in the brain of the AD patients will enhance synaptic
plasticity, neuronal survival, neurogenesis and BBB integrity and function and suppress Aβ production and tau phosphorylation. The role of Wnt/
β-catenin signaling in neuroinflammation remains to be elucidated
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responses, and may subsequently initiate multiple path-
ways of neurodegeneration [51, 52]. BBB breakdown is an
early biomarker of human cognitive impairment in AD
[53]. It is observed before dementia, neurodegeneration
and/or brain atrophy occur [54, 55]. BBB disruption is a
key pathogenic feature of AD, which includes increased
BBB permeability, microbleeding, diminished glucose
transport, impaired Pgp-1 function (Aβ clearance), peri-
vascular accumulation of neurotoxic blood-derived prod-
ucts, and cellular infiltration and degeneration of pericytes
and endothelial cells [51, 53, 56]. Therefore, developing
novel approaches that target BBB repair is a promising
strategy for AD therapy.
In the past decade, studies have established that the

Wnt/β-catenin pathway is a key pathway required not
only for BBB formation but also for BBB integrity and
function [57, 58]. By binding to Wnt receptor Fzd4 and
Wnt co-receptor LRP5/6, Wnt ligands Wnt7a and
Wnt7b, which are mainly produced by neurons and as-
trocytes in brain [59], activate Wnt/β-catenin signaling
in BBB endothelial cells (ECs) [60–62], and activation of
Wnt/β-catenin signaling is a key driver of BBB formation
and function [60–62]. In addition, Reck, a GPI-anchored
membrane protein, and Gpr124, an orphan GPCR, are
essential cofactors on the cell surface for Wnt7a/Wnt7b-
specific signaling in mammalian CNS angiogenesis, BBB
integrity and function [63–68].
Brain ECs are held together by tight junctions, in

which claudins are the main constituent. In addition,
glucose transporter 1 (GLUT1), which is specifically
expressed in BBB ECs, is responsible for the transport of
glucose from the blood into the brain; and p-
glycoprotein (Pgp-1) is an active efflux transporter highly
expressed on the luminal surface of BBB endothelial
cells. Mechanically, claudin-1, − 3 and − 5, the three
major claudins expressed in brain ECs [69], are the tran-
scriptional targets of Wnt/β-catenin signaling in BBB
ECs [60, 67, 70]. Moreover, Wnt/β-catenin signaling
drives the expression of the BBB-specific glucose trans-
porter GLUT1 [61] and efflux transporter Pgp-1 in BBB
ECs [71].

Wnt/β-catenin signaling inhibits BACE1 expression and
suppresses Aβ production/aggregation
One of the two major hallmarks of AD is the accumula-
tion of amyloid plaques between neurons in the brain
[72, 73]. Recent studies have found that Wnt/β-catenin
signaling is able to inhibit amyloidogenic processing of
APP by suppressing the transcription of the β-site APP
cleaving enzyme (BACE1) [74, 75]. While activation of
Wnt/β-catenin signaling reduces Aβ42 production and
aggregation, Wnt inhibition induces opposite effects on
APP processing and Aβ42 production/aggregation in a
cellular model [75]. Moreover, loss of Wnt/β-catenin

signaling induces AD-like neuropathological hallmarks
in wild-type mice, and accelerates the development of
AD-like pathology in an AD mouse model overexpressed
human APP with two FAD mutations [76].

Wnt/β-catenin signaling suppresses tau phosphorylation
Another major hallmark of AD is the presence of
intracellular neurofibrillary tangles (NFTs) composed
of hyperphosphorylated forms of the microtubule-
associated protein tau (MAPT) in neurons [72, 73,
77]. GSK3β is an important kinase associated with
hyperphosphorylation of tau protein (p-tau) at AD-
relevant phosphorylation sites [78]. Activation of
Wnt/β-catenin signaling results in the inhibition of
GSK3β activity and subsequent suppression of tau
phosphorylation. Indeed, the Wnt antagonist DKK1 is
able to inhibit Wnt/β-catenin signaling and induce
both tau hyperphosphorylation and neuronal death
[79, 80]. In contrast, activation of Wnt/β-catenin sig-
naling can inhibit Aβ-induced tau hyperphosphoryla-
tion and neuronal death [14, 17].

Wnt/β-catenin signaling in microglia activity and
neuroinflammation
Glia-mediated neuroinflammation is another patho-
logical hallmark of AD [81–83]. Genetic factors such as
rare variants of TREM2 (triggering receptor expressed
on myeloid cells-2) strongly increase the risk of develop-
ing AD, confirming a role of neuroinflammation as a
driving force in AD [84–88]. Interestingly, TREM2,
which is exclusively expressed by microglia in brain, can
promote microglial survival by activating Wnt/β-catenin
signaling through posttranslational regulation of β-
catenin [89]. On the other hand, Wnt antagonist sFRP1
and sFRP2 act as negative modulators of the disintegrin
and metalloproteinase domain 10 protein (ADAM10)
[90], which is an α-secretase responsible for shedding of
the TREM2 ectodomain to produce soluble TREM2
(sTREM2) [86]; and recent studies indicate that sTREM2
displays a protective role in AD brain [91–93]. More-
over, activation of Wnt/β-catenin signaling with Wnt3a
protein, LiCl, or TDZD-8 rescued microglia survival and
microgliosis in Trem2−/− microglia and Trem2−/− mouse
brain [89]. In addition, postnatal neuronal deletion of
Wnt co-receptor LRP6 leads to microglial activation and
neuroinflammation [49]. However, there are conflicting
results regarding the roles of Wnt/β-catenin signaling on
microglial activation and neuroinflammation [94]. Wnt/
β-catenin signaling is active in microglia during neuroin-
flammation, raising the question as to whether enhanced
Wnt/β-catenin signaling in microglia is harmful in AD
brain [94], and further experimental work will be re-
quired to resolve this controversy.
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Wnt/β-catenin signaling is diminished in AD brain
While the Wnt/β-catenin signaling pathway is essential
for brain function, this pathway is greatly suppressed via
multiple pathogenic mechanisms in AD brain.

Wnt/β-catenin signaling is down-regulated in the aging
brain
It is well established that increasing age is the greatest risk
factor for AD [95, 96]. Mounting evidence indicates a
down-regulation of Wnt/β-catenin signaling in the aging
brain, which may contribute to reduced neurogenesis and
cognitive impairment [97]. In the aging brain, expression
of Wnt proteins (such as Wnt 2, 3, 4, Wnt7b and
Wnt10b) and disheveled (Dvl) proteins (such as Dvl2 and
Dvl3) is down-regulated, while expression of Wnt antag-
onist DKK1 is up-regulated; leading to the suppression of
Wnt/β-catenin signaling [29, 33, 98–100]. Importantly,
the age-associated reduction in astrocytic levels of Wnt
proteins impairs adult neurogenesis [29, 33], and rescue of
secreted Wnt protein levels by exercise promotes adult
neurogenesis [29].

Dysregulation and malfunction of Wnt co-receptor LRP6
in AD brain
A growing body of evidence shows dysregulation and
loss of function of Wnt co-receptor LRP6 contributes to
down-regulation of Wnt/β-catenin signaling in AD.
Firstly, two LRP6 SNPs and an alternatively splice vari-
ant that display impaired Wnt/β-catenin signaling activ-
ity, are associated with increased risk of developing AD
[101, 102]. Secondly, expression of LRP6 is downregu-
lated in AD brain [49], and deficiency in LRP6-mediated
Wnt/β-catenin signaling contributes to synaptic dysfunc-
tion and amyloid pathology in AD [49]. Thirdly, apolipo-
protein E4 (ApoE4), the most important risk factor for
late-onset AD [103, 104], can inhibit Wnt/β-catenin sig-
naling in neuronal LRP6-expressing PC-12 cells [105].
Finally, LRP6 physically interacts with APP and sup-
presses Aβ production [49, 106], while the Swedish fa-
milial AD variant of APP (APPSwe) displays reduced
activation of Wnt/β-catenin signaling [106].

Up-regulation of DKK1 expression results in suppression
of Wnt/β-catenin signaling in AD brain
Aβ peptides can induce DKK1 expression and inhibit
Wnt/β-catenin signaling in primary cortical neurons
[80], and DKK1 expression in the adult hippocampus
can induce synapse degeneration [43, 50]. Moreover,
Aβ-induced synaptic loss can be attenuated by DKK1-
neutralizing antibodies in mouse brain slices [107].
DKK1 is upregulated in postmortem AD brain, where it
colocalizes with neurofibrillary tangles and distrophic
neurites [80]. The upregulation DKK1 in AD brain and
its colocalization with hyperphosphorylated tau have

been also demonstrated in transgenic AD-like mouse
models [108]. Critically, there is a pathogenic-positive
feedback loop with Aβ stimulating DKK1 expression,
thereby promoting synapse loss and driving further Aβ
production [106].

Activation of GSK3β in AD brain
The binding of Wnt protein to Fzd/LRP results in inhib-
ition of GSK3β and consequent activation of Wnt/β-ca-
tenin signaling [6, 109]. GSK3β is one of two major
kinases responsible for β-catenin phosphorylation, and
activation of GSK3β induces β-catenin phosphorylation
and degradation [110]. The increased activity of GSK3β
has been found in the brain of AD patients [111, 112],
which could be resulted from the up-regulation of
DKK1 and down-regulation of LRP6 in the AD brain. A
recent study shows that a significant decrease in β-
catenin protein levels is inversely associated with in-
creased activation of GSK3β in the prefrontal cortical
lobe structures of human AD brains [113], further
strengthening the notion that GSK3β activity is associ-
ated with Wnt/β-catenin signaling in AD brain. Notably,
GSK3β is a key kinase for tau phosphorylation, and over-
activation of GSK3β is intimately linked to tau hyper-
phosphorylation, Aβ deposition, plaque-associated
microglial-mediated inflammatory responses and mem-
ory impairment [111, 112, 114].

AD-associated APP mutants suppress Wnt/β-catenin
signaling in AD brain
APP mutations can cause early-onset FAD [115, 116].
While studies using wild-type APP produced conflicting
results regarding the activity of Wnt/β-catenin signaling,
studies with FAD-associated APP mutants consistently
revealed that Wnt/β-catenin signaling is inhibited by
FAD-associated APP mutants [106, 117]. Studies in APP
transgenic and knockout animal models and human AD
brains demonstrated that APP and β-catenin co-localize
and form a physical complex that is not present in
healthy controls [118], and that β-catenin expression is
greatly increased in hippocampal CA1 pyramidal cells
from APP knockout mice [117]. Studies in primary neu-
rons showed that overexpression of APP and its mutants
promoted β-catenin degradation, while APP knockdown
produced opposite effects [117].

Regulation of Wnt/β-catenin signaling by PSEN1 and its
AD-associated mutants in AD brain
Mutations in PSEN1 are among the major causes of
early-onset FAD [116, 119]. In the hippocampus, PSEN1
and PSEN2 play an important role in the regulation of
synaptic plasticity, Aβ production and intracellular Ca2+

homeostasis [120, 121]. Many studies support the notion
that PSEN1 and its mutants associated with FAD are
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negative regulators of Wnt/β-catenin signaling [13, 122–
128], although inconsistent results with respect to the
effects of FAD-associated PSEN1 mutants on Wnt/β-ca-
tenin signaling have been reported [129]. In a genetic
modifier screening, Drosophila PSEN was identified as a
suppressor of wingless/Wnt signaling [125]. PSEN defi-
ciency enhances Wnt/β-catenin signaling through relo-
calization of GSK3 to the late-endosomal compartment
[130], and facilitates the stepwise phosphorylation of β-
catenin independently of the Wnt-controlled Axin com-
plex [126]. Moreover, the expression of β-catenin is
reduced in AD patients carrying PSEN1 mutations [13],
and PSEN1 mutations associated with AD cause a per-
turbation in the intracellular trafficking of β-catenin
[122], decrease the stability and/or enhance the degrad-
ation of β-catenin [123, 124]. However, some FAD-
associated PSEN1 mutants such as FAD-PSEN1L286V

and -PSEN1M146L fail to induce β-catenin degradation
[62, 131, 132]. Instead, FAD-PSEN1L286V can upregulate
a subset of TCF/β-catenin transcription by enhancing
the level of cAMP-response element-binding protein
(CREB)-binding protein (CBP) [131].

Targeting Wnt/β-catenin signaling in AD therapy
Giving that the Wnt/β-catenin pathway is greatly sup-
pressed in the brain of AD patients, restoring Wnt/β-ca-
tenin signaling represents a unique opportunity for
rational AD therapy (Fig. 2).

The active lifestyle-induced cognitive improvement is
associated with activation of Wnt/β-catenin signaling
A physically active lifestyle in adults and the elderly can
improve brain health and reduce cognitive impairment
associated with aging [133]. It has been reported that the
enhancement of cognitive function by lifelong exercise is
associated with induction of Wnt gene expression in the
hippocampus [134]. Particularly, long-term moderate ex-
ercise and environmental enrichment can stimulate
Wnt/β-catenin signaling by reducing DKK1 protein
levels and increasing LRP6 and Wnt3a protein levels in
hippocampus of adult animals [29, 135]. These findings
suggest that activation of Wnt/β-catenin signaling is a
potential mechanism underlying the cognitive improve-
ment associated with an active lifestyle.

Estrogen-induced neuroprotection is associated with
inhibition of DKK1 expression
Estrogens can exert numerous protective actions in the adult
brain, and reduced estrogen levels in adulthood are associ-
ated with increased risk of AD in women [136, 137]. In fe-
male rats, long-term estrogen deprivation leads to elevation
of basal DKK1 expression and suppression of Wnt/β-catenin
signaling in the CA1 hippocampal region [138]. Moreover,
estrogen-induced neuroprotection and attenuation of tau

phosphorylation are associated with DKK1 inhibition and
subsequent activation of Wnt/β-catenin signaling [139]. To-
gether, these findings suggest that inhibition of DKK1 is a
potential mechanism for estrogen-induced neuroprotection.

GSK3β inhibitors
The activity of GSK3β is negatively regulated by Wnt/β-
catenin signaling [6, 109]. Given the key role of GSK3
activity on the pathogenesis of AD, various GSK3β in-
hibitors have been shown to inhibit tau hyperphosphory-
lation and reduce Aβ levels in both neuronal and
nonneuronal cells, and rescue cognitive deficits in sev-
eral murine models of AD [112, 140]. However, due to
the wide range of GSK3β substrates and physiological
actions, the use of GSK3β inhibitors in clinical studies in
AD patients has been disappointing [112, 141]. There-
fore, novel GSK3β inhibitors that selectively regulate the
activity of this kinase in Wnt/β-catenin signaling in
brain are highly desirable.

DKK1 inhibitors
Suppression of Wnt/β-catenin signaling by Aβ-induced
up-regulation of DKK1 expression in AD brain suggests
DKK1 inhibition is a potential therapeutic strategy for
restoring Wnt/β-catenin signaling in AD [142]. Indeed,
it has been found that DKK1 anti-sense oligonucleotides
(ASO) attenuate neuronal apoptosis and prevent tau
hyperphosphorylation in Aβ-treated neurons [80], and
that DKK1-neutralizing antibodies attenuate synapse loss
induced by Aβ in mouse brain slices [107].
A virtual screen of the National Cancer Institute data-

base for chemical compounds identified a small mol-
ecule, IIIC3 (NCI8642, gallocyanine), as a DKK1
inhibitor [143]. IIIC3 can inhibit DKK1 binding to LRP6
with an IC50 of 3 μM [143], and revert DKK1-mediated
inhibition of Wnt/β-catenin signalling [143, 144]. More-
over, IIIC3 can reduce basal blood-glucose concentra-
tions and improve glucose tolerance in mice [143].
Interestingly, IIIC3 and its derivatives can decrease
DKK1-induced Tau phosphorylation [145, 146]. How-
ever, it is unclear whether these gallocyanine inhibitors
of DKK1 can cross the BBB.

Other activators of Wnt/β-catenin signaling
WASP-1 is a small molecule Wnt activator with an EC50

of about 250 nM in the Wnt reporter assays [147]. Al-
though the exact mechanism of action of this compound
is unclear, activation of Wnt/β-catenin signaling by bilat-
eral intra-hippocampal infusion of WASP-1 rescues
memory loss and improves synaptic dysfunction in mur-
ine models of AD [148, 149].
Curcumin, a natural compound found in the plant tur-

meric (Curcuma longa), displays protective effects in
various animal models of AD [150, 151]. Studies have
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shown that curcumin can potentially promote Wnt/β-
catenin signaling by increasing the expression of Wnt
proteins and Wnt co-receptor LRP5/6 and suppressing
the expression of Wnt antagonist DKK1 [152, 153].
However, because of its poor brain bioavailability, curcu-
min is of limited use in human AD patients, and there is
currently lack of clinical evidence to support its thera-
peutic use in AD patients [150, 151]. Recently, it has
been reported that curcumin nanoparticles, which ex-
hibit increased brain bioavailability, potently stimulate
adult neurogenesis and mitigate cognitive impairment in
the AD model via activation of the Wnt/β-catenin path-
way [153].
Statins are a class of drugs typically used to lower blood

levels of cholesterol by reducing the production of choles-
terol by the liver, and many studies suggest that statin use
might protect against AD pathology [154–158]. Several
studies have shown that statins are activators of Wnt/β-
catenin signaling [159–164]. Mechanistically, statins
enhance Wnt/β-catenin signaling through regulation of
isoprenoid synthesis, which is not associated with choles-
terol levels [163]. Interestingly, it has been demonstrated
that lovastatin protects neuronal cells from Aβ-induced
apoptosis via activation of Wnt/β-catenin signaling [159],
and that simvastatin suppresses neural cell apoptosis and
enhances locomotor recovery by stimulating Wnt/β-ca-
tenin signaling after spinal cord injury [164]. Moreover,
simvastatin can promote Wnt/β-catenin signaling in the
hippocampus of adult mice, and enhance neurogenesis
both in cultured adult neural stem cells and the mouse
hippocampus [163]. All together, these findings suggest
that activation of Wnt/β-catenin signaling is one of the
mechanisms by which statins are beneficial in AD and
other neurological disorders.

Conclusion and perspectives
Compared to a large number of Wnt inhibitors as poten-
tial agents for cancer prevention and treatment, there
are only a few Wnt activators reported in the literature
[6, 165]. Particularly, there are no specific BBB-permeant
Wnt activators that can be used as potential candidates
for the treatment of AD or other neurological disorders.
While Wnt/β-catenin signaling is critical for synaptic
plasticity, neuronal survival, neurogenesis and many
other brain functions, it is greatly diminished in the
brain of AD patients. Therefore, small molecule Wnt ac-
tivators that restore Wnt/β-catenin signaling in brain,
particularly those targeting Wnt antagonist DKK1, Wnt
receptor LRP6 and tau regulator GSK3β, could represent
novel therapeutic tools for the treatment for AD. In
addition, emerging evidence indicates that Wnt/β-ca-
tenin signaling is also disrupted in other neurodegenera-
tive disorders such as Parkinson’s disease [166–171].

Thus, Wnt activators hold a great therapeutic potential
for other neurological disorders.
It is well established that Wnt/β-catenin signaling

plays a key role in the regulation of bone mineral dens-
ity, and that the Wnt/β-catenin signaling pathway is an
attractive target for therapeutic intervention to restore
bone strength in patients with osteoporosis disorders
[172, 173]. Interestingly, AD patients have a much
greater risk of suffering osteoporosis [174–177]. In
addition, low bone mineral density phenotypes are mani-
fested in AD mouse models [178–181]. Particularly, a re-
cent study demonstrated that Wnt/β-catenin signaling is
disrupted both in brain and bone of the htau mouse
model of tauopathy, which has an early low bone min-
eral density phenotype [179]. Therefore, osteoporosis
and AD could share a key mechanism of pathogenesis
[182], and Wnt activators might not only reduce cogni-
tive impairment but also prevent bone loss in the AD
patients.
There is always a concern that overstimulation of

Wnt/β-catenin signaling can promote cancer because
aberrant activation of Wnt/β-catenin signaling can lead
to tumor formation [6, 109]. However, there are no
reports of increased incidence of cancer in families car-
rying LRP5 gain-of-function mutations, and Sost- or
Dkk1-deficient animals do not have an increased risk of
tumor developments [183]. Nevertheless, the therapeutic
application of Wnt activators should be given precisely
to restore, but not overactivate, the Wnt/β-catenin sig-
naling pathway in AD patients.
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NFTs: Intracellular neurofibrillary tangles; NPCs: Neural progenitor cells; Pgp-
1: P-glycoprotein; PSEN: Presenilin; Rspo: R-spondin; RNF43: Ring finger
protein 43; sFRP: Soluble Frizzled-related protein; sTREM2: Soluble TREM2
TCF/LEF: T-cell factor/lymphoid enhancing factor; TREM2: Triggering receptor
expressed on myeloid cells-2; ZNRF3: Zinc and ring finger 3
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