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Abstract

Aim: The human-immunodeficiency virus (HIV) envelope protein gp120 promotes synaptic damage similar to that
observed in people living with HIV who have neurocognitive disorders. The neurotoxic effect of gp120 appears to
occur through the α-helix motif that binds to neuronal microtubules (MTs). In this study, we examined the ability of
short peptide derivatives from Helix-A, a peptide synthesized based on α-helix structure of gp120, to displace
gp120 from binding to MTs and prevent its neurotoxic effects.

Methods: Surface plasmon resonance was used to determine the binding of Helix-A and its modifications to MTs.
Helix-A peptide and derivatives were delivered inside rat primary cortical neurons by mesoporous silica
nanoparticles (MSN). Neuronal processes and survival were evaluated by microtubule associated protein 2-
immunostaining and Hoechst/Propidium iodide, respectively.

Results: Surface plasmon resonance analysis revealed that Helix-A but not its modifications binds to MTs. Also, only
Helix-A MSN but not other peptides prevented the ability of gp120 to reduce neuronal processes as well as
neuronal survival. Thus, the amino acid structure of Helix-A is key for its neuroprotective activity.
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Main text
Various degrees of axonal and dendritic pathology are
seen in human-immunodeficiency virus (HIV) positive
subjects who develop HIV-associated neurocognitive dis-
orders (HAND) [1, 2]. This neurological consequence of
HIV infection of the brain occurs also in the HIV-infected
population undergoing the antiretroviral therapy [3].
Thus, new therapeutic strategies to reduce neuronal loss
are needed. However, more knowledge about the mecha-
nisms of how HIV is neurotoxic is crucial for a better ad-
junct therapy.
HIV proteins are, among other causes, most likely respon-

sible for the damage of synapses. In particular, the envelope
protein gp120, which can be secreted by HIV-infected cells,
induces neuronal apoptosis through direct binding to che-
mokine receptors, CXCR4 and CCR5 [4, 5]. Binding of
gp120 to these receptors promotes its rapid endocytosis by
neurons [6]. Importantly, internalized gp120 binds to

microtubules (MTs) [7, 8], which are the major avenue for
intracellular transport of many organelles, including mito-
chondria, and synaptic vesicles to distal axons and dendrites.
Changes in the integrity of MTs are sufficient to alter proper
energy supply within neurites and synapses leading to acute
or chronic axonal and dendritic fragmentation [9]. Thus,
gp120 by binding to MTs may disrupting their function and
decrease neuronal survival.
We have previously provided evidence that the con-

served α-helix region of gp120 binds to the carboxy ter-
minal tail of class III beta tubulin (TUBB3), one of the
MT elements found predominantly in neurons [8].
When such binding is blocked by a 19-amino acid pep-
tide, termed Helix-A, synthetized based on the α-helix
motif of gp120, the neurotoxic effect of the envelope
protein is abolished [8]. In this work, we have analyzed
different peptides carrying various amino acid mutations
to investigate whether the α-helix motif is necessary for
the neuroprotective activity of Helix-A.
To examine the structure of Helix-A required to dis-

place gp120 from binding to TUBB3, we designed and
synthetized peptides to carry mutations so that either
the helix motif of Helix-A is lost or specific amino acid
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sequences are changed (Fig. 1a). These include peptides
with a truncated C-terminal (NDMVEQMHED, modifi-
cation #1) or N-terminal (IISLWDQSLK, modification
#2) of Helix-A. These modifications produce peptides

with shorter helical structure. In addition, we synthe-
tized peptides in which glycine (modification #3) or pro-
line (modification #4) were introduced into the original
Helix-A peptide to completely distrupt the α-helix

Fig. 1 The neuroprotective effect of peptides against gp120 depends on their binding to MTs. a. Helix-A and other peptides were purchased
from Genscript, Piscataway, NJ. The binding affinity of peptides to assembled MTs (Cytoskeleton Inc., Denver, CO), expressed as KD, was
determined by surface plasmon resonance (Biacore™ T200, GE Health care Bio-Science, Piscataway, NJ) as previously described [8]. b-c. Rat cortical
cultures were prepared from embryonic day 14–15 Sprague Dawley rats (Taconic, Derwood, MD) as previously described [8]. Neurons were
exposed to gp120ADA (5 nM) (Immunodiagnostics Inc., Woburn, MA) alone or in combination with Helix-A MSN or the other four modified
peptides crosslinked to MSNs (5 μM each), for 24 h. Neurite length (a) and cell survival (b) were then determined as previously described [8].
Boiled gp120ADA was used as a control. b. Example of images of neurons (20×) stained with a mouse MAP2 antibody (1:5000; MilliporeSigma, St
Louis, MO) after exposure to boiled gp120 (control) or gp120ADA for 24 h. Neurite lengths were determined by analyzing MAP2
immunoreactivity in three randomly selected fields (10 neurons per field) from three separate experiments using ImageJ, as detailed elsewere [8].
*p < 0.0001 vs control, **p < 0.0001 vs gp120; One-way ANOVA followed by multiple comparisons by Tukey’s test. c. Neuronal survival was
determined by Hoechst/PI staining (MilliporeSigma) as previously described [8]. Results are expressed as mean ± SEM (from 3 separate
experiments with 2 duplicates per condition). #p < 0.005 vs control, ##p < 0.0004 vs gp120; One-way ANOVA followed by multiple comparisons by
Tukey’s test
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conformation. We also synthetized Helix-B peptide, which
has a α-helix structure but it does not displace gp120 from
MTs [8]. Analysis of interaction of peptides to assembled
MTs, using surface plasmon resonance, indicated that only
the unmodified Helix-A peptide binds to assembled MTs
(Fig. 1a). Binding of Helix-A peptide to TUBB3 was in the
micromole range; however, this is consistent with a rapid dis-
sociation of Helix-A from MTs due to its small mass (~
1696Da). Nevertheless, our data support the suggestion that
the amino-acid sequence as well as the α-helix structure of
Helix-A peptide are essential for its binding to MTs.
We have previously shown that Helix-A peptide cannot

cross cell membranes unless cross-linked to mesoporous
silica nanoparticles (MSN) [10]. Once inside neurons,
Helix-A MSN has neuroprotective effect against at least
two strains of gp120: T-tropic (gp120IIIB) and M-tropic
(gp120ADA) [8]. To examine whether Helix-A peptide
modifications are neuroprotective, we cross-linked all
modified peptides to MSN. We then used these peptides
to test whether they prevent gp120ADA-mediated neurite
pruning and cell loss in rat cortical cultures. MSN alone
or peptides crosslinked to MSN alone did not affect either
neurite lengths, determined by microtubule associated
protein 2 (MAP2) staining, or neuronal survival measured
by Hoechst/propidium iodide (PI) (data not shown), sug-
gesting that these compounds have no side effects tha im-
pair neuronal viability. However, Helix-A MSN but not all
modified peptide-MSN prevented gp120-mediated neurite
pruning (Fig. 1b), as well as neuronal loss (Fig. 1c). It is
important to note that Helix-A not crosslinked to MSN or
Helix-B MSN were ineffective in blocking gp120 neuro-
toxicity [8]. These data support the hypothesis that the
amino acid sequence of the Helix-A, which binds to MTs,
is crucial for the neuroprotective activity against gp120.
MTs are composed of tubulin heterodimers comprised of

repeats of α- and β-tubulin, which are conserved among all
eukaryotic species [11]. TUBB3 contains multiple α-helix
motifs. The secondary structure of gp120 also contains three
α-helix motifs that can determine associations between dif-
ferent proteins [12]. We have previously shown that the α-
helix of gp120 near the V3 loop could form a dimer with the
α-helix of TUBB3 located in its carboxyl terminal tail [13].
Such binding may alter the stability and function of neuronal
MTs. Thus, a binding of gp120 to TUBB3 may impair MTs
function. Indeed, we have previously demonstrated that the
Helix-A peptide, which displaces gp120 binding to TUBB3
by interrupting the helix-helix interaction of gp120 with
TUBB3, is neuroprotective [8]. In this work, we further
established that modifications of the amino acid sequence in
Helix-A peptide that either disrupt its helical conformation
or abolish the binding site as well as the neuroprotective ac-
tivity against gp120. Nevertheless, we also observed that an-
other α-helix motif (Helix-B) in gp120 secondary structure
does not bind to MTs and it is not neuroprotective.

Therefore, both the α-helix structure, as well as the amino
acid sequence within, are equally important for high affinity
binding of gp120 to MTs. Lastly, the amino acid sequence of
the α-helix structure is not homologous to that found in the
V3 loop domain necessary for the binding of gp120 to the
chemokine co-receptors [14]. Thus, our results support the
suggestion that activation of these receptors, although neces-
sary to deliver gp120 inside neurons, [10], may not entirely
explain the cellular mechanisms of gp120 neurotoxicity.
The ability of Helix-A to block gp120 neurotoxicity was

tested in an in vitro experimental model of HAND. Future
studies must test the effect of Helix-A in vivo to ascertain
whether this peptide is a suitable approach for a new adjunct
therapy against HIV, in addition to CXCR4 or CCR5 recep-
tor antagonists.
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