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Abstract

Background: Transcriptional repressor DREAM (downstream regulatory element antagonist modulator) is a Ca2
+-binding protein that regulates Ca2+ homeostasis through gene regulation and protein-protein interactions. It has
been shown that a dominant active form (daDREAM) is implicated in learning-related synaptic plasticity such as LTP
and LTD in the hippocampus. Neuronal spines are reported to play important roles in plasticity and memory.
However, the possible role of DREAM in spine plasticity has not been reported.

Results: Here we show that potentiating DREAM activity, by overexpressing daDREAM, reduced dendritic basal
arborization and spine density in CA1 pyramidal neurons and increased spine density in dendrites in dentate gyrus
granule cells. These microanatomical changes are accompanied by significant modifications in the expression of
specific genes encoding the cytoskeletal proteins Arc, Formin 1 and Gelsolin in daDREAM hippocampus.

Conclusions: Our results strongly suggest that DREAM plays an important role in structural plasticity in the
hippocampus.
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Background
Change in intracellular free calcium concentration has
long been recognized as a universal signal underlying
neuronal plasticity and adaptive responses in the CNS to
different environmental stimuli [1, 2]. Diverse signaling
pathways participate in these responses, among them a
specific set of proteins that decode the calcium signal in
accordance with frequency, subcellular location and in-
tensity [3–5]. Despite extensive investigation, however, a
detailed mechanistic description of Ca2+-dependent sig-
naling in the expression of the late, transcription-
dependent component of LTP and LTD remains elusive
[reviewed in 6]. It was proposed that the concentration
of intracellular free calcium affects dendritic spine (for
simplicity, spine) density by controlling spine growth
and pruning [7] and that the formation of new spines

requires calcium-dependent CREB phosphorylation and
CRE-dependent transcription [8].
DREAM belongs to a group of four highly conserved

genes (K+ channel interacting proteins, KChIP-1 to 4) [9,
10], that regulates synaptic activity through different
mechanisms (Table 1) including binding to DRE regula-
tory sites in target genes and to other nucleoproteins like
CREB [11, reviewed in 12]. Despite its potential, the role
of the Ca2+-dependent transcriptional repressor DREAM
in spine growth and remodeling associated with the ex-
pression of LTP and LTD has not been analyzed.
Mutation of the EF-hands in DREAM results in a Ca2

+-insensitive repressor that in vitro shuts down DRE-
and CRE-dependent transcription in the presence of ele-
vated intracellular levels of free Ca2+ [9, 13]. Mutation of
a leucine-charged residue rich domain (LCD) at the N-
terminal of DREAM (L47,52 V) prevents the interaction
with CREB [13] and in combination with the EF-hand
mutation generates a calcium insensitive double mutant
daDREAM that specifically blocks Ca2+-/DREAM-
dependent transcription without blocking CREB-
dependent gene expression. Use of transgenic mice over
expressing the Ca2+-insensitive DREAM mutant
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daDREAM revealed that long-term depression (LTD), a
form of synaptic plasticity, was significantly impaired in
daDREAM transgenic mice [14]. Moreover, contextual
fear and spatial memory as well as behavioral anxiety
were significantly impaired in daDREAM mice. A post-
synaptic modulation of the NMDA receptor by DREAM
through a Ca2+-dependent interaction with PSD-95 [14]
or by the interaction with the NMDA-R1 subunit [15]
could also contribute to this phenotype. In addition, ex-
pression of daDREAM in the forebrain resulted in a
complex phenotype characterized by loss of recurrent
inhibition and enhanced LTP in the dentate gyrus (DG),
impaired learning and memory and profound changes in
the expression of specific activity-dependent transcrip-
tion factors in the hippocampus, including Npas4,
Nr4a1, Mef2c, JunB and c-Fos [16].
Here, we report specific changes in dendritic

arborization and spine density in CA1 pyramidal neu-
rons and granule cells of the DG, respectively, in adult
transgenic mice expressing the daDREAM mutant.
Moreover, changes in the expression of genes related to
the cytoskeleton that could participate in the modified
cyto-architecture were found in daDREAM transgenic
hippocampus.

Results
Individual hippocampal neurons were injected with Lu-
cifer Yellow in fixed coronal slices. We could thus read-
ily visualize the dendritic arbor, including fine branches
as well as dendritic spines, of individual neurons
(Fig. 1a-c). Since in a 200 μm slice the entire dendritic
tree could not always be included, due to its large exten-
sion, the values regarding the total dendritic lengths and
the Sholl analysis for the dendritic tree (length and num-
ber of intersections) represent the dendritic tree in-
cluded in the slice. Nevertheless, as all neurons were

injected at the same depth into the slice (30 μm from
the surface) it is assumed that the portion of the den-
dritic tree included in the slice is equal in different neu-
rons and across genotypes.

Changes in the CA1 dendritic trees in daDREAM mice
Changes in synaptic plasticity and learning and memory
are associated with dendritic development [7, 17, 18] as
well as with the Ca2+-dependent growth and pruning of
dendritic spines [19]. Thus, we examined whether neur-
onal morphology and spine density were altered in
daDREAM CA1 pyramidal neurons, those that could be
responsible for the modified LTD in daDREAM mice
(Fig. 1b and c). Representative tracings of CA1 pyram-
idal neurons from wild type and daDREAM mice are
shown in Fig. 1d.
Sholl analysis was used to calculate the number of

dendrite crossings (intersections) and the dendritic
lengths at increasing distances (10 μm interval) from
soma as objective measurements of the dendritic com-
plexity. The analysis revealed, both for apical (Fig. 2a, b)
and basal (Fig. 2c and d) dendrites, a statistically signifi-
cant reduction for these parameters in transgenic mice.
Thus, the total dendritic tree is shorter (Fig. 2e and f)
and the dendritic complexity is smaller in daDREAM
CA1 neurons compared to wild type.
Spine density in CA1 neurons was analyzed at increas-

ing distances from soma (Sholl analysis) and for each
branch order in apical (Fig. 3a and b) and basal (Fig. 3c
and d) dendrites. The result showed no difference in
spine density between wt and daDREAM neurons in ap-
ical dendrites (Fig. 3a and b). In basal dendrites, how-
ever, we found a significant lower spine density in
daDREAM neurons (Fig. 3c and d).
In addition we calculated the total number of spines

by combining spine density and Sholl analysis (density of

Table 1 DREAM is a multifunctional regulatory protein

Modified function Regulated by Molecular mechanism References

Kv4 channel gating &
membrane localization

CalciumLipids
Phosphorylation by GRK2

Protein-protein interaction An et al., 2000 [10] Holmqvist et al., 2001 [70]
Ruiz-Gomez et al., 2007 [71]

Ca2+ release from the ER Not known Protein-protein interaction Lilliehook et al., 2002 [72]

Voltage-gated Ca2+ channel
expression & gating

Calcium Transcriptional regulation Ronkainen et al., 2011 [73]
Naranjo & Mellstrom, 2012 [24]

Protein-protein interaction Thomsen et al., 2009 [74] Anderson et al., 2010 [75]

Ca2+ influx through
NMDA receptors

Calcium Protein-protein interaction Wu et al., 2010 [14] Zhang et al., 2010 [15]

GABAergic inhibition Calcium Transcriptional regulation Mellstrom et al., 2014 [16]

Chronic pain
desensitization

Calcium & BDNF Transcriptional regulation Rivera-Arconada et al., 2010 [30]

ATF6 processing Calcium Protein-proteininteraction Naranjo et al., 2016 [25]

Pain perception Calcium Transcriptional regulation Carrion et al., 1999 [9] Cheng et al., 2002 [26]

Protein-protein interaction Hu et al., 2006 [76]
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spines x dendritic length). We found a significant reduc-
tion of spines in the basal arbor of transgenic neurons
(Fig. 3e).

Changes in spine density in DG granular neurons of
daDREAM mice
Individual granular neurons were injected with Lucifer
Yellow and traced in three-dimensions (Fig. 1a and
Fig. 4a and b). Representative tracings of DG granular
neurons from wild type and daDREAM mice are shown
in Fig. 4c.
As for CA1 pyramidal neurons, Sholl analysis was used

to calculate the number of dendrite crossings (intersec-
tions) and the dendritic lengths at increasing distances
(10 μm interval) from soma as objective measurements
of dendritic complexity. This analysis revealed for
daDREAM granule neurons no significant differences in

the dendritic length (Fig. 5a and b) and in the number of
intersections at any distance from the soma (Fig. 5c).
Spine density, however, was significantly higher in

daDREAM compared to wild type granule neurons as
measured by Sholl analysis (Fig. 5d) and per branch
order (Fig. 5e). As a result, the total number of spines
calculated by combining spine density and Sholl analysis
(density of spines x dendritic length) was significantly in-
creased in DG transgenic granule cells (Fig. 5f ).

Expression of cytoskeletal related genes are modified in
daDREAM hippocampus
To relate morphological changes in transgenic hippo-
campus with potential differences in gene expression in
daDREAM mice, we search for modified levels of mRNAs
encoding proteins related to actin polymerization and
cytoskeleton, some of which have been related to calcium
homeostasis, synaptic plasticity and learning and memory,

Fig. 1 Lucifer Yellow injected neurons in the hippocampus. a Panoramic view of the hippocampus showing Lucifer Yellow injected neurons in
CA1 and DG areas. b Representative individual CA1 pyramidal neurons, wild type (wt) and daDREAM (tg). c High magnification photomicrographs
of representative dendrites of the CA1 basal dendritic tree, showing the dendritic spines in wt and tg neurons. d Neurolucida reconstructions of
CA1 wt and tg neurons. Scale bar, A 200 μm, B 40 μm, C 8 μm, D 50 μm
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i.e. Arc [20–22] and Gelsolin [23]. For this, we revisited
the results from a genome-wide analysis of daDREAM
hippocampus (Gene Expression Omnibus accession num-
ber GSE17844) [16] and validated specific messengers by
quantitative real-time PCR. Expression levels for Arc,
Fhod3, Tmod3 and formin1 were reduced, while a signifi-
cant increase in gelsolin mRNA was observed in
daDREAM hippocampus (Fig. 6a and b). These changes
were specific since no significant alteration was observed
for others, including formin2, spire1 and cap1 (Additional

file 1). Notably, expression of Arc and gelsolin was not sig-
nificantly modified in DREAM−/− hippocampus, a lack of
effect likely due to compensation by other KChIPs
expressed in this brain area (Fig. 6a).
Reduced expression of Arc in whole hippocampus was

observed also at the protein level in daDREAM mice
(Fig. 6c). Furthermore, analysis of Arc protein in hippo-
campal subareas showed a decrease in Arc content in
the CA1 and the DG from transgenic mice compared to
wild-type (Fig. 6c).

Fig. 2 Analysis of the dendritic trees in CA1 of wild type and daDREAM mice. Sholl analysis of the apical (a, b) and basal (c, d) dendritic tree
showing reduction in length and number of intersections in tg mice (wt, n = 5 and tg, n = 7; Two-way ANOVA, P < 0.0001 for genotype). For a
and b centered sixth order polynomial curve fitting was used (P < 0.0001). For c and d centered third order polynomial curve fitting was used
(P < 0.0001). Analysis of the total dendritic length revealed smaller apical (e) and basal (f) total dendritic length in tg mice (wt, n = 5, 76 neurons;
tg, n = 7, 73 neurons; * = 0.042, ** P = 0.0052, Mann–Whitney)
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Fig. 3 Analysis of spine density in CA1 of wild type and daDREAM mice. Analysis of spine densities in apical and basal dendrites of hippocampal
CA1 neurons from wild type and daDREAM mice. a and b In apical dendrites, no difference between genotypes was observed using Sholl
analysis (wt, n = 7; tg, n = 9). c and d In basal dendrites, a significant reduction in spine density in tg neurons was observed using Sholl analysis
(wt, n = 7; tg, n = 9). e Total number of spines in the basal dendritic tree showing statistically significant lower number in daDREAM neurons
(n = 8 mice in each group; Two-way ANOVA, P < 0.0011for genotype). Centered sixth order polynomial curve fitting was used (P < 0.0006)
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Taken together, these results indicate that daDREAM-
induced changes in the expression levels of genes related
to actin polymerization and to the cytoskeleton, may
underlie changes in neuronal morphology and connect-
ivity and could be related to the alterations in more elab-
orated functions as learning and memory [16].

Discussion
DREAM regulates the expression of several genes, which
are important for Ca2+ and protein homeostasis and syn-
aptic plasticity [24, 25]. This includes activity-dependent

expression of c-fos and Npas4 [9, 16], as well as, effector
genes directly responsible for synaptic events and cal-
cium homeostasis in the postsynaptic neuron such as
prodynorphin, BDNF and the sodium-calcium exchanger
3 [26–29]. In addition, expression of daDREAM in the
CNS has been associated with modified LTD and LTP
responses and a severe impairment in learning and
memory formation [14, 16, 30].
Here, we present evidence for permanent changes in

the microanatomy of CA1 pyramidal cells and granule
cells of DG, which suggest alterations of hippocampal

Fig. 4 Lucifer Yellow injected DG neurons. a Representative DG granular neurons, wild type (wt) and daDREAM (tg). b High magnification
photomicrographs of representative dendrites of DG wt and tg neurons, showing the dendritic spines. Note the increased spine density in the tg
dendrite. c Neurolucida reconstructions of wt and tg granular neurons. Scale bar, A 60 μm, B 12 μm, C 100 μm
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connectivity, as well as in the expression of cytoskeletal
genes, Arc, formin1 and gelsolin, which could underlie
altered LTD and LTP in daDREAM mice.
Modified protein expression of Arc, Formin1 and Gel-

solin has been associated with changes in actin
polymerization, spine density, dendritic growth and im-
pairment in long-term forms of synaptic plasticity,

including LTP and LTD [22, 31, 32]. Thus, it is well
characterized that decreased protein expression of Arc
impairs LTD in CA1 neurons [33] and in Purkinje cells
[20] and that reduced LTD depends on a decrease in the
translation rate of pre-existing levels of Arc mRNA in
CA1 neurons [34]. Moreover, knockdown of Arc in
basolateral amygdala impairs long-term extinction of

Fig. 5 Analysis of spine density in DG neurons of wild type and daDREAM mice. a Sholl analysis showing equal dendritic length in wild type (wt)
and daDREAM (tg) mice at all distances from soma. b The number of the intersections in granular neurons is similar between genotypes at all
distances from soma. A significant increase in spine density in tg neurons was observed by Sholl analysis (c) (wt, n = 7; tg, n = 7, Two-way ANOVA,
P < 0.0001 for genotype) and measured per branch order (d) (wt, n = 7; tg, n = 7, Two-way ANOVA, P < 0.001 for genotype). For c, sigmoidal curve
fitting was used (P < 0.0001). For d, centered second order polynomial curve fitting was used (P < 0.0005). e Total number of spines in the basal
dendritic tree showing statistically significant higher number in daDREAM neurons (n = 8 mice in each group; Two-way ANOVA, P < 0.001).
Centered third order polynomial curve fitting was used (P < 0.0052)
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fear memory [35] and total ablation of Arc in Arc−/−

mice results in decreased spine density and altered spine
morphology in CA1 and DG neurons [36] while no
change in spine density was reported earlier [33].
Our results in daDREAM mice add new pieces of in-

formation to this functional scenario. We found no dif-
ference in spine density between wild type and
daDREAM CA1 neurons in apical dendrites, while in
basal dendrites we found a significant lower spine dens-
ity in daDREAM neurons. This difference could be rele-
vant since the mechanisms of induction and
maintenance of LTP differ in apical (stratum radiatum)
and basal dendrites (stratum oriens) of hippocampal
CA1 pyramidal neurons [37–41]. Furthermore, we found
an increase in spine density in the granule cells of the
DG that may account for the increase in LTP in
daDREAM mice observed in this region. Reduced ex-
pression of Arc mRNA in whole daDREAM hippocam-
pus translates to a reduction of Arc protein in whole
hippocampus, that is also observed in CA1 and DG hip-
pocampal subareas. Thus, complex changes in hippo-
campal cytoarchitecture in daDREAM mice are not
explained solely by the reduction in Arc protein content
and might be understood only in the context of a largely

modified transcriptional scenario due to daDREAM
overexpression [16]. Future experiments should explore
changes in the level and distribution of other cytoschele-
tal proteins, changes in the fine morphology and func-
tionality of the spines in daDREAM hippocampal
neurons and the relationship of these two events with
the different mechanisms of induction and maintenance
of LTP between apical and basal dendrites.
Decreased formin1 expression and reduced dendritic

complexity in daDREAM CA1 neurons may well be re-
lated. It has been reported that Formin1 mediates
Neurogenin3-induced dendritogenesis and synaptogene-
sis in cultured hippocampal neurons [42]. Moreover, the
increase in gelsolin expression in daDREAM hippocam-
pus may be involved in the increase in spine density in
daDREAM granule cells in the DG, since a role in the
stabilization of actin polymerization has been proposed
for Gelsolin [31]. Nonetheless, expression of cap1 a
regulator of Cofilin, an actin related protein that partici-
pates in spine changes during LTD [43], is not modified
in daDREAM neurons. Thus, long term structural
changes and changes in the expression of cytoskeletal
proteins have a relatively good correlation that is not
complete, suggesting the involvement of additional

Fig. 6 Changes in the expression of cytoskeletal related genes in daDREAM hippocampus. a, b Quantitative real-time PCR analysis of the indicated
genes in hippocampus from wild type (wt), daDREAM (tg) and DREAM knockout (DREAM−/−) mice. Values are normalized with respect to HPRT
mRNA content. Results are the mean ± SEM. In (a), ** P < 0.01, *** P < 0.001 (One-way ANOVA followed by Dunnett’s multiple comparison, n = 10).
In (b), * P < 0.05, **** P < 0.0001 (Student’s t-test, n = 17). c Western blot analysis of the Arc protein in whole hippocampus (WH), CA1 and DG from
wild type (wt) and daDREAM mice (tg). Five mice were analyzed in each group. Representative gels are shown. * P < 0.05, ** P < 0.01
(Mann Whitney)
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mechanisms and/or the occurrence of specific changes
within hippocampal regions that should be further ex-
plored to fully understand the modified long term syn-
aptic plasticity in daDREAM mice.
Down regulation of Arc and formin1 gene expression

is in line with the intrinsic repressor activity of DREAM,
while the induction of gelsolin expression may be sec-
ondary to primary changes in target genes or the conse-
quence of the interaction between DREAM and other
nucleoproteins important for gelsolin gene regulation.
Whether DREAM acts directly on the Arc and formin1
promoters or indirectly affecting the transactivating ef-
fect of SRF on the distal enhancer that directs basal and
activity-dependent transcription of the Arc gene [44–46]
remains to be clarified. In addition, the decrease in Arc
expression could be secondary to the repression of
Npas4 and BDNF expression in daDREAM hippocam-
pus [16]. Nevertheless, it has been shown that Formin-
mediated actin polymerization is involved in the activa-
tion of SRF in the nucleus and that SRF activation re-
sults in changes of the expression levels of multiple
cytoskeletal-related proteins [47–49]. Whether the down
regulation of the formin1 gene is the primary transcrip-
tional event in daDREAM neurons and whether changes
in the expression of Fhod3, Tmod3 and gelsolin are re-
lated to changes in SRF function are questions that re-
main to be investigated.
A large dendritic arbor implies that a wider region of

the cortex must be sampled, while a more complex
branching pattern may determine the degree to which the
integration of inputs is compartmentalized within their ar-
bors [50–54]. Greater potential for compartmentalization
results in a significant increase in the representational
power and a greater capacity for learning and memory
[54, reviewed in 55]. In addition, each spine receives at
least one excitatory synapse and such spines represent the
main target of these synapses [56]. Thus, the differences
in the size, branching pattern and spine density of cells re-
sult in variation in the total number of putative excitatory
inputs sampled by each cell and in the integrative proper-
ties of these neurons. The lower number of spines in basal
dendrites of CA1 and increased spine density in trans-
genic granule cells of the DG suggests decreased connect-
ivity in the CA1 and enhanced connectivity in the DG.
Nevertheless, we have not analyzed the different types of
spines present in excess in daDREAM versus wild type
neurons, and more important, we do not know how
synapses are modified during LTD and LTP in transgenic
hippocampus.
Studies using DREAM knockout mice showed no dif-

ference with wild type mice in paired pulse facilitation,
resting membrane potential or input–output relation of
fEPSPs [57]. Moreover, DREAM deficient mice did not
show an obvious phenotype in a place-learning version

of the Morris water maze test [26] and had only a slight
hormonal dependent changes in memory in fear condi-
tioning tests [58] and slight increase in LTP in the den-
tate gyrus of the hippocampal formation [57]. In the
latter study, enhanced LTP in the DG of DREAM knock-
out mice could be mimicked by potassium channel
blockers and was associated with decreased A-type
current density [57]. Therefore, it was concluded that
Kv4 potassium channels are important for mediating the
function of DREAM in synaptic plasticity. However,
work in transgenic spinal cord neurons have shown no
change in the activity of Kv4 channels in daDREAM
transgenic neurons indicating that the lack of spinal
sensitization in transgenic mice is not related to change
in K+ currents but rather related to the transcriptional
control of BDNF by mutated DREAM [30]. In the same
way, no significant change in the basal expression of
Arc, forming 1 and gelsolin were observed in this study
in the hippocampus of DREAM −/− mice. Absence of
strong phenotypes in DREAM/KChIP3 deficient mice is
likely due to the functional redundancy among DREAM/
KChIP proteins and their overlapping expression pat-
terns [27, 59], as occurs after genetic ablation of KChIP2
[60] or KChIP1 [61], in which compensation by other
KChIP proteins also results in mild phenotypes.
Activity-dependent synaptic plasticity might transform

small and silent synapses to larger and fully functional
synapses. Expression of the calcium insensitive DREAM
mutant in daDREAM mice indicates that not only basal
but also activity-dependent changes in gene expression
are reduced in daDREAM neurons. Thus, functional
synaptic changes upon membrane depolarization may
not occur or be reduced in daDREAM compared with
wild type neurons. Future studies should address these
different possibilities.

Conclusions
Our results strongly suggest that DREAM plays an im-
portant role in learning-related structural plasticity in
the hippocampus.

Methods
Transgenic mice
The generation of transgenic mice has been reported
previously [29, 30]. This study was performed in
daDREAM mice line 26, specific details about this trans-
genic line can be found in [16].
All experimental protocols involving the use of ani-

mals were performed in accordance with recommenda-
tions for the proper care and use of laboratory animals
and were performed under authorization through the
regulations and policies governing the care and use of la-
boratory animals (EU directive n° 86/609 and Council of
Europe Convention ETS123, EU decree 2001–486 and
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Statement of Compliance with Standards for Use of La-
boratory Animals by Foreign Institutions n° A5388-01,
National Institutes of Health (USA).

Morphometric analysis
Mice were anesthetized with pentobarbital (0.04 mg/kg)
and transcardially perfused with saline followed by 80 ml
of 4 % paraformaldehyde made in 0.1 M phosphate buf-
fer (pH 7.4). The brains were removed from the skull,
and postfixed in the same solution for 24 h. Coronal sec-
tions (150 μm), were cut with the aid of a vibratome,
and prelabeled with 10−5 M 4,6-diamidino-2-phenylin-
dole (DAPI, Sigma D9542).
Cell injection methodology has been described in de-

tail elsewhere [62–64]. Briefly, cells in the posterior third
of the left dorsal hippocampus (anteroposterior −2.10 to
−2.70 mm from bregma [65] were injected individually
with 4 % Lucifer Yellow (CH, Aldrich) in 1 M LiCl
(pH 7.4) [66], by passing steady hyperpolarizing current
through the electrode (C −0.5 to - 1.0 nA). Current was
applied until the distal tips of each neuron fluoresced
brightly.
Following injection, the sections were processed with

an antibody to Lucifer Yellow (1:400,000 in stock solu-
tion [2 % bovine serum albumin (Sigma A3425), 1 % Tri-
ton X-100 (BDH 30 632), 5 % sucrose in 0.1 M
phosphate buffer]), followed by a biotinylated species
specific secondary antibody (Amersham RPN 1004;
1:200 in stock solution) and a biotin-horseradish perox-
idase complex (Amersham RPN1051; 1:200 in 0.1 M
phosphate buffer). DAB (3,3′-diaminobenzidine; Sigma
D 8001) was used as the chromogen. The slides were
coded prior to the morphological analysis. The code was
not broken until after the quantitative analysis was
completed.
For the analysis of dendrite morphometry, neurons

were only included in the analysis if they had clearly dis-
tinguishable dendritic trees and all dendrites were com-
pletely filled. In order to determine whether the
dendritic arbor structure is altered in daDREAM mice,
neurons were traced with the aid of a computerized data
collection system, Neurolucida (Neurolucida V6; Micro-
Brightfield, Inc., Williston, VT) coupled to an Olympus
microscope (BX51), using a 40x objective (NA 0.8) with
examination, as needed, at 100x (Oil, NA 1.35). The
Sholl analysis [67], which calculates the number of den-
dritic bifurcations and length at 10 μm-interval distance
points starting from the soma, was automatically per-
formed with Neuroexplorer 4.50 program (MicroBright-
field, Inc., Williston, VT). Total dendritic length was
also generated.
For the analysis of spine density of granular neurons

in the DG, one dendrite with its branches was traced
and the dendritic spines were marked. All types of spines

were included in the spine counts, and no correction
factors were applied to the spine counts, as dendrite tra-
cing at high power allows the visualization of all spines
that issue from the dendrites, i.e. the DAB reaction
product is more transparent than the Golgi reaction
product. The reconstructed data were exported to Neu-
rolucida Explorer (MicroBrightField Inc., Williston, VT)
for quantitative analysis. Sholl analysis [67] was applied
to determine the spine density at increasing distances
from the soma.
For the statistical analysis, spine density was calculated

by dividing the number of spines on a segment by the
length of the segment and was expressed as the number
of spines per 1 μm of dendrite. Densities of spines on
dendrites were averaged for a cell mean, and the neu-
rons from each animal were averaged for an animal
mean. The total number of spines in the basal dendritic
tree of the pyramidal cells in CA1 was calculated by
multiplying the mean number of spines of a given por-
tion of dendrite by the mean number of branches for
the corresponding region and animal, over the entire
dendritic tree (obtained by Sholl analysis) [68]. Normal-
ity was tested using the Kolmogorov-Smirnov test. For
Sholl analysis, longitudinal distributions were first
assessed using 2-way ANOVA considering all interac-
tions, and then, modeled using non-linear regression
model fitting to various curves. The best-fitted curves
were compared to obtain difference between genotypes.
The significance criterion was set at P < 0.05. All data
shown are presented as mean ± SEM.

Quantitative real-time PCR
RNA was isolated from hippocampal tissues using TRI-
zol (InVitrogene), treated with DNAse (Ambion) and re-
verse transcribed using hexamer primers and Moloney
murine leukemia virus reverse transcriptase. To confirm
the absence of genomic DNA, each sample was proc-
essed in parallel without reverse transcriptase. Quantita-
tive real-time PCR was performed using assays from
Applied Biosystems (Additional file 2). The results were
normalized by quantification of HPRT mRNA using the
specific primers; forward 5′-TTGGATACAGGCCAG
ACTTTGTT-3′ and reverse 5′-CTGAAGTACTCATT
ATAGT CAAGGGCATA-3′, and the probe FAM-5′-
TTGAAATTCCAGACAAGTTT-3′-MGB.

Western blot analysis
Mouse hippocampi were quickly removed and one was
processed as whole hippocampus and from the other,
hippocampal subareas CA1 and DG were dissected as
described [69]. Hippocampal tissue was homogenized on
ice in NETN buffer (Tris pH 8.0 50 mM, NaCl 250 mM,
EDTA 5 mM, NP40 0.5 %, supplemented with protease
inhibitors, Complete Roche). Extracts were cleared by
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centrifugation (14,000 g, 20 min). Samples (15 μg) were
analyzed by SDS-PAGE and immunoblot. PVDF mem-
branes were incubated with anti-Arc (C-7, Santa Cruz)
and as loading control, with anti-Erk2 (C-14, Santa
Cruz). Secondary antibodies used were HRP-conjugated
donkey anti-rabbit or -mouse IgG (Jackson; 1 h, room
temperature), and signals were detected with ECL Select
(GE Healthcare). Band intensity was quantified with
QuantityOne software (BioRad).
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