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Abstract 

DNA N6-adenine methylation (N6-methyladenine, 6mA) plays a key regulating role 
in the cellular processes. Precisely recognizing 6mA sites is of importance to further 
explore its biological functions. Although there are many developed computational 
methods for 6mA site prediction over the past decades, there is a large root left 
to improve. We presented a cross validation-based stacking ensemble model for 6mA 
site prediction, called 6mA-StackingCV. The 6mA-StackingCV is a type of meta-learning 
algorithm, which uses output of cross validation as input to the final classifier. The 6mA-
StackingCV reached the state of the art performances in the Rosaceae independent test. 
Extensive tests demonstrated the stability and the flexibility of the 6mA-StackingCV. We 
implemented the 6mA-StackingCV as a user-friendly web application, which allows one 
to restrictively choose representations or learning algorithms. This application is freely 
available at http://​www.​biols​cience.​cn/​6mA-​stack​ingCV/. The source code and experi-
mental data is available at https://​github.​com/​Xiaoh​ong-​source/​6mA-​stack​ingCV.
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Introduction
DNA methylation is one of epigenetic modifications, which refers to a chemical process 
where the methyl groups are attached to the DNA nucleotide residues. So far, it has been 
reported that DNA methylation occurs only at two nucleotides: adenine and cytosine. 
The DNA methylation at the cytosine includes N5-methylcytosine (5mC) [1], Hydroxy-
methylcytosine (5hmC), and N4-methylcytosine (4mC) [2]. The prevalent methylation 
of DNA at the adenine is N6-Methyladenine (6mA). The 6mA is transferring the methyl 
group to the sixth position of the purine ring of adenine by the DNA methyltransferase 
[3, 4]. The 6mA was considered absent in the eukaryote due to limitations of detection 
techniques, but have been found over the past 10 years in a limited number of species 
including Chlamydomonas reinhardti [5], Caenorhabiditis elegans [6], mouse [7], and 
pig [8]. The 6mA have been proven to play a key role in the gene regulation [4], DNA 
repair [9, 10], DNA replication [11], and epigenetic memory maintenance [4]. The 6mA 
was closely associated with such diseases as human esophageal squamous cell carcinoma 
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[12], hepatocellular carcinoma [13], and hypertension [14]. The 6mA was even consid-
ered as a potential “epigenetic” mark [15].

Accurately identifying the DNA 6mA sites is of great importance for exploring its 
mechanism and function. Many techniques have been developed to identify 6mA modi-
fication, which can be grouped into two categories: wet and dry methodologies. The wet 
methodology is to use physic or chemistry-based methods to detect 6mA sites, which 
includes liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), 
single-molecule real-time (SMRT) sequencing, 6mA-immunoprecipitation sequencing 
(6mA-IPseq), restriction enzyme-based sequencing (6mA-REseq) [4, 16]. The 6mA-
IPseq is of low sensitivity, low specificity, as well as high false positive rate, and requires 
high-quality DNA sample without bacterial contamination [16]. The 6mA-REseq is con-
fined to specific restriction site and is of high false positive rate. The LC-MS/MS is of 
high sensitivity and specificity, but is sensitive to experimental condition and hence is 
difficult to conduct. The SMRT is of high sensitivity, and is able to detect single-base 
resolution, but is of relatively low specificity, and easy to confuse 6mA and 1mA. The 
modifications of flanking cytosine also interfere with the identification of 6mA in the 
LC-MS/MS [16]. The dry methodology refers to techniques which employ computa-
tional methods to recognize or identify the 6mA sites. With the development of artificial 
intelligence, the dry methodology is increasingly attracting more and more attention. 
Over the past 10 years, no less than 10 dry methodologies have been developed to iden-
tify 6mA sites [3, 17–31].

The representations of DNA N6-methyladenine and the machine learning algorithms 
are two key factors to determine the predictive accuracy. The machine learning algo-
rithms are classified into the traditional machine learning and the deep learning. The 
former includes support vector machine (SVM), logistic regression, random forest, 
multilayer perceptron, and naïve Bayes, which exhibited high performance especially 
for small samples. The deep learning is actually a deep multiple-layer neural network 
with specific architectures. Besides the traditional fully-connected network, some net-
work architectures have been proposed, such as long short term memory (LSTM) [32], 
convolution neural network (CNN) [33], residual network [34], and self-attention [35]. 
The predictive accuracy of the deep learning heavily depends on the number of train-
ing samples. The small samples are easy to make the deep learning model be overfit-
ting. The representations used to predict DNA N6-methyladenine included the One-hot 
encoding [36, 37], accumulated nucleotide frequency (ANF) [38], enhanced nucleic acid 
composition (ENAC) [39], composition of K-spaced nucleic acid pairs (CKSNAP) [39], 
dinucleotide composition (DNC) [40], trinucleotide composition (TNC) [41], nucleotide 
chemical property (NCP) [38], and pseudo dinucleotide composition (PseDNC) [42]. 
Some representations performed well, and some performed poorly for the same learn-
ing algorithm. For example, One-hot, NCP, EIIP and ENAC showed better performance 
than the TNC, CKSNAP, PseDNC, DNC and NAC in the 6mA-Finder’s experiments 
[23]. One-hot showed better performance than EIIP, which was better than dinucleotide 
One-hot encoding, k-mer composition and k-space spectral nucleotide composition in 
the i6mA‑Fuse experiments [22]. Single representation was insufficient to character-
ize DNA N6-methyladenine sequences. A single representation might contain noise to 
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a certain extent, while combining multiple representations might potentially overwhelm 
some informative representations. Meta-learning is to learn to learn, which learns from 
output of the classifiers. Meta-learning is a potential solution to these questions such as 
getting rid of noise, depending on the large number of training samples. Xu et al. used 
output probabilities of 7 classical machine learning algorithms as representation and con-
struct further the final logistic regression classifier for DNA 6mA prediction [23]. Kha-
nal et al. [25] selected 210 optimal representations from 1570 original representations by 
the recursive feature elimination with cross-validation, and then constructed a support 
vector machine-based classifier for 6mA prediction, which took output of four classifi-
ers as input. Hasan et al. [26] used the learning output of 30 classifiers as the input to 
meta classifiers which was formed by combining 5 categories of representations and 6 
classic machine learning algorithms respectively. These meta-learning methods obtained 
the state of the art performance. We proposed an improved stacking ensemble model 
for predicting DNA N6-methyladenine site, which is called 6mA-StackingCV. The 6mA-
StackingCV used the cross validation to construct multiple classifiers, which improved 
the robustness and flexibility.

Results
Feature selection

Besides one-hot encoding and EIIP, we computed five categories of popular representation 
of nucleotide sequences, i.e., the NCP, kmer (k = 3), NAC, ENAC, and ANF. The NCP is 
similar to One-hot encoding. Difference between them lies that the NCP employed chemi-
cal properties [38]. According to the ring structure, the nucleotides are grouped into Purine 
and Pyrimidine. The former has two rings, while the latter has only a ring. Adenine (A) and 
guanine (G) are classified as purines, while cytosine (C) and thymine (T) are classified as 
pyrimidines. Nucleotides can also be divided into two functional groups: amino and keto. 
A and C belong to the amino functional group, while G and T belong to the keto functional 
group. The nucleotides are divided into strong and weak Hydrogen Bond. G and C fall into 
strong Hydrogen Bond, while A and T into weak Hydrogen Bond. The NCP integrates the 
chemical property into one-hot encoding. Each nucleotide Ni is represented as a 3-dimen-
sional one-hot vector (XiYiZi) , where

That’s to say, A is encoded into (1,1,1), C into (0,1,0), G into (1,0,0), and T into (0,0,1). 
Kmer refers to the occurrence frequencies of k continuous nucleotides. The NAC refers 
to the occurrence frequency of single nucleotide. ENAC [43] is defined as occurrence fre-
quency of nucleotides in the sliding windows from 5′ to 3’, which is computed by

Xi =
1, if Niǫ{A,G}
0, if Niǫ {C ,T }

Yi =
1, if Niǫ{A,C}
0, if Niǫ{G,T } , and
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where S is size of the sliding window and S is equal to 5, NA,win1 denotes occurring num-
ber of A in the first window, NC ,win1 the occurring number of C, and so on. The ANF [38, 
44] is computed by

 Where si stands for the i-th nucleotide residue, Sj refers to the first j nucleotide resi-
dues in the sequence. fsi

(

sj
)

 is computed by

The ANF reflects distribution of positions and nucleotides. A sequence with N 
nucleotide residues has N ANF features.

We used XGBoost as the learning algorithm and employed hold out to examine per-
formance of feature’ distinguishing between 6mA and non-6mA. The hold out is to 
split the training set into two parts, one for training and another for validation. We 
set the ratio of splitting the training set as 8 to 2. We repeated hold out test five times. 
The average performance and 95% confidence intervals were listed in Table  1. The 
One-hot encoding performed best, followed by the NCP, then by EIIP, and then by the 
ENAC, whose average ACC and the 95% confidence intervals were more than 0.93. 
Three categories of features, namely Kmer, NAC, and ANF, performed worse with less 
than 0.81 average accuracies. We removed these three categories of features. Next, 
we further tested the combination of One-hot encoding with other single. The com-
bination of One-hot encoding with EIIP performed best, reaching an average ACC of 
0.9469. Then, we continued to add the NCP and the ENAC respectively for testing. As 
shown in Table 2, three categories of features performed worse than combination of 
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Table 1  Predictive performance of single category of feature

Feature category ACC (95%CI) AUC (95%CI)

NAC 0.5760 (0.5687–0.5834) 0.6134 (0.6043–0.6225)

Kmer(K = 3) 0.6776 (0.6730–0.6822) 0.7447 (0.7386–0.7509)

ANF 0.8005 (0.7959–0.8051) 0.8795 (0.8768–0.8823)

ENAC 0.9348 (0.9316–0.9379) 0.9799 (0.9781–0.9818)

One-hot 0.9461 (0.9428–0.9495) 0.9847 (0.9834–0.9860)

NCP 0.9447 (0.9420–0.9474) 0.9840 (0.9831–0.9849)

EIIP 0.9427 (0.9395–0.9458) 0.9833 (0.9822–0.9844)

Table 2  Predictive performance of feature combinations

Feature category ACC (95%CI) AUC (95%CI)

One-hot + NCP 0.9468 (0.9433–0.9502) 0.9849 (0.9834–0.9863)

One-hot + EIIP 0.9469 (0.9430–0.9508) 0.9850 (0.9833–0.9867)

One-hot + ENAC 0.9459 (0.9431–0.9487) 0.9848 (0.9832–0.9863)

One-hot + EIIP + NCP 0.9458 (0.9424–0.9492) 0.9845 (0.9834–0.9857)

One-hot + EIIP + ENAC 0.9462 (0.9431–0.9493) 0.9849 (0.9833–0.9865)
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One-hot encoding with EIIP. Therefore, we stopped adding the features. The optimal 
representations of DNA 6mA sequences were One-hot encoding and EIIP.

Model selection

We used hold-out to optimize the model. We employed the backward searching strategy. 
Firstly, we used six popular classifiers (Xgboost, LightGBM, Gradient boosting, random 
forest, logistic regression, and decision tree) in the first layer, and fixed support vector 
machine in the second layer. We conducted hold-out test. Then, we removed a classifier 
each time. The increased ACC meant that the removed classifier contributed negatively 
to the performance, and was not used in the subsequent experiments. On the contrary, 
the decreased ACC meant that the removed classifier contributed positively to the per-
formance, and was preserved in the subsequent experiments. We performed above two 
steps repeatedly until there was not new combination. The performances of all combina-
tions of classifiers were listed in Table 3. Obviously, The combination of the XGBoost, 
the Gradient boosting, and the LightGBM obtained the best ACC.

After fixing XGBoost, Gradient boosting and Lightgbm in the first layers, we opti-
mized the second layer. We placed random forest, logistic regression, decision tree, 
XGBoost, Gradient boosting, LightGBM, and SVM in the second layer respectively, and 
then conducted hold-out test. The performance was listed in Table  4. The LightGBM 
and the SVM reached the average ACC of 0.9490 and 0.9488, respectively, exceeding all 
other methods. The predictive accuracies of SVM and the LightGBM were be close to 

Table 3  Performance of combining different classifiers in the first layer

First- layer classifiers ACC (95%CI) AUC (95%CI)

XGBoost, Gradient boosting, LightGBM, random forest, logistic 
regression, decision tree

0.9484 (0.9440–0.9528) 0.9588 (0.9551–0.9624)

XGBoost, Gradient boosting, LightGBM, random forest, logistic 
regression

0.9486 (0.9444–0.9527) 0.9589 (0.9557–0.9622)

XGBoost, Gradient boosting, LightGBM, random forest 0.9487 (0.9446–0.9529) 0.9605 (0.9573–0.9637)

XGBoost, Gradient boosting, LightGBM 0.9488 (0.9445–0.9531) 0.9616 (0.9586–0.9646)

XGBoost, Gradient boosting 0.9469 (0.9430–0.9509) 0.9582 (0.9545–0.9620)

XGBoost, LightGBM 0. 9477 (0.9438–0.9517) 0.9605 (0.9583–0.9627)

Gradient boosting, LightGBM 0.9449 (0.9409–0.9490) 0.9597 (0.9572–0.9621)

Table 4  Performance of different classifiers in the second layer

Second-layer classifier ACC (95%CI) AUC (95%CI)

random forest 0.9448 (0.9425–0.9471) 0.9817 (0.9794–0.9839)

logistic regression 0.9483 (0.9446–0.9521) 0.9855 (0.9840–0.9869)

decision tree 0.9172 (0.9132–0.9212) 0.9172 (0.9132–0.9212)

XGBoost 0.9476 (0.9447–0.9505) 0.9849 (0.9836–0.9862)

Gradient boosting 0.9486 (0.9455–0.9517) 0.9853 (0.9836–0.9870)

LightGBM 0.9490 (0.9455–0.9526) 0.9854 (0.9839–0.9870)

SVM 0.9488 (0.9445–0.9531) 0.9616 (0.9586–0.9646)
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each other. Therefore, we used the XGBoost, Gradient boosting, and LightGBM in the 
first layer and the SVM in the second layer to construct 6mA-StackingCV.

Comparison with existing methods

With development of artificial intelligence, more and more attentions have been paid 
to computational methods for 6mA identification. Over the past decades, more than 
ten computational methods have been developed to predict 6mA sites. We compared 
the 6mA-StackingCV with these existing methods by three independent tests. One 
independent test was to test 6mA-StackingCV for ability to predict Rosaceae 6mA 
sites, and other two independent tests are to test 6mA-StackingCV for ability to pre-
dict 6mA sites across species. As shown in Table 5, the 6mA-StackingCV obtained the 

Table 5  Comparison with state of the art methods

The asterisk (*) indicated that the results were from the literature [45]

Species Methods ACC​ MCC SN SP

Rosaceae Meta-i6mA* 0.953 0.905 0.954 0.951

i6mA-Fuse_FV* 0.943 0.887 0.924 0.962

i6mA-Fuse_RC* 0.893 0.786 0.890 0.895

i6mA-stack_FV* 0.928 0.856 0.928 0.927

i6mA-stack_RC* 0.899 0.798 0.920 0.877

i6mA-Pred* 0.840 0.684 0.897 0.782

iDNA6mA-Rice* 0.878 0.764 0.951 0.805

MM-6mAPred* 0.873 0.758 0.961 0.785

6mA-Finder* 0.846 0.701 0.928 0.764

i6mA-vote* 0.955 0.909 0.955 0.954

6mA-StackingCV 0.960 0.920 0.959 0.961

Rice Meta-i6mA* 0.880 0.768 0.957 0.802

i6mA-Fuse_FV* 0.890 0.781 0.921 0.859

i6mA-Fuse_RC* 0.775 0.571 0.907 0.644

i6mA-stack_FV* 0.876 0.756 0.938 0.815

i6mA-stack_RC* 0.813 0.640 0.915 0.712

i6mA-Pred* 0.791 0.592 0.878 0.705

iDNA6mA-Rice* 0.755 0.561 0.960 0.547

MM-6mAPred* 0.834 0.689 0.958 0.710

6mA-Finder* 0.809 0.636 0.928 0.690

i6mA-vote* 0.882 0.774 0.961 0.803

6mA-StackingCV 0.845 0.710 0.963 0.726

Arabidopsis Meta-i6mA* 0.787 0.600 0.636 0.936

i6mA-Fuse_FV* 0.749 0.542 0.545 0.949

i6mA-Fuse_RC* 0.757 0.534 0.615 0.897

i6mA-stack_FV* 0.770 0.570 0.604 0.933

i6mA-stack_RC* 0.751 0.514 0.634 0.865

i6mA-Pred* 0.730 0.462 0.679 0.780

iDNA6mA-Rice* 0.734 0.473 0.655 0.812

MM-6mAPred* 0.765 0.531 0.784 0.747

6mA-Finder* 0.724 0.448 0.741 0.706

i6mA-vote* 0.798 0.617 0.666 0.929

6mA-StackingCV 0.782 0.576 0.677 0.886
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state of the art performances, outperforming all the methods in the Rosaceae inde-
pendent test. For example, the 6mA-StackingCV increased the ACC by 0.005, the 
MCC by 0.011, SN by 0.004, and SP by 0.007 over the i6mA-vote [45] which is the 
latest method for 6mA prediction published in 2022. Although the MM-6mAPred [18] 
was slightly better than the 6mA-StackingCV in SN, the latter was much better than 
the former in other respects including ACC and MCC. In the Arabidopsis independ-
ent test, the 6mA-StackingCV was competitive with these methods. Except the Meta-
i6mA [26] and the i6mA-vote [45], the 6mA-StackingCV was still the best in terms of 
ACC. In the Rice independent test, the 6mA-StackingCV was inferior to Meta-i6mA 
[26], i6mA-Fuse_FV [22], i6mA-stack_FV [25], and i6mA-vote [45], but was superior 
to i6mA-Fuse_RC [22], i6mA-Pred [28], iDNA6mA-Rice [27], MM-6mAPred [18], and 
6mA-Finder [23]. We retrieved two datasets of 6mA from the website: https://​github.​
com/​YuXuan-​Glasg​ow/​SNN6mA  [46]. One was from Arabidopsis thaliana (A. thali-
ana), which contained 19,632 6mA sites and 19,632 non-6mA sites, and another was 
from Drosophila melanogaster (D. melanogaster), which comprised 10,653 6mA sites 
and 10,653 non-6mA sites. Each dataset was divided into the training and the test-
ing datasets at the ratio of 9 to 1. The training datasets were used to train the 6mA-
StackingCV, and the testing datasets were used to validate effectiveness and efficiency 
of the 6mA-StackingCV. As shown in Table  6, the 6mA-StackingCV was inferior to 
the SNN6mA, but obtained more than 0.91 ACCs. Table 6 also showed performance 
of other 4 methods. Obviously, except the SNN6mA, the 6mA-StackingCV performed 
best in terms of ACC. The 6mA-StackingCV elevated the ACC by 0.002 over LA6mA 
[47], by 0.027 over the AL6mA [47], by 0.045 over the iDNA6mA [48] by 0.033 over 
the i6mA-DNC [49] for the A. thaliana testing dataset. The 6mA-StackingCV raised 
the ACCs by 0.039 over the AL6mA, by 0.005 over the LA6mA, by 0.054 over the 
iDNA6mA, and by 0.024 over the i6mA-DNC for the D. melanogaster testing dataset.

Test across species

We further tested ability for the 6mA-StackingCV to predict 6mA site across species. 
As shown in Table 7, the predicting ability across species varied with the training and 

Table 6  Comparison with other 5 existing methods

The asterisk (*) indicated that the results were from the literature [46]

Methods Species SN SP ACC​ MCC AUC​

AL6mA* A. thaliana 0.862 0.905 0.884 0.768 0.945

LA6mA* 0.899 0.917 0.909 0.817 0.962

iDNA6mA* 0.843 0.889 0.866 0.733 0.932

i6mA-DNC* 0.846 0.909 0.878 0.757 0.944

SNN6mA* 0.899 0.936 0.916 0.832 0.966

6mA-StackingCV 0.887 0.935 0.911 0.823 0.933

AL6mA* D. melanogaster 0.840 0.916 0.878 0.758 0.941

LA6mA* 0.909 0.915 0.912 0.824 0.966

iDNA6mA* 0.883 0.843 0.863 0.727 0.937

i6mA-DNC* 0.869 0.917 0.893 0.787 0.947

SNN6mA* 0.911 0.949 0.925 0.851 0.968

6mA-StackingCV 0.899 0.934 0.917 0.834 0.929

https://github.com/YuXuan-Glasgow/SNN6mA
https://github.com/YuXuan-Glasgow/SNN6mA
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the testing species. The trained 6mA-StackingCV by the Rice dataset performed best 
over the Rosaceae testing dataset. Next, the trained 6mA-StackingCV by the Arabi-
dopsis dataset obtained the second best performance over the Rosaceae testing dataset. 
The worse cases included the 6mA-StackingCV trained by the Rice dataset and tested 
by the Arabidopsis dataset, and the 6mA-StackingCV trained by the Rosaceae dataset 
and tested by the Arabidopsis dataset, with less than 0.8 ACC. The ability across species 
was asymmetric. The trained 6mA-StackingCV by the Rice dataset obtained an ACC of 
0.943 over the Rosaceae dataset. On the contrary, the trained 6mA-StackingCV by the 
Rosaceae dataset obtained an ACC of 0.845 over the Rice dataset, which was reduced by 
about 0.1. Thus similar asymmetric phenomena were observed everywhere in Table 7.

Features’ contribution analysis

We used the SHAP (SHapley Additive exPlanations) [50] to explore feature contribu-
tion to 6mA recognition. The SHAP is a game theoretical method with the ability to 
interpret the output of machine learning model. As shown in Fig.  1, the most impor-
tant 20 features which influenced the output were ranked from the top to the bottom 
in the descending order of SHAP value. The higher position the feature was located at, 
the larger contribution to 6mA recognition it was. For example, the best important fea-
ture was one-hot_96, followed by the one-hot_105. The larger the one-hot_96 and the 
one-hot_105 were, the more probably the output was predicted as 6mA. Conversely, 
the larger one-hot_92 was feasible to result in non-6mA prediction. Of 20 most impor-
tant features, 7 EIIP features accounted for more than 1/3, implying its contribution to 
6mA recognition. EIIP features included EIIP_19, EIIP_21, EIIP_24, EIIP_25, EIIP_26, 
EIIP_28, and EIIP_29, indicated that the energy of delocalized electrons of amino acids 
close to the adenine was a key mark to identify 6mA.

Discussion
We proposed a cross validation-based stacking ensemble model 6mA-StackingCV for 
6mA site prediction. The 6mA-StackingCV reached state of the art performance in the 
Rosaceae and was superior to i6mA-Fuse_RC [22], i6mA-Pred [28], iDNA6mA-Rice 
[19], MM-6mAPred [18], and 6mA-Finder [23] across the species. Similar to the 6mA-
Finder [23] and meta-i6mA [26], the 6mA-StackingCV was a meta-learning model, 
which used the output probabilities of several classifiers as input to the final deci-
sion. The main difference lay that the 6mA-StackingCV used cross validation to con-
struct different classifiers. If we used all the training data to construct a classifier, the 

Table 7  Performance across species

Training species Testing species SN SP ACC​ MCC AUC​

Arabidopsis Rosaceae 0.938 0.862 0.900 0.803 0.924

Rice 0.949 0.655 0.802 0.632 0.831

Rice Rosaceae 0.926 0.960 0.943 0.887 0.955

Arabidopsis 0.576 0.954 0.766 0.573 0.753

Rosaceae Rice 0.963 0.726 0.845 0.710 0.845

Arabidopsis 0.677 0.886 0.782 0.576 0.782
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6mA-StackingCV was identical to the 6mA-Finder [23], the Meta-i6mA [26], and the 
i6mA-stack [25] in the computing framework despite using different machine learn-
ing algorithms and representations. The 6mA-StackingCV outperformed the 6mA-
Finder by 0.114 ACC, by 0.219 MCC, by 0.197 SP, and by 0.031 SN in Rosaceae, was 
superior to the 6mA-Finder by 0.036 ACC, and by 0.074 MCC in the Rice, and exceeded 
the 6mA-Finder by 0.058 ACC as well as by 0.128 MCC in the Arabidopsis. The differ-
ence between the 6mA-StackingCV and the 6mA-Finder [23] was that the former opti-
mized the combinations of classifiers and features. Compared with these methods, the 
6mA-StackingCV was robust. As shown in Table 2, some other feature combination also 
reached approximate performances to combination of One-hot encoding with EIIP. For 
instance, the combination of One-hot encoding with NCP, the combination of One-hot 

Fig. 1  The SHAP value of features. Each point stands for a sample. The red represents larger value, while 
the blue smaller value of the feature. The larger the SHAP at the x-axis was, the more important the feature 
contributed to 6mA recognition
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encoding with ENAC, the combination of One-hot encoding with EIIP and NCP, and the 
combination of One-hot encoding with EIIP and ENAC reached ACCs of 0.9468, 0.9459, 
0.9458, and 0.9462 respectively. The reduction of ACC was no more than 0.001. As 
shown in Table 3, addition or removal of some classifiers generated little effect on per-
formance. For example, using XGBoost, Gradient boosting, LightGBM, random forest, 
logistic regression, and decision tree, using gradient boosting and LightGBM, or using 
XGBoost, Gradient boosting, LightGBM, random forest, and logistic regression in the 
first layer was of approximately equal performance. Using SVM, random forest, Gradi-
ent boosting, XGBoost, LightGBM, or logistic in the second layer was of approximately 
equal performance (Table  4). The 6mA-StackingCV was also flexible. We respectively 
selected One-hot + EIIP, One-hot + NCP, and One-hot + EIIP + NCP as representations, 
and SVM, LightGBM, logistic regression as learning algorithm in the second layer. The 
performances on the Rosaceae dataset were listed in Table 8. Obviously, the differences 
of performance were small. This allows one to flexibly construct a 6mA-StackingCV by 
choosing the appropriate representations and learning algorithms.

Conclusion
We presented an improved stacking ensemble model for predicting DNA N6-meth-
yladenine site. The 6mA-StackingCV was superior to the state of the art methods for 
Rosaceae, and competitive with those for Arabidopsis and Rice. The 6mA-StackingCV 
was robust and flexible, benefiting from using cross validation to construct the classi-
fiers. We implemented the 6mA-StackingCV into a user-friendly webserver which is 
freely available at http://​www.​biols​cience.​cn/​6mA-​stack​ingCV/. The 6mA-StackingCV 
was easy to use.

Materials and methods
Experimental datasets

High quality dataset is very essential to construct a classifier for precisely identifying 
DNA 6mA sites. We used the same datasets as the i6mA-vote [45] which were from 
the Meta-i6mA [26]. Different from Meta-i6mA [26], the i6mA-vote [45] removed the 

Table 8  The performance of different classifiers with different representations

Second-layer classifier Feature SN SP ACC​ MCC AUC​

SVM One-hot + EIIP 0.9589 0.9614 0.9601 0.9203 0.9734

One-hot + NCP 0.9551 0.9611 0.9581 0.9162 0.9707

One-hot + ENAC 0.9585 0.9597 0.9591 0.9182 0.9696

One-hot + EIIP + NCP 0.9542 0.9621 0.9581 0.9163 0.9706

LightGBM One-hot + EIIP 0.9605 0.9592 0.9599 0.9197 0.9912

One-hot + NCP 0.9564 0.9603 0.9584 0.9167 0.9907

One-hot + ENAC 0.9593 0.9575 0.9584 0.9168 0.9909

One-hot + EIIP + NCP 0.9537 0.9622 0.9579 0.9159 0.9911

logistic regression One-hot + EIIP 0.9589 0.9611 0.9600 0.9200 0.9913

One-hot + NCP 0.9563 0.9610 0.9586 0.9173 0.9909

One-hot + ENAC 0.9600 0.9590 0.9595 0.9190 0.9913

One-hot + EIIP + NCP 0.9553 0.9607 0.9580 0.9160 0.9909

http://www.biolscience.cn/6mA-stackingCV/
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sequences longer than 41 bp and the copy sequences. These datasets are from three 
species: Rosaceae, Rice, and Arabidopsis. The Rice dataset was compiled by Lv et al. 
[19], and the Rosaceae and the Arabidopsis datasets were compiled by Hasan et  al. 
[26]. The Rosaceae dataset was further divided into the training and the testing sets 
at the ratio of 8 to 2. The Rosaceae testing set was used to examine ability to precisely 
predict 6mA in Rosaceae, while the Rice and the Arabidopsis datasets were used to 
examine ability to precisely predict 6mA across species. The Rosaceae training set 
consisted of 29,237 positive and 29,433 negative sequences, the Rosaceae testing 
set of 7298 positive and 7300 negative sequences, Rice dataset 153,635 positive and 
153,629 negative sequences, and the Arabidopsis dataset 31,414 positive and 31,843 
negative sequences. The positive sequences referred to the ones containing 6mA sites, 
while the negative sequences to ones without 6mA sites. All the positive or negative 
sequences are 41 nucleotide residues.

One‑hot encoding

One-hot encoding is a simple but effective method to encode RNA/DNA/protein 
sequences. Each character in a sequence is encoded into a vector where only an ele-
ment is 1 and other are zero. Here, A, C, G, and T are respectively are encoded into 
(1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1).

EIIP

The EIIP [51, 52] was defined as encoding a character into a digit, i.e., for DNA 
sequences, A into 0.1260, T into 0.1335, C into 0.1340, and G into 0.0806. The DNA 
sequence ATT​CAG​A was encoded by EIIP into (0.1260, 0.1335, 0.1335, 0.1340, 
0.1260, 0.0806, 0.1260).

Stacking ensemble learning with cross validation

We used a stacking ensemble model with cross validation for predicting 6mA sites 
whose idea originated from StackTADB [53], an effective and efficient method for pre-
dicting the boundaries of topologically associating domains accurately in fruit flies. The 
model consisted of two layers. The first layer contained N different base classifiers, and 
the second layer contained only a classifier. The training set was divided into 5 parts in 
equal or approximate size. The training process of the stacking ensemble model was 
described as follows. For each base classifier, we perform 5-fold cross validation over 
the training set. Therefore, each sample in the training set corresponded to a predicted 
value. If There were N different base classifiers, so each sample have N predicted value 
which was further used to train the classifier in the second layer along with its label. An 
unlabeled encoded sample was predicted by base classifiers trained by 5-fold cross vali-
dation, which result in five predicted value. The average over the five predicted value was 
used as one feature of the sample. N base classifiers yielded N average features, which 
were further inputted into the final classifier for final decision. Figure 2 showed the sche-
matic diagram of the stack ensemble learning with cross validation.
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Evaluation metrics

To quantitatively measure performance of methods, the following metrics: sensitivity 
(SN), Specificity (SP), accuracy (ACC), and Matthews’s correlation coefficient (MCC), 
were used, which were computed by

 Where TP denoted the number of the correctly predicted 6mA samples, TN the num-
ber of the correctly predicted non-6mA samples, FP the number of wrongly predicted 
6mA sample, and FN the number of wrongly predicted non-6mA samples.

AUC is defined as the area under the Receiver Operating Characteristic (ROC) 
curve which is drawn by linking true positive rates against false positive rates under 
various thresholds. The AUC ranges from 0 to 1, with larger values indicating better 
performance. An AUC of 1 represents perfect prediction, an AUC of 0.5 represents 
random guess, and an AUC of 0 represents completely reversed prediction.

(4)SN =
TP

TP + FN

(5)SP =
TN

FP + TN

(6)ACC =
TP + TN

TP + FN + FP + TN

(7)MCC =
TP × TN − FP × FN

√
(TP + FN )(TP + FP)(TN + FN )(TN + FP)

Fig. 2  The overview of the proposed 6mA-StackingCV
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6mA‑StackingCV webserver

We developed an online webserver to conveniently use the 6mA-StackingCV which is 
available at http://​www.​biols​cience.​cn/​6mA-​stack​ingCV/. As shown in Fig.  3, the tool 
is easy to use. It requires only three steps to complete a prediction. The first step is 
to upload the DNA sequence in the FASTA format. One can either directly paste the 
sequence into the text box or upload the file. The web server also provides examples of 
input sequences. The second step is to select the representations and the learning algo-
rithms. One can click the drop-down menu to select the corresponding representations 
and learning algorithms. The third step is to click the submit button to conduct a pre-
diction. If one wants to re-upload data, they can click the reset button. The predicted 
results are returned on an HTML page. The time costed for the prediction is related to 
the internet speed and the number of uploaded sequences. The web server provided all 
the experimental datasets for downloading.
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