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E:i:jgi‘yEggﬁeKrgg’aHa”yang Feature selection, which is important for successful analysis of chemometric data, aims

' ' to produce parsimonious and predictive models. Partial least squares (PLS) regression is
one of the main methods in chemometrics for analyzing multivariate data with input X
and response Y by modeling the covariance structure in the X and Y spaces. Recently,
orthogonal projections to latent structures (OPLS) has been widely used in processing
multivariate data because OPLS improves the interpretability of PLS models by
removing systematic variation in the X space not correlated to Y. The purpose of this
paper is to present a feature selection method of multivariate data through orthogonal
PLS regression (OPLSR), which combines orthogonal signal correction with PLS. The
presented method generates empirical distributions of features effects upon Y in
OPLSR vectors via permutation tests and examines the significance of the effects of the
input features on Y. We show the performance of the proposed method using a
simulation study in which a three-layer network structure exists in compared with the
false discovery rate method. To demonstrate this method, we apply it to both real-life
NIR spectra data and mass spectrometry data.

Keywords: Feature selection, PLS, Orthogonal signal correction, Regression vector,
Permutation test

Introduction

Feature selection is a technique to select a subset of variables which are useful in pre-
dicting target responses. From a machine learning viewpoint, irrelevant features in a
prediction model deteriorate its generalization ability, and it is critical to remove such
redundant features to keep the model from being misled by inappropriate information.
The task of feature selection, one of the central tasks in machine learning, helps to reduce
overfitting by eliminating redundant features. The prevalence of high-dimensional data
becomes a challenge for researchers to perform feature selection [1]. In biological fields,
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particulary, high dimensionality often arises, and irrelevant and redundant features make
up a high proportion of the total data [2].

Indeed, contemporary analytic methods such as near-infrared (NIR), proton nuclear
magnetic resonance (\H NMR) spectroscopy, liquid chromatography-mass spectrom-
etry (LC-MS), and gas chromatography-mass spectrometry (GC-MS) provide high-
dimensional data sets in which the number of features is usually larger than the number
of observations. Those spectral data sets, denoted by the input variables (feature) X, are
an effective alternative to using classical chemical analyses in screening experiments [3].
They can reveal the underlying patterns associated with health characteristics, the so-
called phenotypes. These include pathological characteristics, denoted by the response
variables Y, and thus can be of substantial value in biomedical research [4]. To this end,
reliable identification of features associated with response characteristics is important.

Uncovering hidden patterns associated with the response variables in spectral data sets
is not trivial. One of the major problems in addressing this issue is how to deal with the
existence of spectral collinearity. Spectral collinearity, originating from linear dependence
among the input variables X, poses ill-conditioned linear equation systems. Thus, stan-
dard regression methods cannot be applied in this context, so different strategies need to
be adopted. The methods usually employed for solving such problems are artificial neu-
ral networks, k-nearest neighbors, principle component analysis (PCA), and partial least
squares (or projections to latent structures, PLS) among others. A detailed discussion of
multivariate statistical methods in spectral data sets can be found in Holmes and Antti
[5] and Lindon et al. [6].

Among these, unsupervised PCA and supervised PLS together with regression have
been widely applied. These methods are useful for reducing the complexity in the fea-
ture space, the main idea is to find a low dimensional representation while retaining as
much of the variation as possible. Compared to other methods, they are not only easy
to interpret but also effective in explaining the interrelationships among spectral data by
examining the variance levels of spectral data while being less computationally demand-
ing. Basically, they produce a few transformed scores (positions for new directions) for
the original input variables X to reduce the complexity of such data and retain most of the
variational information.

For the task of identifying significant variables, however, produced scores by PCA often
undergo lack of discrimination power since it only focuses on new directions or loadings,
accounting for the maximum variation of X, and then projects the original input variables
onto the new directions [7]. On the other hand, PLS is a type of regression model used
to find the relationships between the response variables and input variables based on the
assumption that they are generated by a common set of underlying factors [8]. That is to
say, it finds the directions in the space of X that explains the maximum of variation of the
space Y. By reducing the collinearity between input variables and increasing covariance
between input and response variables at the same time, feature selection by PLS can result
in a more parsimonious model without losing its predictive ability.

The task of identifying significant features via PLS faces a few challenges. The selection
of original spectral variables from those transformed scores is nontrivial because they
are represented as linear combinations of a large number of the original input variables.
PLS loadings express the weights for these linear combinations and generate PLS regres-
sion vectors with estimated regression coefficients. The uncertainty in the estimates of
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PLS loadings and scores in conjunction with PLS regression vectors complicates this task.
Since error in a few original input variables are propagated in all transformed scores by
way of loadings, the uncertainty in PLS regression vectors increases accordingly [9, 10].
Additionally, the absence of closed-form distributions of PLS loadings also makes the task
challenging. To cope with these challenges in PLS-based variable selection, several sta-
tistical approaches have been suggested. Heise applied cross-validation with a strategy
of expanding neighboring variables [11]. Heskuldsson employed the stepwise regression
approach based on the goodness of fit criterion [12]. Faber proposed a resampling tech-
nique [13], focusing on variables interval selection. These approaches, though known to
be unbiased [14], inevitably suffer from uncertainty under a substantial number of fea-
tures and often lead to the selection of unnecessary features. The presence of unnecessary
features, causing overfitting, is a critical issue especially when the number of observations
is less than that of features. It would be a benefit to apply a resampling method, able to
regulate the selection of unnecessary features, to the identification of significant features
in PLS.

This paper introduces a useful combined approach of applying orthogonal signal cor-
rection (OSC) and permutation tests to PLS for the purpose of feature selection. OSC,
introduced by Wold et al. [15], removes from input variables only the part unrelated
to the response variable. Extensions of OSC aiming to improve model prediction and
interpretability were also presented [16, 17], sharing the same spirit in that X variation
unrelated to the response is filtered out as a preprocessing step. Thus in the combined
approach, first, OSC as a preprocessing step of PLS corrects X by removing systematic
variation in the X space not correlated to Y. Second, we relate the orthogonal-signal
corrected X to the PLS regression models, which we call OPLS models, and obtain
OPLS-induced regression vectors. The regression vectors in OPLS models describe each
variable’s contribution to the response Y while reflecting variables collectively on new
directions. Lastly, by employing a permutation testing procedure, in which permutations
of the input observations for a collection of randomly chosen features occurs, we test the
significance of each coefficient in the regression vectors in a reasonably fast manner. The
permutation test procedure yields empirical null distributions of weights for each indi-
vidual variable’s effect on the response Y. The contribution of this paper is the integration
of permutation test into feature selection of OPLS models combining the concepts of
OSC and PLS. It then introduces the use and testing of OPLSR vectors for the purpose of
feature selection, particularly in the domains of spectral data.

This paper is organized as follows. “Proposed method” section describes the combined
method of orthogonal signal correction and PLS, manifesting the adopted permutation
test procedure. It also includes a simulation study in which simulated data sets with a
three-level network structure are used and the performance of the proposed approach is
demonstrated. The proposed approach is compared with two methods: one is the Lasso,
penalized linear model, and the other is the false discovery rate (FDR) method which is
based on the variables’ individual effects on the response Y and is widely used in spectral
data analysis [18, 19]. “Experiments” section demonstrates the approach with a real-life
NIR data set. Finally, “Conclusions” section concludes the paper.

Proposed method
We describe orthogonal signal correction and PLS to obtain OPLS regression vectors.
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Then we introduce a permutation-based test procedure to test the significance of each
variable’s effect in OPLS regression vectors.

Orthogonal PLS regression vector
In the analysis of chemometric data using a multivariate regression model Y = XB + E,
it is common that the first component accounting for the highest percentage of the input
X variation constitutes only a low percentage of the response Y variation. The input X
and response Y are assumed to be mean-centered and properly normalized. In PCA, a
principal component vector (or score vector) t is calculated by a linear combination of an
input observation x;,j = 1,...,# (row of X) and a loading vector p. Score vector t can be
regarded as a transformed variable by the corresponding loading vector. Loading vector
p is numerically found as an eigenvector of the sample covariance matrix X7 X/(n — 1).
PLS regression, however, focuses on the covariance structure between X and Y. In PLS
regression, score vectors and loading vectors for X and Y are jointly and numerically
obtained to maximize the covariance between X score vectors and Y score vectors [20].

The goal of orthogonal signal correction (OSC) is to remove one or more directions in
X (n x p) that are unrelated, or more precisely orthogonal, to Y and to account for the
largest variation in X as well. OSC often serves as a pre-processing step to improve the
multivariate regression model [21]. Particularly, the PLS regression coefficients after OSC
have stronger interpretability and clarity. In this paper, we chose direct orthogonal signal
correction since it not only bears close relations with other OSC methods and works
quite well with empirical data, but also uses only least squares methods without iterative
computation [22]; this means it can be analytically connected with subsequent PLS. We
summarize the basic steps as follows and link them to PLS to obtain orthogonal-signal-
corrected PLS regression (OPLSR) vectors that will be used for feature selection.

The first step is to take the projection of ¥ onto X, ¥ = PxY, where Px represents a
projection matrix to the column space of X, denoted by C(X). Furthermore, we write Y as
follows:

Y =PxY + (Y —PxY):=PyY + AxY = V + AyY,

where Ay = I — Py represents a projection matrix to the space orthogonal to the column
space of X. Accordingly, AxY is orthogonal to C(X): for v e C(X),

viAyY =0. (1)

For underdetermined systems, p > #, as is common in spectral data, ¥ equals Y.
The second step is to decompose X into two orthogonal parts, one part that has the
same range ¥ and another that is orthogonal to it:

X = P?X-l- (X - Pf,X) = P)”,X—I—A?X.

Thus, the space spanned by the columns of Ay X, which is essentially a subspace in X and
orthogonal to Y, is a target of removal from X in the OSC procedure. The space ApXis
also orthogonal to Y: for v € C(AyX),

Yv=F +AxY) v=7Tv+ AxY)v=0, ()

since Y is orthogonal to Ay X by definition and v, also in C(X), is orthogonal to AxY by
(1.
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The third step is to find the first principal score vector tpsc and the associated load-
ing vector ppgc from Ay X, so that tOSCPSSC approximates to Ay X. Let X ORTH be the

XORTH — togcpgsc. The score vector tpsc, a direc-

approximation of Ay X by tOSCngci
tion or an OSC component, accounts for the maximum variance of Ay X. Moreover, the
score vector tosc € Ay X is orthogonal to Y by the definition of A, X and also orthogonal

to Y by (2):
toscY = 0. 3)

Being in C(X), the score vector tosc is expressed as a linear combination of the columns
of X with a weight vector rogsc:

tosc = Xrosc, or
) @
rosc = X 'tosc,
where X' is the Moore-Penrose pseudoinverse of X. Overall, the orthogonal-signal
corrected X preserving predictive components, denoted by X05¢, writes:

XO5C .= X — XORTH — X — toscplsc = X — XroscPosc- (5)

Here, weight vector rosc consists of weights of individual variables contributions to the
construction of a space orthogonal to Y, which will be used to relate the input matrix X
to the OPLSR vectors in the last step. Practically, it is necessary to limit the number of
OSC components. To avoid over-fitting, which results in a loss of model generality, the
number of OSC components should not be too high. Mostly, one or two OSC components
are sufficient. The first OSC component often describes a base-line correction, and the
second can serve as the correction of multiplicative effects [22]. In this study, we chose
one OSC component in consideration of the intuitive interpretation and the sufficient
amount of its variability in X in practice.

Now that X95C is found, we apply PLS to X95C and Y. The reason PLS is applied to
XO5€ and not directly to X is that the covariance between X and Y equals that between
XO5C and Y:

T T T
XTY = (X% 4 tosepdsc) ¥ = (XO5) ¥ +poscthscY = (X25) v,

because tpsc is orthogonal to Y by (3). Thus, the PLS finds a few score vectors of X 0sc

XOSC score vectors and Y score vectors. The scores

that maximize the covariance between
of XO05€ ¢ = [t; ty --- tq] (of size m x A) corresponding to A predictive components,
are not only orthogonal, but also obtainable by computing its associated weight vectors
r =[r; ry --- raq] from the singular value decomposition of the covariance matrix

(XOSC)TY:
tj:XOSery ]':]_’...,A’ or

t = XO5Cr.

(6)

Accordingly, the corresponding loading of X95¢, denoted by P, is given by P = (X OSC)—r t,

meaning new weights of X95€

are directly evaluated by t. Similarly, the loading of Y,
denoted by Q, is computed by Q = Y "t and represents new weights of Y that lead to max-
imization of the covariance matrix using the A predictive components commonly applied

to X95C and Y [23].
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Overall, X95€ and Y are decomposed into the following:

XO5¢ =tPT +E,
Y=uQ' +F,

where u is the score matrix of Y given by u = YQ; and E and F are residual matrices.

By regressing Y on the score t, which is a compact representation of X?5C based on the
A predictive components, from the regression model Y ~ tp, the least-squares estimate
of the coefficient 8 becomes f = (t"t)"'t" Y = t' Y due to the orthogonality of t. Then
the prediction model ¥ is

V=th=tt'Y = XOCrt"y = XOCrQT := XCBoprsa, )

where ﬁopLgﬂ = rQ" is the regression vector using the orthogonal signal corrected X,
XOSC, Furthermore, the prediction model ¥ can be rewritten as follows:

¥ = X%Boprsa = (X - Xl'oscpggc) BorLsa = XBorLsk (8)
v:/here 3OpstA = (I— roscp—orsc) BOPLSa is the regression vector based on X. Both
BorLsa and Boprsp consist of weights of individual variables i, i = 1,---,p, con-

tributing to the change of Y. In other words, a large absolute value of EOPLSM or
,3opLgb,l« indicates that the ith variable (x;) contributes substantially to the increase or
decrease of Y depending on the sign. We notice that the use of ,éopLSb,i in contrast
to BopLsa,i brings comprehensive examination of individual variable effects because it
includes the presence of all X directions, both orthogonal and predictive. Thus we
propose Boprsy as the final regression coefficient vector, regarding Boprs, as a side
source for comparison. This comparison will be demonstrated in a simulation study
and a real-life data example that follow. We will obtain the distributions of BopLsﬂ
and BOPLSb to systemically select variables that significantly contribute to the change
of Y.

Permutation tests

Since the OPLS regression vectors, BopLgﬂ and ,3opL5b are computed, the aim here is
to test the significance of individual variables effects on the vectors. Let ,éopLs denote
the two regression vectors generally. Permutation tests, a computer-based re-sampling
method for achieving accuracy measures of statistical estimates from an approximat-
ing distribution [24], are widely used in the computation of variable importance and
confidence intervals in random forests [25, 26].

The advantage of permutation tests is that it is straightforward to simulate empirical
null distributions of complex statistics such as percentiles, odds ratios, or correlation coef-
ficients. The exact distributions of OPLSR vectors are too complex to obtain, and so are
even approximations to the distributions. Thus the permutation test is employed to test
the significance of individual variables in the OPLSR vector.

To propose a permutation test procedure to test the significance of the Borrs coeffi-
cients, the basic procedures are presented as follows:

Stepl  Perform PLS with Y and X95C,
Step2  Obtain the observed values of ,éopLS,i for all i.
Step3  For each variable i, repeat the following a large number of times (e.g., 999 times):
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Step3.1  Randomize the values within the ith column of X95€.

Step 3.2 Perform PLS with Y and the permuted X95C,
Step 3.3 Obtain the realized value of ﬁopLg,i

Step4  Estimate the p-value p; for the ith variable (e.g., (the number of the realized
equal to or larger than the observed in terms of absolute values+1)/1000).

Step5  Choose a significance level o, so that variables in which p; < a,, are
selected.

For the randomization procedure at Step 3.1, one can choose several columns of X
randomly, i.e., a portion of the total number of variables in one iteration to speed up
the procedure since the total number of variables is usually quite large. We note that
the proportion of 0.3 worked well in practice, producing the empirical null distribu-
tions of realized Boprs, that were highly close to normality. In this manner, the realized
values of ﬁopLs,i can be regarded as emerging from a collection of the null hypothe-
ses that the variables effects are insignificant. The motivation is that practically we
can assume a substantial number of variables are negligible among the large number
of variables, which is quite common in spectral data. The coefficients ﬁopLg,i for the
variable i become zero in theory if the variable i does not contribute to the construc-
tion of response variables Y. Accordingly, the p-value is computed according to the
extreme ‘two-tailed’ directions at Step 4. We also note that at Step 4, the observed value
is included as one of the possible values of the randomization procedure. To control
the increase of Type I error due to multiple testing, a correction can be made at Step
5. For instance, one can adjust the significance level ay, to be «y,/p using the
Bonferroni procedure. In this study, we set o, to 0.05 due to its practicality. As a pre-
processing step for the permutation test with significance level oy, we filter out the
variables of which the individual correlation measures with Y are weak. This step elim-
inates unnecessary noisy variables that can act as contributing variables from the whole
procedure, so that only filtered-in variables are considered. The level of oy is considered
as a tolerance level for the OPLSR method and usually set to 0.05. By changing the level
of oy, we can control the number of variables included in the permutation test.

Simulation and comparisons

To test the OPLS regression-based feature selection method, we performed a simulation
study. We first generated a data matrix X (40 x 1000) and a response matrix Y (40 x 1),
comprising 40 samples and 1000 variables per sample. Each element of Y was a Bernoulli
random variable with success probability 0.4, so 16 elements of Y were set to 1 on average
while the remaining 24 elements were set to 0. To generate 1000 variables, we used a
three-layer network structure as shown in Fig. 1a.

In the first layer, the first 30 variables were generated to have high separation in Y: for
p=1...,4x,~U01)+08—2Yandforp =5,...,9x, ~ U(0,1) — 1.2 —2Y, where
U(a, b) is a random variable from a uniform distribution of range 4 and b. This means
the variables from x; to x4 individually had a high positive correlation with Y (labeled 0),
whereas x5 to x9 were highly correlated with Y (labeled 1). For instance, Fig. 1b shows
the plots of realizations of x; and x5 and the aforementioned pattern that individually
separate Y. The first 30 variables in the first layer represent strong individual variables
that can identify pathological conditions. For p = 10,13, ...,28,
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where N (i, ) represents a multivariate normal distribution with mean p and covariance
Y. Figure 1c shows plots of realizations of three variables in the layer, generated as above,
jointly discriminate Y. The variables x;,i = 10, ..., 30, in the first layer represent strong
group-wise variables that strongly discriminate pathological conditions.

The next 90 variables from x3; to x120 in the second layer and the next 270 variables
from x12; to x399 in the third layer were generated so that those variables contribute to
the overall response Y in a composite and aggregate manner. For instance, x; in the first
layer is clearly separable by a combination of x31, %32, and x33 in the second layer. Specifi-
cally, the generation of three variables is based on the value x; so that the sum of the three
will be close to x; as follows: we set x3; = m(m +€),x3p = —2—(x1 +€),and

uytuz+us
(x1 + €) using independently generated u;, uy, and u3 from U(0,1) and €

53 = ifutin
from N (0,x1/10). We notice that x3; 4+ x32 + x33 = %1 + €. The remaining 610 variables
from x391 to x1000, comprising a noise layer, were randomly and independently gener-
ated from N(0, 1) so as to have a weak correlation with Y. They represent the presence
of inherent noise. The adopted three-layers structure is a simulated example of multiple
layers of spectral collinearity, interaction, and regulation in complex biological systems.
For instance, a biological system for nutritional metabolomics reflects such a layered
structure with linked transports [27].

Using the simulated data, we tested the performance of the proposed methods in com-
parison with the false discovery rate (FDR) method to detect the known variables in the
three layers. Focusing on the effects of individual variables and controlling family-wise
Type I error, FDR serves as a baseline method to compare the OPLSR method with. The
two types of OPLS regression vector, BopLga and 3opL5b, were considered. The number
of predictive components for the OPLS regression model, A as in (6), varied from 1 to 3
so as to determine its effect upon the performance. The filtering level af for the OPLSR
method and the g-value for FDR varied from 0.01 to 0.05 and 0.10. We repeated this test
1000 times, and in each repetition for each method, the number of variables that were

Page 8 of 16
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found within the three layers were counted. No variables among the random 610 variables
were found for each of the two methods.

To illustrate the performance of the proposed method, Fig. 2 shows illustrations of
the empirical null distribution of the realized Bopst,l’ and regression vector Borrsy- The
empirical null distribution of Bort sp,; in Fig. 2a, obtained by the permutation procedure,
is closely normally distributed and provides a basis for testing the observed BOPLSb,i-
Figure 2b also shows the empirical null distribution of the realized BopLsy for the variable
with the largest confidence interval. This illustration, being the worst case, demonstrates
that the distribution of the realized regression coefficients for individual variables can
be sufficiently approximated to a normal distribution by the setting. The regression vec-
tor Boprsp in Fig. 2c highlights the filtered-in variables according to the ay-level filtering
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Fig. 2 alllustration of the empirical null distribution of realized ‘éoplgb/,, which is close to normality, is shown.
b lllustration of the empirical null distribution of realized Bopisp for the variable with the largest confidence
interval is shown. ¢ lllustration of the regression vector Bopub is shown. The blue dots represent observed
ﬁopﬁgb’,‘, the green squares represent filtered-in variables according to the significance level a¢, the red arrows
with dotted lines represent achieved 1 — ap,, confidence intervals, and the black circles represent selected
significant variables. d Zoomed-in version of (c) for the variables from 1 to 72 with 22 significant variables
selected. The filtered-in variable 71 (x71), for example, was not selected since the observed 30;15&,- is within

the confidence interval of realized Boptgb,,v
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(green squares), confidence intervals of the permutation procedure (red arrows with dot-
ted lines), and selected variables (black circles) along with the observed regression vector
ﬁopst,i (blue dots). We notice that observed ﬁopst,i for i = 1,---,390 are substan-
tially larger than those for the rest, which indicates the regression vector reflects the
network structure for the data set. The selected variables gather in the first layer as shown
in Fig. 2d, which implies the testing procedure of the method suitably separate known
important variables. Particularly, we notice that the variables (from x; to xg) are posi-
tioned accordingly with their contributions to the labels. For example, the realized value
ﬁopLSb,i for x1 is negative, implying that the increase of x; results in the increase of label
0 instead of label 1. This is in accordance with the behavior of x; in Fig. 1b. In Fig. 2d we
also observe that the filtered-in variable 71 (x71), for example, was not selected since the
observed ﬁopst,i is within the confidence interval of the realized Bop; Shi

Additionally, Table 1 shows the amounts of variation of X' ORTH  xOSC and Y in the
OPLSR method. The first OSC component and the first PLS component accounted for
more than 96% of the total X variation and 99% of the total XO5C, respectively. It is an
empirical evidence that using the first OSC component and the first one or two PLS com-
ponents is sufficient. The first PLS component accounted for more than 99% of the Y
variation in the simulation study. In fact, we used the first OSC component when cor-
recting X in (5). Table 2 shows the average numbers of selected variables for OPLSR and
FDR according to significance level «. Since the variables in layer 1 are significant, the
selected variables in layer 1 mean the recall rate. The OPLSR method is divided into
BopLsa (denoted by OPLSR,) and BorLsy (denoted by OPLSR,). We chose significance
level & as g-value for FDR and oy for OPLSR. We note that the levels for the methods are
not strictly equivalent by themselves, yet we compare them in that they practically adjust
the number of selected variables.

The results for this simulation study show that OPLSR, consistently found more vari-
ables than FDR. The performance of OPLSR,, working quite well, was comparable with
that of FDR while surpassing FDR for big «.

Experiments

We applied the proposed method in the examination of a high-resolution metabolomics
data set. We show the use of the proposed method, and furthermore analysis will follow
with the next dataset. The code and data are uploaded to the following GitHub url: https://
github.com/leegs52/OPLSR. The metabolomics data set consists of 127 samples screened
for bile acids by a BioQuant colormetric kit [28]: 64 samples have bile acids present and

Table 1 Amounts of variation of XOfH x©O5C and Y in the OPLSR method for the simulation study
are shown. The first OSC component and the first PLS component accounted for more than 96% of
the total X variation and 99% of the total X9°C, respectively. The first PLS component accounted for
more than 99% of the Y variation in the simulation study

PLS PLS

0sC 1 2 3 0sC 1 2 3
XORTH 0.967 0.967
X05¢ 1 0033 0991 0002 0002 2 0033 0994 0002 0001

Y 1.00 1.00 0.000 0.000 1.00 1.00 0.000 0.000
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Table 2 The average numbers of selected variables in the layers for each method of OPLSR,
according to ﬁopLga (denoted by OPLSR,) and ,éopLgb (denoted by OPLSRy), and FDR; and
significance level &, meaning ay for OPLSR, and g-value for FDR, are shown. This shows that OPLSR,
found more variables consistently while OPLSR;, worked comparably to FDR

o 0.01 0.05 0.10
Layer Layer Layer
1 2 3 1 2 3 1 2 3
OPLSRq 244 0.837 0.580 25.0 379 561 25.1 532 10.0
OPLSRp 18.1 0.190 0.137 20.8 0.987 1.24 229 2.85 3.68
FDR 213 0.020 0.000 22.1 0.100 0.027 228 0.103 0.010

the others have bile acids absent. The metabolomic profiling was performed using lig-
uid chromatography (LC) coupled to high-resolution mass spectrometry by an Orbitrap
FTQ-Velos mass spectrometer. Peak extraction and quantification of ion intensities were
performed by an adaptive processing of liquid chromatography mass spectroscopy soft-
ware package that produced 7068 m/z (mass divided by charge number of ions) values.
We aimed to extract significant metabolites, for example the top 1%, that separate bile
acid present and bile acid absent. Application of the OPLSR method to the data matrix
X of size 127 x 7068 and response Y of size 127 x 1 yielded the empirical null distribu-
tion of OPLS regression vector /§opLg;,. Figure 3 shows two-sided 95% confidence intervals
(red rectangles) and significant m/z variables (black circles) using the permutation test-
ing of OPLS regression. The small blue dots represent the OPLS regression coefficients.
The proposed method was able to filter out significant variables in that the number of
found significant variables (black circles) by the OPLS is 11 while the number of variables

0.035 -
°
® Significant variables by OPLS
0.03 - . - .
Significant variables by Lasso
* Significant variables by FDR
0.025 |-
0.02 - °
°
0.015 *

0.01

E
0.005 |-

OPLS Regression Vector ,‘[;‘opLs),,l

-0.005

-0.01

-0.015

. —%— x—% ‘
500 1000 1500 2000
Variable number

Fig. 3 The empirical null distribution of the realized ﬁopﬁsbyl for the mass spectrometry data is shown with
two-sided 95% confidence intervals by red rectangles. The black dots mean significant m/z variables by the
permutation testing of OPLS regression. The yellow dots and the red crosses illustrate siginificant variables by
the Lasso and the FDR, respectively




Lee and Lee BioData Mining (2021) 14:7 Page 12 of 16

(green circles) by individual coefficient testing of regression analysis is 461. The number
of significant variables by either Lasso (marked by yellow circles) or FDR (marked by red
crosses) are 11, like the OPLS. For information, all three of them found %1267, X1360, and
%9271 the significant variables.

We also applied the proposed method to a near-infrared (NIR) spectroscopic technique,
which is a useful tool for chemical process analysis in research such as pharmaceutical,
medical diagnostics, and agrochemical quality. Measured NIR spectroscopic spectra are
influenced by external process variables such as temperature, pressure, and viscosity. The
difficulty in keeping these variables unchanging and the necessity to change their value
during the process (e.g., setting temperature and pressure in batch processes) make it
necessary to assess the influence on the NIR spectra. Wiilfert et al. took short-wave NIR
spectra of ethanol, water, and 2-propanol mixtures at different temperatures to assess the
influence of those temperature-induced spectra variations [29]. The proposed method
was applied to the 22 spectra of the mixtures at each temperature of 30, 40, 50, 60, and
70 °C (n = 22 x 5 = 110). The used wavelengths are from 580 to 1091 nm, resulting 512
variables (p = 512). The overall 110 spectra are shown in Fig. 4a.

The data set consists of the 110 spectra as X (110x512) and temperatures as Y (110x 1).
For the purpose of testing predictive power, the data set was randomly split into a training
set with 70% of the whole for building a prediction model and a test set with the remaining
30% for estimating the predictive quality of that model. Using the selected variables for
each method of OPLSR,, OPLSR,, FDR, and Lasso, we carried out regression analysis to
predict Y of the test set and calculated the mean-squared error (MSE) of prediction and
the respective amount of Y variance being described by the model, Q?, as follows:

_ Z,’(Yi,test - Yi,test)2
) .
Zi Yi,test

Q=1

This was repeated 3,000 times. We also measured the precision, denoted by P, and the
number of selected variables, denoted by N, as additional information on the performance
of each method. The precision P is the fraction of correctly selected variables compared
to all selected variables. For the NIR spectra of temperatures, Fig. 4a shows that the vari-
ation between them is highly significant around 980 nm with a peak maximum [30]. By

ession Vector Bopuss

OPLS Regre

100 200 300 400 )
Variable number Estimates of fopusss

(a) (b) (c)
Fig. 4 (a) Overall 110 NIR spectra for temperatures of 30, 40, 50, 60, and 70 °C are shown. lllustration of (b) the
regression vector Bopsp and (c) the empirical null distribution of the realized Bopisp, are shown for the NIR
spectra. The wavelength ranges of the selected variables were from 960 to 970 nm (x3g7 t0 x391) and from
1049 to 1060 nm (x470 tO x481)
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considering each wavelength within the 930-1060 nm as the ground-truth features, we
verified the selected variables.

The illustrations of the proposed method for the NIR spectra are shown in Fig. 4b and c,
which depict the regression vector ﬁopLSb and the empirical null distribution of realized
BOPst,i, respectively. The wavelength ranges of the selected variables were from 960 to
970 nm (x38] to x391), which corresponds to the free OH 2nd overtone, and from 1049
to 1060 nm (x470 to x481), which belongs to the hydrogen-bonded OH groups [31]. This
finding is consistent with the chemical observation that temperature effects are related to
the absorbance of molecule overtones and the cluster size of hydrogen-bonded molecules
[29]. The empirical null distribution in Fig. 4c, following closely normality, supply the
proposed method with the basis of the employed permutation test.

Table 3 shows the comparison results in terms of evaluation metrics and the number
of selected variables. We observed that the OPLSR method reliably finds significant vari-
ables among the spectra most of the iterations since its precision outperformed FDR and
Lasso. It is not surprising because the proposed method examines the effects of variables
in a collective manner by considering the covariance structure and the effects of both
orthogonal and predictive components at the same time. The regression performance for
the variables selected by Lasso achieved relatively high predictive performance. Though
Lasso was unsatisfactory in the precision. For all criteria of the precision, MSE, and Q?
OPLSR,, outperformed FDR consistently. The approach OPLSR,, also outperformed FDR
consistently. The method OPLSR, outperformed OPLSR, for oy = 0.01,0.05 in terms
of the precision, MSE, and Qz, while there was little difference between the two for
ar = 0.10.

Additionally, in order to demonstrate the robustness of the proposed method, we
conducted down-sampling and then performed another experiment under the same con-
ditions of Table 3. The down-sampled data set was randomly drawn from NIR spectra
data (n = 110), and it contains 80 samples, i.e., about 70 percent of total. For the
down-sampled data, Table 4 presents the performance comparison for the four methods,
demonstrating the degree of robustness.

Table 3 Performance of each method of OPLSR,, OPLSRp, FDR, and Lasso is shown with respect to
each parameter (g-value for FDR, A for Lasso, and «y for the other two). The precision and the
number of selected variables were denoted by P and N, respectively. The boldfaced numbers
indicate the ones which outperformed the others

Method MSE Q? P N
OPLSR, ;=001 12,332 0.86 0.871 1.0
ar=0.05 8,989 0.89 0.701 162
a;=0.10 6,829 091 0.640 227
OPLSRy, ar=001 10,896 0.88 0.915 17
ar=0.05 8,704 091 0.860 283
a;=0.10 7,081 0.92 0818 412
FDR G=001 33,038 064 0.750 90
G=0.05 12,123 0.86 0.714 366
G=0.10 11,194 085 0536 401
Lasso A=0.01 7,120 091 0.545 6.6
2=0.10 10,796 0.89 0477 40

A=0.50 14,028 0.81 0.496 2.2
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Table 4 Performance of each method on downsampled data. The boldfaced numbers indicate the
ones which outperformed the others

Method MSE Q? P N
OPLSR, ;=001 10,972 083 0.883 8.90
;=005 9,105 087 0.777 244
ar=0.10 5,709 091 0658 228
OPLSRy, ;=001 10,133 085 0.884 104
=005 8811 0.89 0.881 310
a;=0.10 7,782 0.93 0.848 482
FDR G=001 23116 065 0.701 6.0
G=0.05 10,330 085 0,685 395
G=0.10 13,194 085 0.554 400
Lasso 2=0.01 6,235 0.90 0.502 6.3
2=0.10 9,886 0.88 0494 32
1=0.50 13,124 0.80 0498 21
Conclusions

We presented a feature selection method based on orthogonal-signal corrected PLS
regression vectors to identify significant variables associated with the response character-
istics. The proposed OPLSR method integrates PLS with orthogonal signal correction and
permutation tests. To remove unnecessary variation in the input variables and improve
interpretability of PLS regression vectors, orthogonal signal correction was applied first.
The orthogonal-signal corrected PLS procedure reflects the variable interrelationships
under complex systems, which are easily represented in a network structure. The two
types of regression vectors from the model, carrying information on variables contribu-
tion to response characteristics, were derived and investigated in both a simulation study
and a real-life spectra study in contrast to FDR and Lasso. To select the significant vari-
ables from the regression vectors, we applied a permutation test that generates empirical
null distributions of variable effects on the response characteristics. The adopted permu-
tation test was provided with the filtering rate, a pre-defined tolerance level for the whole
selection procedure for eliminating unnecessary noisy variables, and was implemented
efficiently by taking advantage of a collection of insignificant variables. Through simu-
lations, we observed that the proposed method well captured the predefined network
structures and successfully found the known variables. We demonstrated this method
with real-life metabolomics and NIR spectra data, the finding variables that achieve a
good level of predictive power and accurately relate to the chemical observations. For
future research, we hope to investigate the effect of imbalance classes in the feature
selection.

Acknowledgments
Not applicable.

Conflict of interest
None to declare.

Authors’ contributions
GL performed analyses on the simulated data and participated in the writing of the manuscript. KL implemented the
algorithms, motivated the research problem, and designed the study. All authors read and approved the final manuscript.

Funding
None to declare



Lee and Lee BioData Mining (2021) 14:7

Availability of data and materials
The implemented MATLAB package is available from the following url address: https.//github.com/leegs52/OPLSR

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 28 June 2020 Accepted: 10 January 2021
Published online: 22 January 2021

References

1.

20.

21.
22.

23.

24.

25.

26.

27.

CaiJ, Luo J, Wang S, Yang S. Feature selection in machine learning: A new perspective. Neurocomputing. 2018;300:
70-9.

Zhu Z, Ong Y-S. Memetic algorithms for feature selection on microarray data. In: International Symposium on
Neural Networks. Berlin Heidelberg: Springer-Verlag; 2007. p. 1327-35.

Alsberg BK, Woodward AM, Winson MK, Rowland JJ, Kell DB. Variable selection in wavelet regression models. Anal
Chim Acta. 1998;368(1-2):29-44.

Joe Qin S. Statistical process monitoring: basics and beyond. J Chemometr. 2003;17(8-9):480-502.

Holmes E, Antti H. Chemometric contributions to the evolution of metabonomics: mathematical solutions to
characterising and interpreting complex biological NMR spectra. Analyst. 2002;127(12):1549-57.

Lindon JC, Holmes E, Nicholson JK. Pattern recognition methods and applications in biomedical magnetic
resonance. Prog Nucl Magn Reson Spectrosc. 2001;39(1):1-40.

Park YH, Kong T, Roede JR, Jones DP, Lee K. A biplot correlation range for group-wise metabolite selection in mass
spectrometry. BioData Min. 2019;12(1):4.

Gerlach RW, Kowalski BR, Wold HOA. Partial least-squares path modelling with latent variables. Anal Chim Acta.
1979,112(4):417-21.

Bras LP, Lopes M, Ferreira AP, Menezes JC. A bootstrap-based strategy for spectral interval selection in PLS
regression. J Chemometr. 2008;22(11-12):695-700.

Jiang J-H, Berry RJ, Siesler HW, Ozaki Y. Wavelength interval selection in multicomponent spectral analysis by
moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic
data. Anal Chem. 2002;74(14):3555-65.

Heise HM, Bittner A. Rapid and reliable spectral variable selection for statistical calibrations based on PLS-regression
vector choices. Fresenius J Anal Chem. 1997;359(1):93-9.

Haskuldsson A. Variable and subset selection in PLS regression. Chemometr Intell Lab Syst. 2001;55(1-2):23-38.
Faber NKM. Uncertainty estimation for multivariate regression coefficients. Chemometr Intell Lab Syst. 2002;64(2):
169-79.

Wehrens R, Van der Linden WE. Bootstrapping principal component regression models. J Chemometr Soc.
1997;11(2):157-71.

Wold S, Antti H, Lindgren F, Ohman J. Orthogonal signal correction of near-infrared spectra. Chemometr Intell Lab
Syst. 1998;44(1-2):175-85.

Fearn T. On orthogonal signal correction. Chemometr Intell Lab Syst. 2000;50(1):47-52.

Svensson O, Kourti T, MacGregor JF. An investigation of orthogonal signal correction algorithms and their
characteristics. J Chemometr. 2002;16(4):176-88.

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing.
J R Stat Soc Ser B Methodol. 1995;57(1):289-300.

Kim SB, Chen VCP, ParkY, Ziegler TR, Jones DP. Controlling the false discovery rate for feature selection in
high-resolution NMR spectra. Stat Anal Data Min. 2008;1(2):57-66.

Vinzi VE, Chin WW, Henseler J, Wang H, et al. Handbook of partial least squares, vol 201. Berlin Heidelberg:
Springer-Verlag; 2010.

Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemometr Soc. 2002;16(3):119-28.
Westerhuis JA, de Jong S, Smilde AK. Direct orthogonal signal correction. Chemometr Intell Lab Syst. 2001;56(1):
13-25.

de Jong S. SIMPLS: an alternative approach to partial least squares regression. Chemometr Intell Lab Syst. 1993;18(3):
251-63.

Efron B, Tibshirani R. An introduction to the bootstrap, vol 57. Boca Raton: CHAPMAN & HALL/CRC CRC Press LLC;
1993.

Ishwaran H, Lu M. Standard errors and confidence intervals for variable importance in random forest regression,
classification, and survival. Stat Med. 2019;38(4):558-82.

Tsuzuki S, Fujitsuka N, Horiuchi K, ljichi S, GuY, Fujitomo'Y, Takahashi R, Ohmagari N. Factors associated with
sufficient knowledge of antibiotics and antimicrobial resistance in the Japanese general population. Sci Rep.
2020;10(1):1-9.

Jones DP, ParkY, Ziegler TR. Nutritional metabolomics: progress in addressing complexity in diet and health. Annu
Rev Nutr. 2012;32:183-202.

Page 15 of 16


https://github.com/leegs52/OPLSR

Lee and Lee BioData Mining (2021) 14:7 Page 16 of 16

28. Neujahr DC, Uppal K, Force SD, Fernandez F, Lawrence C, Pickens A, Bag R, Lockard C, Kirk AD, TranV, et al. Bile
acid aspiration associated with lung chemical profile linked to other biomarkers of injury after lung transplantation.
Am J Transplant. 2014;14(4):841-8.

29. Wilfert F, Kok WT, Smilde AK. Influence of temperature on vibrational spectra and consequences for the predictive
ability of multivariate models. Anal Chem. 1998;70(9):1761-7.

30. Zhang G, CuiQ, Liu G. Efficient near-infrared quantum cutting and downshift in Ce3+-Pr3+ codoped SrLaGa3560
suitable for solar spectral converter. Opt Mater. 2016;53:214~7.

31. Bonanno AS, Olinger JM, Griffiths PR. The origin of band positions and widths in near infrared spectra. Near Infrared
Spectroscopy: bridging the gap between data analysis and NIR applications. London: Ellis Horwood. 1992;19-28.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

® rapid publication on acceptance

o support for research data, including large and complex data types

* gold Open Access which fosters wider collaboration and increased citations

e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions k BMC




	Abstract
	Keywords

	Introduction
	Proposed method
	Orthogonal PLS regression vector
	Permutation tests
	Simulation and comparisons

	Experiments
	Conclusions
	Acknowledgments
	Conflict of interest
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

