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Abstract

Background: In the Next Generation Sequencing (NGS) era a large amount of
biological data is being sequenced, analyzed, and stored in many public databases,
whose interoperability is often required to allow an enhanced accessibility. The
combination of heterogeneous NGS genomic data is an open challenge: the analysis of
data from different experiments is a fundamental practice for the study of diseases. In
this work, we propose to combine DNA methylation and RNA sequencing NGS
experiments at gene level for supervised knowledge extraction in cancer.

Methods: We retrieve DNA methylation and RNA sequencing datasets from The
Cancer Genome Atlas (TCGA), focusing on the Breast Invasive Carcinoma (BRCA), the
Thyroid Carcinoma (THCA), and the Kidney Renal Papillary Cell Carcinoma (KIRP). We
combine the RNA sequencing gene expression values with the gene methylation
quantity, as a new measure that we define for representing the methylation quantity
associated to a gene. Additionally, we propose to analyze the combined data through
tree- and rule-based classification algorithms (C4.5, Random Forest, RIPPER, and
CAMUR).

Results: We extract more than 15,000 classification models (composed of gene sets),

which allow to distinguish the tumoral samples from the normal ones with an average
accuracy of 95%. From the integrated experiments we obtain about 5000 classification
models that consider both the gene measures related to the RNA sequencing and the
DNA methylation experiments.

Conclusions: We compare the sets of genes obtained from the classifications on RNA
sequencing and DNA methylation data with the genes obtained from the integration
of the two experiments. The comparison results in several genes that are in common
among the single experiments and the integrated ones (733 for BRCA, 35 for KIRP, and
861 for THCA) and 509 genes that are in common among the different experiments.
Finally, we investigate the possible relationships among the different analyzed tumors
by extracting a core set of 13 genes that appear in all tumors. A preliminary functional
analysis confirms the relation of part of those genes (5 out of 13 and 279 out of 509)
with cancer, suggesting to focus further studies on the new individuated ones.

Keywords: Classification, Next generation sequencing, RNA sequencing, DNA
methylation, Cancer
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Introduction

Next Generation Sequencing (NGS) techniques have revolutionized the sequencing of
genomes, producing large quantities of DNA and RNA data [1-4]. This abundance of
data allows us to perform analyses on the genetic makeup of human subjects, studying
the predisposition to diseases like cancer [5-8]. NGS techniques are not only applied to
DNA sequencing [9], but also to other types of experiments, e.g.: transcriptome profil-
ing (RNA sequencing) [10, 11], microRNA sequencing (miRNA-seq) [12], protein-DNA
interactions (Chip-Seq) [13], identification of Copy Number Variation (CNV) [14], and
characterization of the epigenome or chemical changes in the DNA (DNA methylation)
[15-17].

In this work, we are going to focus on DNA methylation and RNA sequencing, as these
two NGS experiments have been proven to play an important role in knowledge discovery
in cancer [18-25].

DNA methylation is one of the most studied epigenetic changes in human cells. The
changes in DNA methylation patterns are crucial in the development of diseases and in
many forms of cancer [26—31]. Most NGS methods are based on bisulfite conversion to
determine the percentage of methylated cytosines in a CpG island. This measure is called
beta value [32], and is defined as the ratio between the methylated allele intensity and the
overall intensity. For more details about the DNA methylation experimental techniques
the reader may refer to [17, 33].

RNA sequencing is a next generation sequencing technique for the analysis of the
transcriptome and its quantification. Four main methods for measuring gene expression
are used in practice: i) Reads Per Kilobase per Million mapped reads (RPKM)[10]; ii)
Fragments Per Kilobase per Million mapped (FPKM) [34]; iii) RNA-Seq by Expectation-
Maximization (RSEM) [11, 35]; iv) Transcripts Per Kilobase Million (TPM) [36]. For
further details about RNA sequencing, we point the reader to [37], where the authors
perform a comprehensive overview of this NGS technique.

In this work, we define NGS data the information extracted from a NGS experiment
(i.e., Chip-sequencing, DNA methylation, DNA sequencing, RNA sequencing), e.g., the
counts of the reads that map on given list of genes in RNA sequencing. We define NGS
meta data the information related to the NGS experiment and the sequenced tissue,
e.g., the tissues status (tumoral, normal), or the sequencing depth. We define NGS data
integration the procedure of joining different experiments (possibly extracted from het-
erogeneous databases) sharing common features (e.g., same disease / patient under study)
in order to extract knowledge. The aim of integration is to aggregate genomic data in an
unique schema that provides querying capabilities for retrieving data from a multitude of
heterogeneous experiments and databases. Heterogeneous data are the first problem of
NGS, because the structure of data is different in diverse experiments and can be differ-
ent in diverse databases. Therefore, the term integration in NGS data can have different
meanings [38]. On one hand, we consider integration for a need to have a uniform lan-
guage that facilitates the access to different genomic databases. On the other hand data
heterogeneity is caused by the experiment types and by the information that they bring.
It is worth noting that dis-uniformity of the data schema is present not only when con-
sidering different databases, but also when dealing with a single one. We distinguish four
conditions, where NGS data integration can be performed: (i) different databases repre-
sent the same NGS experiment (e.g. RNA-Seq) with different data schemas; (ii) different
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experiments (e.g., DNA methylation and RNA-Seq) in distinct databases; in this case there
are two different data schemas, because the experiments need a different representation,
but no standardization of the schemas is defined that allows the access to these experi-
ments; (iii) the same problem exists even in the same databases, which contains different
experiments and different data representation schemas. Finally, we consider an ideal case
(iv) where a previously defined schema standardization allows to integrate different exper-
iments that come from different databases or from the same database, and it allows also
to provide interoperability between the same experiments but with different schemas. An
example of this type of standardization is provided by [39] with the Genomic Data Model
(GDM) that supports many NGS formats.

In order to have access to the right resources, it is necessary to define standard schemas
of these data to avoid redundant information overlaps. Several efforts have been made
on NGS data formats and standards. The authors of [40] provide the reader with an
overview of the most widespread data formats for NGS and describe a set of standard-
ization approaches for them. In [41] the NCBI Entrez search and retrieval system used at
the National Center for Biotechnology Information to access distributed heterogeneous
data is described . Also the authors of [42] present a text search engine to access data
resources in the European Bioinformatics Institute (EMBL-EBI) and to help understand
the relationship between different data types. Other implementations for bioinformatics
data integration include retrieval systems like SRS [43] and integration tools for informa-
tion fusion such as BioData Server [44]. The integration of genomic data involves multiple
fields, i.e., bioinformatics, statistics, data mining, and classification. But the question is,
does the integration of different types of NGS experiments offer additional knowledge
about a disease like cancer [45]?

In this work, we address the issue of combining RNA sequencing and DNA methylation
experiments, which have different data schemas containing heterogeneous information.
Our aim is to obtain a gene oriented organization of both experiments, and therefore
we define a new measure on DNA methylation data called gene methylation quantity.
We combine RNA sequencing and DNA methylation data of The Cancer Genome Atlas
(TCGA) [46] and test our method on genomic data related to three types of cancer: Breast
Cancer, Kidney Renal Carcinoma, and Thyroid Carcinoma.

Additionally, we analyze the combined data by means of supervised classification algo-
rithms, extracting classification models, which are able to distinguish the samples in two
classes (tumoral and normal) and which are composed of features that represent the genes
related to the disease and the different NGS experiment.

In cancer research many computational methods deal with classification problems, e.g.,
disease characterization, prognosis, treatment response of patients, mutation pathogenic-
ity, biomarker prediction, and sample malignancy. A recent effort has achieved good
performance in the assignment of disease subtypes and malignancy labels to melanoma
images with convolutional neural networks [47]. Further studies used typical machine
learning methods [48], including Adaboost [49] and decision trees [50].

Among them, we focus on a new supervised learning method that is able to extract more
knowledge in terms of classification models than state of the art ones, called Classifier
with Alternative and MUItiple Rule-based models (CAMUR) [51]. CAMUR is designed
to find alternative and equivalent solutions for a classification problem building multi-
ple rule-based classification models. Standard classifiers tend to extract few rules with a
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small set of features for discriminating the samples, and interesting features may remain
hidden from the researcher. Thanks to an iterative classification procedure based on a fea-
ture elimination technique, CAMUR finds a large number of rules related to the classes
present in the dataset under study. CAMUR is based on: (i) a rule-based classifier, i.e.,
RIPPER (Repeated Incremental Pruning to Produce Error Reduction) [52]; (ii) an itera-
tive feature elimination technique; (iii) a repeated classification procedure; (iv) a storage
structure for the classification rules. The method calculates iteratively a rule-based clas-
sification model through the RIPPER algorithms [52], deletes iteratively the features that
are present in the rules from the dataset, and performs the classification procedure again,
until a stopping criterion is met, i.e., the classification performance is below a given
threshold or the maximum number of iterations has been reached. CAMUR has been
implemented specifically for case-control studies that aim to identify subjects by their
outcome status (e.g., tumoral or normal). In these data, the features correspond to the
gene expressions of the samples, the classes to the investigated diseases or conditions
(e.g., tumoral, normal). The extracted knowledge by CAMUR consists in a set of rules
composed of a given number of genes that might be relevant for a disease. CAMUR also
includes an offline tool to analyze and to interpret the computed results. Thus the soft-
ware consists of two parts: (i) The Multiple Solutions Extractor (MSE), which corresponds
to the implementation of the iterative classification algorithm (i.e., for each iteration it
deletes the selected features, performs the classification, and saves the extracted models);
(ii) The Multiple Solutions Analyzer (MSA), a graphical tool for analyzing and interpret-
ing the obtained results. CAMUR is available at http://dmb.iasi.cnr.it/camur.php as stand
alone software; for a comprehensive description we point the reader to [51].

In this work, thanks to the application of machine learning algorithms, we show the
advantage of combining DNA methylation and RNA sequencing data, i.e., the increase of
extracted knowledge resulting in combinations of genes from both experimental strate-
gies. Finally, we study the three types of cancer and identify sets of relevant genes. The
intersection of them results in a smaller set of genes that should be considered for further
investigation.

Methods

In this section, we discuss the methods used to combine the genomic experiments
(RNA sequencing, DNA methylation) and the classification algorithms used to extract
knowledge from them. We start by describing the source where we extract the data.

Data source: the Cancer Genome Atlas

The Cancer Genome Atlas (TCGA) [46] is a project that aims to create a major repos-
itory for cancer, including NGS experiments, to improve the ability to diagnose, treat
and prevent cancer through a better understanding of the genetic basis of this disease.
The TCGA database contains the genomic characterization and analysis of 33 types of
cancer. Tissue samples are processed through different types of techniques such as gene
expression profiling (i.e., RNA sequencing and microarrays); profiling of methylated DNA
(i.e., DNA methylation obtained both with NGS techniques and microarrays); profiling
of microRNA (i.e.,, miRNA sequencing); whole genome sequecing (i.e., DNA sequenc-
ing). We rely on the latest TCGA data release available at The Genomic Data Commons
platform (http://gdc.cancer.gov/).
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In TCGA each tissue of DNA methylation is represented with a list of following fields:
gene symbol, chromosome and genomic coordinates (where the methylation occurs), and
its beta value (methylation values). RNA sequencing data instead contains information
on the RSEM values [11] measured on the considered genes. It is worth noting that our
approach handles gene expression data of RNA sequencing, which has been previously
normalized, DNA methylation data containing the beta value, and can be used to treat
also DNA methylation and RNA sequencing data of different pathologies.

Data processing and combination
We create data matrices of RNA sequencing and DNA methylation experiments in the
following way. Consider n samples (tissues) each one with m features (genes) and a class
label (condition), which indicates whether the sample is normal or tumoral. A data matrix
is composed by n vectors as F; = (f; 1, f; 2, ..., fi,m» fi,c), which represent sample i, where f;; €
Ri=1,.,mj=1,.,mfi. € {normal, tumoral}. When considering RNA sequencing,
the rows represent the samples, the columns the genes (except the last that represents the
class labels) and the items of the matrix contain the RSEM gene expression values for each
gene. The structure of this matrix is shown in Table 1. When considering DNA methyla-
tion, the corresponding matrix is composed by the rows that represent the samples, the
columns that represent the genes, while the items contain a new measure that represent
the quantity of methylation associates to each gene and that is explained in the following.
Indeed, for DNA methylation TCGA encloses the beta values for each methylated site, so
each sample has s methylated sites, / of them belonging to a given gene. For aggregating
the methylation quantity at gene level, we consider the sum of the beta values as a measure
of the overall intensity of the methylation on a gene. Let ;3 be the methylation quantity
associated to the sample i with i = 1, .., #, to the gene j with j = 1, ....m, and to the methy-
lated site # with /2 = 1,..,/. Then we have b;; = Zi=1 a;jn, Vi, j. In the following, we refer
to this new measure as gene methylation quantity. It is worth noting that we consider the
beta values of CpG sites with a related gene symbol, i.e., the symbol of the gene where the
methylation occurs. If a methylation occurs on other genomic regions it is not considered
in our data processing procedure, whose aim is to provide a gene oriented data organiza-
tion. In Table 2 we show the structure of the DNA methylation matrix. A software tool,
which performs the data extraction and the creation of the matrices, is freely available at
http://bioinf.iasi.cnr.it/genint. The flowchart that reports the computational steps of the
software is depicted in Fig. 1.

In order to perform our analysis on both gene oriented measures (RSEM for RNA
sequencing and gene methylation quantity for DNA methylation) at the same time, we
propose a combination of these two experiments by applying an intersection of the matri-

ces on common sample IDs and a union of those not in common (this result trace over the

Table 1 Structure of the RNA sequencing matrix

Sample_ID Genel maseq Gene2iaseq . GeneMinaseq Class
S1 vah vah . vah m Normal
Si valiy . . valim

Sn valp . . valym Tumoral
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Table 2 Structure of the DNA methylation matrix

Sample_ID Genel dnameth Gene2dnameth . GeneMgnamteth Class

S1 bm b}yz - bW‘ﬂ Normal
Si bm - - b/',m

Sn bn . . bam Tumoral

full outer join in SQL language), keeping both experimental data and performing a union
of the genes that are present in RNA sequencing and DNA methylation as features. The
resulting matrix is shown in Table 3. Let i be the i-th sample, j the j-th gene, withi =1, .., n
andj = 1,.,m in case of a gene of the DNA methylation experiment,j = m + 1, ...,z in
case of a gene of the RNA sequencing experiment. Furthermore, we have b;; and val;; €
{R, ?}, Vj, i, where the “?” symbol means that there is no value associated to the gene j for
the sample i. We release also a software that is able to perform the combination of the
experiments, available at http://bioinf.iasi.cnr.it/genint. Finally, we report the main steps

of the procedure in Fig. 2.

Analysis method

The classification that we perform has the objective of being able to determine a set of
rules for each type of tumor (composed of the genes and their related values), which can
define if a tissue is in tumoral or in normal condition.

It is worth noting that also in previous works [53—58] DNA methylation has been used
to classify data samples (and patients) of cancer, but only a subset of single methylated
sites have been used as features. Recently, the authors of [59] perform the classification
task by considering all the single methylated sites in the genome with big data techniques.
Conversely, we use the previously defined gene methylation quantity and not the single
methylated sites. Also gene expression data of RNA sequencing has been widely used for
cancer classification [51, 60—66] and proven to be effective in distinguishing normal from

- Features and
RS siencing Parser [——> sample  ¢-----> +" Sample id :
or n
DNA-methylation eXtrTw“ i gene - valu ]
Header definition| <—— Unionofthe [, : Output
samples :Sample_Id: {gene, value}

final_matrix.csv

Creation of data

Fig. 1 The flowchart of the computational steps for creating the RNA sequencing and DNA methylation
matrices. The first step represents the parsing of the input dataset of TCGA. The samples are read for the
extraction of the features (genes) and their related values, which are the gene expression measures in case of
RNA sequencing, or the methylation quantities for each gene in case of DNA methylation. Subsequently, the
samples and the related gene-value pairs are unified in a single file. From this file the header (columns) and
the values (rows) of the matrix are created. In the final matrix (comma separated values format), the header
reports all the genes, while the rows are identified by the sample id and report the related values
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Table 3 Structure of the combined matrix

Sample_ID Gl dnamteth G2dnamteth - Glinaseq G2rnaseq - Class

S1 b1 b1 . vah m+1 vah m+2 . Normal
Si bm . . VG/,,m_H . \/G/,"Z

Sn bn . . Valym+1 . . Tumoral

tumoral samples. Our aim is to combine both information in order to extract a wider
knowledge and to better focus on those genes that are related to the disease.
For performing the task of knowledge discovery, we used four different classification

algorithms that are briefly described in the following.

c4.5

C4.5 [67] is an algorithm for the generation of decision trees used for classification. The
algorithm takes as input a set of classified data (training set) and the output is composed
by leaf nodes of the tree, which define the belonging to a class attribute. Indeed, the path
from the root to a specific leaf means that all the predicates applied to the features of the
sample are verified. The validity of the tree is verified on a set of labeled samples (test
set), but whose class is taken into account only for verification of the class assignments.
In this work, we use the J48 Java based implementation of C4.5 available in the Weka

package [68].

Random Forest

Random Forest [69] is an ensemble machine learning method that uses decision trees as
basic classifiers. Each tree refers to a class and relies on a random and independent vector,
which is generated with the same distribution of the others. Random Forest generates dis-
tinct decision trees, because it varies the training sets selection and the selected features
for each model. The classification results of a Random Forest execution are computed
by counting the votes for the most popular class predicted by the different trees and by

Union of the
DNA-meth_matrix.csv headers

Parser

combined_matrix.csv

Join of the

matrices
RNA-seq_matrix.csv

Creation of
Sample ids

Fig. 2 Flowchart for creating the combined matrices. Firstly, a parser reads the DNA methylation and RNA
sequencing matrices in input (computed as described in Fig. 1), and sends the next elaborations to two
distinct processes. A step is responsible of the creation of the full header of the combined matrix with all the
genes, of both the DNA methylation and RNA sequencing. The other step takes the parsed sample IDs to
modify the identification of the sample (TCGA barcode) deleting the details of the performed experiments.
After the creation of the sample IDs, the join step follows: the initials matrices are joined on the modified IDs
and the new rows of the matrix are created, including both gene expression and gene methylation quantity.
The join defines the rows with the values of the two experiments (on which the join is made because the
sample id is present in both input matrices), and also the rows with values of only one experiment (if the
sample is not available in both input matrices of DNA methylation and RNA sequencing)
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assigning that class to the considered instance. Also for Random Forest we use its Weka

[68] implementation.

RIPPER

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) [52] is an algorithm
based on logic formulas, i.e., a combination of significant features with logic operators
(and, or, not, <, <, >, >, =) in the form of “if-then rules”. A rule-based classifier generates
a set of rules for assigning a given class to each sample. In this case the features of the
sample have to satisfy the conditions of the classification rule for belonging to a given
class. Also for this algorithm we use the Weka [68] implementation.

CAMUR

Classifier with Alternative and MUItiple Rule-based models (CAMUR) [51] is a multi-
ple rule-based classifier, which extracts alternative and equivalent classification models.
CAMUR combines the RIPPER algorithm with a repeated classification procedure, delet-
ing iteratively the features that appear in the classification models from the dataset in
order to extract many classification models. The iterative procedure is stopped when the
classification performance is below a given threshold or a given number of iterations has
been reached. In this work, we choose a particular execution mode of CAMUR (loose
mode), because it allows to extract a larger number of classification models, i.e., more
genes that are related to the investigated tumors. Indeed, the loose mode considers all the
combinations of the features separately and without definitively removing them from the
dataset. For additional details about the algorithm the reader may refer to [51].

Results

In this section, we describe the performed experiments to test our method and the results
of the classification algorithms applied to the RNA sequencing and DNA methylation data
of three cancer types. We extracted all the samples of these experiments from TCGA,
considering the Breast Invasive Carcinoma (BRCA), the Kidney Renal Papillary Cell Car-
cinoma (KIRP), and the Thyroid Carcinoma (THCA). For data extraction we used the
TCGA2BED tool [70] and its TCGA data release in BED format. Every BED file is related
to an experiment on a given sample identified by its TCGA barcode [46], which con-
tains several information about the sample including the type. The sample type permits
to distinguish between normal and tumoral samples, which are the two classes used
for classifying the experiments. For each type of tumor, we created three data matrices,
the first containing only the gene expression values (RNA sequencing), the second con-
taining only the gene methylation quantities, and the third combining both experiments
according to the procedure described in “Methods” section. Tables 4 and 5 show an exam-
ple of the RNA sequencing and of the DNA methylation data matrices of BRCA. The
numeric values shown in Table 2 are obtained as sums of the beta values associated with
the same gene. For example for the TCGA-A7-A4SD-01A-11D-A268-05 sample, the 1.6
value, associated with the GDA gene, is the result of the sum of all the beta values of the
methylation sites associated with this gene. Table 6 shows an example of the BRCA com-
bined matrix, where each column represents a gene of the DNA methylation and then a
gene of the RNA sequencing; the first row represents a sample only with data about the
RNA sequencing experiment, and the second row has only data for the DNA methylation
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Table 4 Example of RNA sequencing matrix on breast cancer data

RNA sequencing GDA_rna SCN3A_rna SCN3B_rna Class
TCGA-A1-A0SD-01A-11R-A115-07 0.6 284 436 Normal
TCGA-A7-A4SD-01A-11R-A266-07 0.0 6.4 1.9 Tumoral
TCGA-3C-AALK-01A-11R-A41B-07 0.0 53786 18.2044 Tumoral

The columns represent genes, and the last shows the class. For each row, we consider the full TCGA identifier of the sample. The
full identifiers is called TCGA aliquot and reports the type of the performed NGS experiment (RNA sequencing). The gene
expression values are reported for all samples

experiment, whereas the last row is an example of a sample with both experiments.
Details about the combined matrices of BRCA, THCA, and KIRP tumors are summa-
rized in Table 7, while details about the datasets are depicted in Table 8: with the column
‘Experiment’ we specify the sequencing experiment (RNA sequencing or DNA methyla-
tion), followed by the ‘Cancer’ column where we indicate with a code the considered types
of cancer for the two experiments. The last four columns represent the number of tumor
samples, the number of normal samples, the total number of genes and the size of the
matrices in MB, respectively. We performed binary classifications (two classes, normal
and tumoral), and we considered three cancers with both normal and tumoral samples.

Performed tests

The data matrices of the different experiments and tumors have been analyzed with the
above-mentioned classification algorithms (C4.5, Random Forest and RIPPER) through
the use of the Weka software package [68]. For the application of these algorithms, we
adopted a parameter tuning process to prevent overfitting and to optimize the classi-
fication results in term of accuracy. We used the Cross-Validated Parameter selection
(CVParameterSelection) [71], that can optimize an arbitrary number of parameters
according to input data and number of cross validation folds. We have chosen this meta-
classifier for performing parameter selection by cross-validation for all our classifiers. For
example, if we consider the RNA-sequencing matrix for KIRP tumor, and the different
classifiers (RIPPER, C4.5 and Random Forest), we obtain the following results:

e J48 (C4.5), -C (confidence threshold for pruning.) 0.1, -M (minimum number of
instances per leaf) 1, -U (use unpruned tree) false;

¢ JRip (RIPPER), -F (the number of folds for Reduced Error Pruning) 5, -N (the
minimal weights of instances within a split) 1, -O (the number of runs of
optimizations) 2 -S (the seed of randomization) 1;

e RandomForest, -I (number of iterations) 30, -K (number of attributes to randomly
investigate) 0, -S (seed for random number generator) 1, -num-slots (number of
execution slots) 1.

Table 5 Example of DNA methylation matrix on breast cancer data

DNA methylation GDA_dMeth SCN3A_dMeth SCN3B_dMeth Class
TCGA-A7-A4SD-01A-11D-A268-05 16 23 20 Tumoral
TCGA-GI-A2C9-01A-11D-A21R-05 19 2.7 23 Tumoral
TCGA-3C-AALK-01A-11D-A41Q-05 3.8 2.1 3.8 Normal

Also in this case, rows are represented by the TCGA aliquot of samples, reporting the type of the performed NGS experiment
(DNA methylation). The gene methylation quantity values are reported for all samples
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Table 6 Example of combined matrix on the breast cancer data

Combined GDA_dMeth SCN3A_dMeth GDA_rna SCN3A_rna Class

TCGA-A1-A0SD-01A ? ? 0.6 284 Normal
TCGA-GI-A2C9-01A 1.9 2.7 ? ? Tumoral
TCGA-A7-A4SD-01A 1.6 23 0.0 6.4 Tumoral

In the combined matrix, rows are identified by the TCGA Barcode (excluding the part that identifies the type of experiment carried
out on a sample). In this way it is possible to recognize the sequenced sample with both NGS techniques (RNA sequencing and
DNA methylation). In this case the matrix has as many rows as the total samples (union of RNA sequencing samples and DNA
methylation samples), counting only one time those samples in common, on which both experiments were preformed

In addition, we performed the classifications with multiple rule-based models obtained
by CAMUR. Therefore four different classification algorithms were applied on three data
matrices (RNA sequencing, DNA methylation, and their combination) of each considered

cancer, resulting in 36 different knowledge discovery analyses. For evaluating the classi-
2P-R
PR’
where R stands for Recall and P is for Precision. Considering True Positives (TP) objects

fiers we take into consideration the F-measure, which is defined as F-measure =

of a given class recognized in this class; False Positives (FP) objects recognized in a class
but not belonging in this class; True Negatives (TN) objects not belonging and not rec-
ognized in a given class; False Negatives (FN) objects in a given class but not recognized
in that, we can then define Recall = n,i% and Precision = % We performed the
tuning of parameters also for CAMUR adopting the Cross-Validated Parameter selection
described above [71] for its internal RIPPER algorithm, and we finally set the execution
mode to loose, the maximum number of iterations to 100, the minimum F-measure value
to 0.8, and the maximum time to 30 days.

In Table 9 we show the average of the resulting F-measures for the performed classi-
fications of each algorithm in 10-fold cross validation scheme. It is worth noting that all
values are greater than 95%. Proper parameter tuning was performed with a large set of
tests in order to prevent potential overfitting of the classification models.

The results obtained on the combined datasets are slightly lower due to the increase
in features and missing values that make the job of the classification algorithms harder.
In order to clarify this point we also applied the classification algorithms on the com-
bined matrices, deleting the samples for which only one NGS experiments is available.
In this way we reduced the missing values and the resulting classification performance
(F-measure) improved with all the classifiers (i.e., on BRCA +0.2% with C4.5, +0.1% with
RF, +1% with RIPPER; on KIRP +0.7% with C4.5, +0.8% with RF, +2,1% with RIPPER; on
THCA +0.1% with C4.5, +0.5% with RF, +0.2% with RIPPER).

The performance of the algorithms are important in order to validate the classification,
but the main purpose of the work is to extract more and different genes from diverse
experiments. The improvement given by the classification of the combined data is that the

Table 7 Details of the number of samples in the combined matrices

KIRP THCA BRCA
# RNA sequencing samples 28 9 346
# DNA methylation samples 22 8 23
# DNA methylation and RNA sequencing samples 295 563 872

# RNA sequencing samples represent the number of samples having only RNA sequencing data, # DNA methylation samples
represent the number of samples having only DNA methylation data, # DNA methylation and RNA sequencing samples represent
the number of samples having both information
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Table 8 Overview of the datasets

Experiment Cancer Tumoral Normal Features MB
RNA sequencing BRCA 1104 114 20485 1985
THCA 513 59 20489 93
KIRP 291 32 20489 52,6
DNA methylation BRCA 799 98 20045 330
THCA 515 56 20045 210,2
KIRP 274 43 20045 116,9
Combined BRCA 1114 127 40530 542,5
THCA 515 65 40534 3039
KIRP 292 53 40534 1714

resulting classification models do not only consider the genes and their associated values
for a single experiment, but both from gene expression and DNA methylation data in a
single model, providing multiple related genes. In Table 10 we show the number of genes
obtained with the execution of RIPPER, C4.5 and Random Forest classification algorithms
on all tumors for DNA methylation, RNA sequencing and their combination. It is worth
noting that one extracted gene is in common among the three algorithms. The reason is
that the algorithms operate differently and use diverse extraction functions of the mod-
els, so the extracted features are disjoint. It is important to distinguish between Random
Forest that extracts multiple classification models, while RIPPER and C4.5 extract a sin-
gle classification model. We obtain almost 5000 genes with Random Forest, 38 genes with
RIPPER, and 26 with C4.5; we also report that 17 genes are in common between RIP-
PER and Random Forest, 9 between C4.5 and Random Forest, and 4 between RIPPER and
C4.5. Further details and the complete list of extracted genes are available as Additional
files 1 and 2 or at http://bioinf.iasi.cnr.it/genint.

We also investigated if the algorithms misclassify the same samples by comparing the
predictions of each one. We found out that only some instances are misclassified by all
the three algorithms. Further details are described in Additional file 1.

Finally, in order to prove the validity of the extracted models we performed random per-
mutations of class membership for each classification problem and each combination. We
tested if our procedure is able to extract meaningful classification models regardless of the
class partition imposed on the training set. This would be verified only in the presence of
a marked overfitting behavior. For validating our results and the extracted classification
models, we applied the procedure to data with random permutations of class labels. This

Table 9 Average performance (F-measure) of the classification algorithms

Experiment Cancer C4.5 RIPPER CAMUR Random Forest
RNA sequencing BRCA 98.5 98.1 98.2 97.3

THCA 97.7 97.2 976 984

KIRP 9838 98.8 95.2 99.4
DNA methylation BRCA 97.2 975 974 983

THCA 96.1 96.3 95.1 97.0

KIRP 97.8 96.5 98.0 99.0
Combined BRCA 97.2 975 97.8 989

THCA 96.4 95.2 97.2 97.3

KIRP 98.0 96.8 98.4 98.2
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Table 10 Number of genes obtained with the different classification algorithm

Algorithm RNA-Seq and DNA methylation Combination
RIPPER 26 12

C4.5 22 4

Random Forest 2098 2471

We show the number of genes obtained with RNA sequencing and DNA methylation data matrices, and the number of genes
obtained thanks to the combination of the two experiments

validation test was performed on 100 different random permutations for each classifica-
tion problem. In particular, we obtain low values of F-measure and we report the resulting
averages in Table 11. We obtain a low overall average classification accuracy on permu-
tated data, whose values are halved when compared to the ones obtained on original data.
This confirms the reliability of our classification models and suggesting the absence of
overfitting when considering the correct classes.

We ran more than 2000 classification procedures with CAMUR, obtaining rules, lit-
eral and conjuncion lists, feature pairs and literals statistics for each tumor and each
considered dataset. Detailed results are described in Additional file 1 and available at
Additional file 2 or at http://bioinf.iasi.cnr.it/genint. In Table 12 we summarize the results
obtained with CAMUR, in particular the table shows the total number of extracted rules
and all the features (i.e., genes) that appear. In Table 13 we report the execution times, the
number of iterations and the execution mode of CAMUR. The execution of the classifi-
cations procedures were run on a 4-Core 3 giga hertz Intel-7 processor with 24 gigabytes
RAM and Linux Debian Kernel Version 2.6.h-amd64. The classifications obtained with
the implementations of C4.5, Random Forest, and RIPPER algorithms, are executed with
two software tools available at http://bioinf.iasi.cnr.it/genint. In Table 14 we report the
execution times of the classification procedure for each tumor in 10-fold cross-validation
sampling scheme [72]. Conversely to CAMUR, the execution times are in the order of
minutes, because those algorithm extract just a single classification model. We also com-
pared the execution times of Random Forest to those of CAMUR, which extract both
multiple solutions. We note that CAMUR has higher running times than Random Forest,
which are in the order of hours for CAMUR and in the order of minutes for Ran-
dom Forest. We can justify this differences by considering the amount of logic formulas
extracted from both classifiers, indeed CAMUR extracts many more rule-based models
w.r.t. Random Forest tree-based ones.

Table 11 Average performance (F-measure) of the classification algorithms on random permutated

class labels
Experiment Cancer C45 RIPPER CAMUR Random Forest
RNA sequencing BRCA 511 51.6 50.2 509

THCA 49.5 50.8 49.6 50.7

KIRP 554 48.8 503 50.1
DNA methylation BRCA 50.0 49.7 51.1 49.1

THCA 51.1 50.2 532 479

KIRP 50.2 49.6 520 50.8
Combined BRCA 519 494 526 49.9

THCA 524 50.7 50.1 513

KIRP 50.1 504 503 50.2
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Table 12 Rules and genes obtained with CAMUR

Experiment Cancer Rules Genes
RNA sequencing BRCA 1866 920
THCA 1880 695
KIRP 3 2
DNA methylation BRCA 2658 1543
THCA 3778 1918
KIRP 159 53
Combined BRCA 895 1045
THCA 3703 1450
KIRP 310 88

This results summarize the obtained output for each considered tumor and experiment

Discussion

This section is organized as follows. Firstly, we provide evidence of proof about our
new defined measure called gene methylation quantity. Then, we discuss the correla-
tion among RNA sequencing and DNA methylation. Finally, we focus on the extracted
knowledge, provide an overview of it, and, in order to prove the validity of the obtained
classification models, we considered two external breast cancer RNA sequencing datasets
of Gene Expression Omnibus (GSE56022 and GSM1308330) for identifying the diseased
samples.

Gene methylation quantity

In previous studies, efforts have been made for aggregating DNA methylation at gene
level. In [73] a methylation index is defined as the mean percent methylation across all
CpG sites in the gene. In [74] another methylation index is defined as the ratio of methy-
lated and unmethylated copy numbers measured by absolute quantitative assessment of
methylated alleles. Our measure differs from previous attempts to represent DNA methy-
lation at gene level, because it takes into account both the number and the values of
methylated sites for each gene. In order to validate the gene methylation quantity we pro-
vide a qualitative and a quantitative explanation: (i) the defined gene methylation quantity
index represents how much a gene is methylated, because it is defined as the sum of
the methylation values of the sites that are within the genomic coordinates of the gene,

Table 13 Timing of the CAMUR executions, number of iterations and execution mode

Experiment Cancer CAMUR_time [terations Mode
RNA sequencing BRCA 14d:20h:59m:20s 60 Loose
THCA 05d:04h:00m:51s 100 Loose
KIRP 00d:00h:01m:22s 100 Loose
DNA methylation BRCA 29d:00h:21m:19s 44 Loose
THCA 29d:00h:19m:52s 39 Loose
KIRP 00d:00h:25m:51s 100 Loose
Combined BRCA 29d:20h:221m:25s 7 Loose
THCA 07d:20h:53m:16s 100 Loose
KIRP 00d:01h:34m:08s 100 Loose

We specified different maximum number of iterations according to the computation time, 80% as minimum threshold value for
the classification reliability, and loose as execution mode. It is worth noting that only 7 iterations in 29 days have been performed
for the combined matrix of BRCA, because the extracted classification models are composed of a high number of genes
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Table 14 Execution time of C4.5, RIPPER and Random Forest algorithms

Experiment Cancer C4.5_time RIPPER_time RandomForest_time
RNA sequencing BRCA 04m:07s 09m:09s 00m:48s
THCA 01m:28s 02m:30s 00m:30s
KIRP 00m:27s 00m:46s 00m:16s
DNA methylation BRCA 02m:53s 06m:10s 00m:37s
THCA 01m:34s 03m:12s 00m:34s
KIRP 00m:45s 01m:02s 00m:22s
Combined BRCA 06m:31s 10m:20s 6m:38s
THCA 01m:58s 3m:35s 00m:28s
KIRP 01m:10s 01m:45s 02m:55s

therefore if the gene methylation quantity is low/high, than the gene will be low/high
methylated; (ii) we have shown that four classification algorithms are able to success-
fully distinguish tumoral from non tumoral samples by considering the gene methylation
quantities as features. In addition, the index provides a gene oriented data representation
of the DNA methylation experiment.

Correlation between DNA methylation and RNA sequencing

An interesting problem is to investigate if there is correlation between gene expression
and DNA methylation. The authors of [75-80]) address the question if there is corre-
lation between the expression values and the methylated sites of a gene in cancer data
and prove that a correlation exists only for a few set of genes. Specifically for the Breast
Invasive Carcinoma, in [81] the correlation between DNA methylation and gene expres-
sion of almost 3000 genes is discussed, and in [82] it is shown how the CpG-SNP
(partnership between DNA methylation and Single Nucleotide Polymorphism) pairs
are strongly associated with differential expression of genes. Indeed, DNA methyla-
tion has been related also to mutations, and it has been proven that Single Nucleotide
Polymorphism at specific loci can result in different patterns of DNA methylation [83].

Tree-based classification models of C4.5

We extracted a classification model for each experiment and each cancer with C4.5,
resulting in 9 decision trees composed of 26 genes (16 for DNA methylation and 10 for
RNA sequencing). We show some examples on the Kidney Renal Papillary Cell Carci-
noma (KIRP) data, in Table 15 we report the RNA sequencing decision tree, and Table 16
shows it for the combined data. The classification models on the other tumors and
experiments are described in Additional file 1 and are available at Additional file 2 or
http://bioinf.iasi.cnr.it/genint. In the leaves of the trees the total weight of instances reach-
ing that leaf, and the total weight of misclassified instances are specified. In each leaf a
fractional weight representing the instances with a missing value is considered. We can

Table 15 The decision tree for full training set, obtained from the RNA sequencing KIRP data matrix,
with 319 correctly classified instances and 4 incorrectly classified instances

UMOD_rnaSeq <2370.6675: tumoral (291.0)

UMOD_rnaSeq >2370.6675: normal (32.0)

Number of leaves: 2

Size of the tree: 3
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Table 16 The decision tree for full training set, obtained from the combined KIRP data matrix, with
338 correctly classified instances and 7 incorrectly classified instances

UMOD_rnaSeq <2370.6675

I VMP1_dnaMeth <5.468451: tumoral (291.59/1.8)

I VMP1_dnaMeth >5.468451: normal (19.23/2.11)

UMOD_rnaSeq >2370.6675: normal (34.18/0.1)

Number of Leaves: 3

Size of the tree: 5

The two experiments are considered, then tumor and normal tissues are defined, both by RNA sequencing RSEM measures and
DNA methylation beta values

then see how missing values are handled by comparing the Tables 15 and 16. In Table 15,
the weights of instances are integers, whereas in Table 16 weights are all fractional values,
due to the fact that in the combined matrix most of the instances contain missing values.
As we can see the model obtained from the combined data provides additional knowl-
edge in the resulting classification rules, compared to that obtained from RNA sequencing
data. In particular, the first rule of the model in Table 15 is enriched with additional rule
conditions on the genes of the DNA methylation data, as shown in Table 16.

Finally, we validated the tree-based RNA-sequencing classification models on
two external datasets extracted from Gene Expression Omnibus (GSE56022 and
GSM1308330), obtaining 90% correct classification.

Tree-based classification models of Random Forest

We applied Random Forest to all matrices, extracting 9 classification models, each one
composed of 30 trees. The total number of genes obtained is 2301 for RNA sequencing
and 2574 for DNA methylation of which 306 are in common between two experi-
ments. Thanks to their combination, we extracted 2471 genes with the execution of this
algorithm. As example, we show in Table 17 a random tree obtained with the applica-
tion of Random Forest on the DNA methylation matrix of Breast Invasive Carcinoma
(BRCA) data.

The Random Forest algorithm is particularly suited for knowledge extraction on com-
bined data (which presents a high number of features), because of its randomized and
multiple model extraction.

For the validation of the classification models on the external datasets GSE56022 and
GSM1308330, we consider all trees generated for the RNA-sequencing experiment, and
the samples are classified with an average accuracy of 80%.

Rule-based classification models of RIPPER

The RIPPER algorithm provides 9 rule-based classification models composed of 38 genes,
22 for DNA methylation and 16 for RNA sequencing. Below we show some examples of
the rule-based classification models obtained with the RIPPER algorithm on the Kidney
Renal Papillary Cell Carcinoma (KIRP). We show some rules for the DNA methylation
dataset in Table 18, and for the combined dataset in Table 19. For example the rule
depicted in Table 19 can be interpreted as: classify the considered sample into normal,
if the gene methylation quantity of MAP3K11 is lower-equal then 12.3 and the one of
PIP5KLI is greater-equal then 2.1 or the RSEM RNA-Seq value of NELL1 is greater-equal
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Table 17 model A tree of the classification model for full training set, obtained by the execution of
Random Forest on DNA methylation data of Breast Invasive Carcinoma
DNM2_dnaMeth <3.68

Il CRYAB_dnaMeth <2.01

I I AUNIP_dnaMeth <1.51 : tumoral (27/0)

I | AUNIP_dnaMeth >151

I I I NPY_dnaMeth <4.85

I I I I SACMIL_dnaMeth <265

Il Il I I I LINC00336_dnaMeth <4.05 : tumoral (2/0)
I I II II II LINC00336_dnaMeth >4.05 : normal (8/0)
I I II Il SACM1L_dnaMeth >2.65 : normal (76/0)

Il Il I NPY_dnaMeth >4.85

I 1 I I PLEKHM2_dnaMeth <20.49 : tumoral (9/0)

I I I I PLEKHM2_dnaMeth >2049 : normal (5/0)

I CRYAB_dnaMeth >2.01 : tumoral (114/0)

DNM2_dnaMeth >3.68

Il SPRYD4_dnaMeth <1.3 || I DAP3_dnaMeth <2.21

I I II MYOG_dnaMeth <11.05 : tumoral (646/0)

I 1 I MYOG_dnaMeth >11.05

I I II II GMEB2_dnaMeth <9.57 : tumoral (1/0)

I I Il Il GMEB2_dnaMeth >9.57 : normal (1/0)

I I DAP3_dnaMeth >2.21 : normal (1/0)

I SPRYD4_dnaMeth >1.3

I I LBX1-AS1_dnaMeth <10.63 : normal (5/0)

Il Il LBX1-AS1_dnaMeth >10.63 : tumoral (2/0)

Size of the tree: 25

The full output is composed by 30 trees with different sizes with multiple leaves containing also the total weight of instances

then 437.3. Conversely, assign the sample to the tumoral class. The reader may find all the
classification models in http://bioinf.iasi.cnr.it/genint.

The rules in the resulting model obtained from the combined matrix, confirm the added
value. In this model we can find the same rule obtained from the single DNA methylation
data, enriched with a new rule-based on a feature derived from RNA sequencing data.

We also applied the rule-based RNA-sequencing model extracted on the Gene
Expression Omnibus datasets, obtaining a correct classification rate of 90% on average.

Rule-based classification models of CAMUR

By running more than 2000 classification procedures, we extracted 15.252 rules com-
posed of 1758 genes from RNA sequencing and 3655 genes from DNA methylation. From
those genes 509 are in common in both experiments. The reader may find the gene lists
in Additional file 1 or at http://bioinf.iasi.cnr.it/genint. In this subsection, we show some
example of the rules obtained through the execution of CAMUR on the Thyroid Carci-
noma (THCA) data. CAMUR extracts many multiple classification models (available at

Table 18 Rule-based model for full training set, obtained from the DNA methylation KIRP data
matrix, with 306 correctly classified instances and 11 incorrectly classified instances

(MAP3K11_dnaMeth <12.3) and (PIP5KL1_dnaMeth >2.1) — class=normal
— class=tumoral

Number of Rules: 2
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Table 19 Rule-based model for full training set, obtained from the combined KIRP data matrix, with
334 correctly classified instances and 11 incorrectly classified instances

(MAP3K11_dnaMeth <12.3) and (PIP5KL1_dnaMeth >2.1) — class=normal
(NELL1_rnaSeq >437.3)— class=normal

— class=tumoral
Number of Rules: 3

Also in this case, features of both experiments appear in the extracted rule

http://bioinf.iasi.cnr.it/genint), as example we report only those with the highest level of
accuracy in Table 20.

The rules for the combined data classification model confirm what is derived from the
model for DNA methylation data, and also provide a further classification rule-based on
RNA sequencing genes that is not obtained by performing classification on data of sin-
gle experiment of RNA sequencing. It is worth noting that CAMUR can be successfully
adopted for knowledge extraction on combined data (which presents a high number of
features), because it is able to extract multiple rule-based models.

For the validation of CAMUR we selected ten BRCA rules extracted by CAMUR and
used them on the Gene Expression Omnibus datasets, noting that with these rules 80% of
the samples are correctly classified, confirming the validity of the extracted models.

Genes extracted by CAMUR

In this subsection we analyze the large quantity of classification models extracted by
CAMUR, focusing on the sets of genes that occur in the rules. We summarize the
common genes that appear in the different tumors and experiments with six Venn dia-
grams, which report the intersections of the genes among the considered tumors and the
intersections among each considered experiment.

In Fig. 3 we show the intersections between the tumors sets of genes for the DNA
methylation experiment, the RNA sequencing experiment and their combination. The
classification models obtained for the DNA methylation experiment of Breast Cancer
(BRCA) and of Thyroid Carcinoma (THCA) result in 324 common genes, while the
intersections with the sets of genes for the Kidney Renal Carcinoma (KIRP) result in
fewer genes (5 for BRCA and KIRP intersection and 6 for THCA and KIRP intersection).
Furthermore, 20 genes are in common between all tumors. For RNA sequencing we have

Table 20 Three classification models shown for full training set, of DNA methylation experiment for
Thyroid Carcinoma, with about 100% level of accuracy

(TMEM127_dnaMeth >1.99) and (IRGM_dnaMeth >1.79) and (SCN3A_dnaMeth >2.88) OR

(TMEM2_dnaMeth >1.206751) and (IL2RA_dnaMeth <6.32) and (NENF_dnaMeth >1.88) OR

(AWAT2_dnaMeth >3.62) and (SNORA69_dnaMeth <1.89)

— class=normal

(TNFRSF12A_dnaMeth >0.53) and (SGK2_dnaMeth <11.15) OR
(TMEM127_dnaMeth >2.07) and (OR10J1_dnaMeth >2.96) and (SCN3A_dnaMeth >2.92)

— class=normal

(TNFRSF12A_dnaMeth >0.53) and (CDKN1C_dnaMeth <12.92) OR
(TMEM127_dnaMeth >2.04) and (ADH4_dnaMeth <0.79) and (GFER_dnaMeth >2.07)
— class=normal
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Fig. 3 Venn diagrams representing the number of genes and their intersection that appear in the DNA
methylation experiments, RNA sequencing experiments and in the combined experiments. In the DNA
methylation Venn diagram, THCA, BRCA and KIRP sets have 20 common genes, 6 genes are in common
between THCA and KIRP, 5 genes between BRCA and KIRP, and 324 between THCA and BRCA. In the RNA
sequencing Venn diagram, BRCA and THCA have 150 genes in common, whereas the intersections with the
KIRP set of genes are empty, therefore they are not represented.In the combined Venn diagram THCA, BRCA
and KIRP sets have 19 common genes, 8 genes are in common between THCA and KIRP, 7 genes between
BRCA and KIRP, and 146 between THCA and BRCA

150 genes in common for the BRCA and the THCA tumors. Only 2 genes are extracted
for the KIRP tumor that are not in common with the other tumors. In the combined Venn
diagram 19 genes are in common between all the tumors, 146 between BRCA and THCA,
and less than 10 genes for the intersection of THCA and BRCA with the KIRP set.

In Fig. 4 we consider a Venn diagram for each tumor, where the set on the left reports the
number of genes calculated from the union of genes of RNA sequencing and DNA methy-
lation experiments, and the set on the right stands for the number of genes extracted from
the combined matrix. In each tumor different and common genes are extracted from the
combined matrices. For example, in BRCA 733 genes are in common, and 312 are the
new genes obtained thanks to the combination of RNA sequencing and DNA methyla-
tion. We report also 1730 genes that do not appear in the combined dataset of genes.
For the THCA tumor 861 gene are in common, 589 belong to the combined dataset of
genes, and 1752 genes are extracted from DNA methylation and RNA sequencing matri-
ces. Finally, the KIRP diagram reports 53 new genes for the combined matrix, 35 in
common, and 20 present in the union of the two experiments. In this case, the com-
bination produced more genes than those extracted from the single experiments. The
combination leads to the extraction of new genes, which are not computed when analyz-
ing single experiments. The goal of this work is also to study the different types of cancer
and identify many genes related to the disease. By performing the intersection it is pos-
sible to reduce the number of them and to focus on a number of potential oncogenes. In
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Fig. 4 The Venn diagrams representing the number of genes and their intersection in each tumor. In KIRP 35
genes are in common between the set of genes extracted from the combined matrix and the union of the
genes sets extracted from the DNA methylation and RNA sequencing matrices. We obtain 861 common
genes for THCA and 733 for BRCA matrices

Additional file 2 and at http://bioinf.iasi.cnr.it/genint we provide all the gene lists that
are in common and not in common for each tumor and experiment. Thanks to the
intersections, we are able to detect 509 genes in common among DNA methylation and
RNA sequencing experiments. From these genes we extract a subset of 13 genes, which
are in common among the different tumors. In order to check biological relevance of
the obtained subset of genes, we compared our result with the Entrez Gene database
of NCBI [84], which provides information about oncogenes, tumor suppressor genes,
the over-expression or lower-expression of gene regulation of cancer cells growth, and
also hyper-methylation and hypo-methylation closely associated with the progression of
cancer. This analysis led to the detection of 5 and 279 cancer related genes, from the
subsets of 13 and 509 genes discussed above, respectively. Those genes are available as
Additional file 2.

Conclusion

In this work, we described the integration of Next Generation Sequencing experiments
by distinguishing four cases: (i) integration of data that represent the same NGS exper-
iments, stored in different databases with different schemas; (ii) integration of data that
represent different NGS experiments, stored in different databases and with no stan-
dardization of schema allowing the access to them; (iii) integration of data that represent
different NGS experiments, stored in the same database and with distinct schemas. We
also individuated an ideal case for integration (iv), i.e., when a standardization of the
schema is provided in order to permit the interoperability between different experiments,
with different schemas in different or same databases. We proposed a method for the
combination of two distinct NGS experiments with different data schemas. The NGS
experiments considered in this study were DNA methylation and RNA sequencing and
were extracted from TCGA. We focused on three forms of tumors, i.e. BRCA, KIRP, and
THCA. We defined the data matrices, one for each NGS experiment, with samples in
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the rows and genes in the columns, and a third matrix for representing the combina-
tion of DNA methylation and RNA sequencing samples. In particular the objective of the
combination was the creation of data matrices indexed on the genes that are related to
both NGS experiments. In the RNA sequencing matrices the items are the RNA-Seq by
Expectation-Maximization (RSEM) values that quantify the gene expression, whereas in
DNA methylation matrices we defined a new measure based on the beta value, that we
call gene methylation quantity for denoting the quantity of methylation associates to each
gene. After the combination of RNA sequencing and DNA methylation, we proposed
the application of supervised analyses. We were able to extract many classification mod-
els containing the genes and their quantification values by applying different supervised
algorithms (decision trees, rule-based classifiers, and multiple rule-based ones). The clas-
sifications were performed on all matrices for each tumor, with the objective to obtain
models to separate the normal from the tumoral samples. All the classification mod-
els have an accuracy greater than 95%. In particular we obtained 9 decision trees with
C4.5, 9 rule-based classification models with RIPPER, and 9 classification models (each
one composed of 30 decision trees) with Random Forest. Moreover, thanks to the exe-
cution of more than 2000 classification procedures with CAMUR, we extracted 15.252
classification models, from which we derived 5413 genes related to DNA methylation
and RNA sequencing. 509 genes are in common among the different experiments and
13 genes among the different tumors. Through the NCBI Entrez gene database we per-
formed functional analysis of those genes. We found 279 out of 509 and 5 out of 13
of them already marked as oncogenes. CAMUR was applied in order to extract possi-
ble oncogenes and to find new ones. Many of the extracted genes have been already
classified as oncogenes, and this confirms that our method is able to identify relevant
genes and justifies further analyses [85]. Indeed, we suggest as future direction a fur-
ther biological investigation of the classifications models and the extracted sets of genes
to confirm their relation with the considered tumors. As other future work, we suggest
the application of our method to other forms of tumors. Finally, we plan to define new
gene wide measures on different NGS experiments (e.g., mutations, copy number varia-
tions, chip-sequencing) in order to consider the combination of them for a comprehensive
knowledge extraction.
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