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Abstract
Evolutionary computation (EC) has been widely applied to biological and biomedical
data. The practice of EC involves the tuning of many parameters, such as population
size, generation count, selection size, and crossover and mutation rates. Through an
extensive series of experiments over multiple evolutionary algorithm implementations
and 25 problems we show that parameter space tends to be rife with viable parameters,
at least for the problems studied herein. We discuss the implications of this finding in
practice for the researcher employing EC.
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Introduction
Evolutionary computation (EC) has been widely applied to biological and biomedical
data [1–4]. One of the crucial tasks of the EC practitioner is the tuning of parameters.
The fitness-select-vary paradigm comes with a plethora of parameters relating to the
population, the generations, and the operators of selection, crossover, and mutation. It
seems natural to ask whether the myriad parameters can be obtained through some clever
methodology (perhaps even an evolutionary one) rather than by trial and error; indeed,
as we shall see below, such methods have been previously devised. Our own interest in
the issue of parameters stems partly from a desire to better understand evolutionary algo-
rithms (EAs) and partly from our recent investigation into the design and implementation
of an accessible artificial intelligence system [5].
In this paper we examine key parameters, asking whether wemight find new insight into

the parameter-seeking process. EC practitioners often employ commonly used parame-
ters “selected by conventions, ad hoc choices, and very limited experimental comparisons”
[6] (see also [7]). We sought parameters that met a reasonable minimal performance
level over an entire set of several problems. We experimented with a large and variegated
assortment of problems in what is arguably one of the most extensive EC experiments,
concluding that parameter space, in fact, tends to be rife with viable parameters, at least
for the problems studied herein. This does not mean that the EC practitioner’s job is
over, given the many desiderata that still remain, including the representation of solu-
tions in the search space, defining the fitness function, designing crossover and mutation
operators, and more. However, our experiments suggest that one can at least find good
parameters with a bit more ease.
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We begin in the next section by delineating previous work on finding parameters
through intelligent means. In “Software and datasets” section we turn to our own exper-
iments by first describing the software and datasets we used. “Searching for parameters
using a meta-genetic algorithm” section presents our first approach for obtaining good
parameter sets, which was based on a meta-genetic algorithm, followed by a random-
search approach in “Searching for parameters using random search” section. We discuss
our findings and conclude in “Concluding remarks” section.

Previous work: Seeking parameters
Before delving into a detailed discussion, let us make the distinction between parameters,
which are part of the model being evolved, and hyper-parameters (also called meta-
parameters), which are not part of themodel and need to be set by the user before running
the evolutionary process, either manually or algorithmically. Examples of parameters are
synaptic weights in deep neural networks and ephemeral random constants (ERCs) in
genetic programming (GP), while examples of hyper-parameters include the number of
hidden layers in deep neural networks and several standard parameters in GP: population
size, generation count, crossover rate, mutation probability, and selection type.
Brest et al. [8] noted that there are twomajor forms of setting (hyper-)parameter values:

parameter tuning and parameter control. Tuning refers to the common practice of seeking
good values for the parameters before running the algorithm, then running the algorithm
using these values, which remain fixed during the run. Parameter control means that
values for the parameters are changed during the run.
An early work by [9] looked into the problem of VLSI layout, aiming to minimize the

overall connection length between the components (cells) of a circuit. They devised a
genetic algorithm that used three operators: crossover (order, cycle, or partially mapped—
PMX), mutation (pairwise interchange of genes), and inversion (taking a random segment
in a solution string and flipping it). They used a meta-GA to optimize crossover rate,
inversion rate, and mutation rate. The individuals in the meta-GA population consisted
of three integers in the range [0,20] (the overall search space was thus quite small, com-
prising 8000 combinations). An individual’s fitness was defined as the quality of the best
layout found when a GAwas run with the parameters it embodied. The meta-GA was run
on four test circuits, had a population size of 20, ran for 100 generations, and used uniform
crossover (select parameter from either parent at random) and mutation (add random
noise; no inversion used). They noted that crossover rate converged to values in the range
20–40%, with little difference in best fitness as long as the rate was within this range.
The mutation rate evolved by the meta-GA was 0.5–1.5%, and the inversion rate was 0–
30%. The authors then adopted a crossover rate of 33%, an inversion rate of 15%, and a
mutation rate of 0.5%. These were used to run the optimizing GA on circuits of interest
(different than those used in the meta-GA phase) and compare it with other techniques.
Another early work by [10] described meta-evolutionary programming. Their flavor

of evolutionary programming used mutation only to evolve solutions to two functions in
R
2. Mutation took a single parent and generated an offspring by adding Gaussian random

noise with zero mean and variance equal to F(x, y)—the function under investigation;
this was applied to all members of the population. The meta-algorithm attached a per-
turbation term to each individual in the population, which was used as variance during
mutation. This term was then evolved along with the solution. They compared both these
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algorithms (meta- and non-meta) with each other, and with a standard, Holland-style
genetic algorithm, concluding that both versions of evolutionary programming out-
performed the GA. They also concluded that the standard evolutionary-programming
method attained better results over the two functions studied, but that the meta-version
was more robust to changes in the function.
Wu and Chow [11] applied a genetic algorithm to nonlinear constrainedmixed discrete-

integer optimization problems, using a meta-GA to optimize population size, crossover
probability, mutation probability, and crossover operator. The total number of parameter
combinations was 19,200. The fitness of an individual in the meta-GA population was
taken as the optimum found by a GA run with the parameters defined by the individual.
Their findings showed insensitivity to crossover rate but high sensitivity to mutation rate.
Four-point crossover outperformed one-, two-, and three-point crossover.
Hinterding et al. [12] (see also [13]) noted that, “it is natural to expect adaptation to

be used not only for finding solutions to a problem, but also for tuning the algorithm to
the particular problem.” Their paper provided a short survey of adaptation techniques in
evolutionary computation. They defined four categories of adaptation: static—constant
throughout run and tuned externally; and dynamic, refined further into deterministic—
parameter altered by a deterministic rule, adaptive—some feedback from the evolutionary
algorithm determines the change in the parameter, and self-adaptive—the parameters
to be adapted are encoded into the chromosomes and undergo crossover and mutation.
They also defined four levels of adaptation: environment—such as changes to the fit-
ness function (e.g., weights), population—parameters that apply to the entire population
are adapted, individual—parameters held within an individual affecting only that individ-
ual, and component—parameters specific to a component or gene within an individual
(such as self-adaptation of component-level mutation steps sizes and rotation angles in
evolution strategies).
Ong and Keane [14] presented meta-Lamarckian learning in the context of memetic

algorithms (MA), which incorporate local improvement procedures within traditional
GAs. Their paper investigated the adaptive choice of local search (LS) methods to
ensure robustness in MA search. In addition to Darwinian evolution they also studied
Lamarckian learning, where the genotype reflected the result of improvement through
placing the locally improved individual back into the population to compete for repro-
ductive opportunities. They studied two adaptive meta-Lamarckian learning strategies, a
heuristic approach based on subproblem decomposition, and a stochastic approach based
on a biased roulette wheel. They tested their system on continuous parametric benchmark
test problems and on a wing-design problem. They concluded that, “the strategies pre-
sented are effective in producing search performances that are close to the best traditional
MA with a LS chosen to suit the problem in hand. Given that such knowledge is often not
available a priori, this ability to tackle new problems in a robust way is of significant value.”
Ramos et al. [15] proposed the utilization of logistic regression for tuning the parame-

ters of a “transgenetic” algorithm—an evolutionary algorithm that deals, basically, with a
population of chromosomes and a population of transgenetic vectors. They cited symbio-
genesis as their inspiration, a theory of evolution according to which new cell organelles,
new bodies, new organs, and new species arise from symbiosis, wherein independent
organisms merge to form composites. The chromosomes of a transgenetic algorithm do
not share genetic material directly. There are no crossover and mutation operations but
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rather transgenetic vectors that obtain and insert information into the chromosomes.
They used logistic regression to set two main parameters of their algorithm (population
size and maximum length of transgenetic vector that met certain constraints), their prob-
lem of interest being Traveling Salesman. They showed that their algorithm outperformed
a standard memetic algorithm.
Brest et al. [8], mentioned above, described an efficient technique for adapting control

parameter settings associated with differential evolution (DE). DE uses a floating-point
encoding for global optimization over continuous spaces, creating new candidate solu-
tions by combining the parent individual and several other individuals of the same
population. A candidate replaces the parent only if it has better fitness. DE has three
parameters: amplification factor of the difference vector, crossover control parameter, and
population size. In [8], the parameter control technique was based on the self-adaptation
of the first two parameters, which were encoded within an individual’s genome. Their
testbed consisted of twenty-one benchmark functions from [16]. They concluded that
self-adaptive DE is better or comparable to the original DE and some other evolutionary
algorithms they examined.
De Jong [17]—in his chapter in the book Parameter Setting in Evolutionary Algorithms

([18])—provided a thirty-year perspective of parameter setting in evolutionary
computation. He wrote that, “It is not surprising, then, that from the beginning EA
practitioners have wanted to know the answers to questions like:

• Are there optimal settings for the parameters of an EA in general?
• Are there optimal settings for the parameters of an EA for a particular class of

fitness landscapes?
• Are there robust settings for the parameters of an EA that produce good

performance over a broad range of fitness landscapes?
• Is it desirable to dynamically change parameter values during an EA run?
• How do changes in a parameter affect the performance of an EA?
• How do landscape properties affect parameter value choices?”

He went on to review static parameter-setting strategies, where he mentioned a two-
level EA, the top level of which evolved the parameters of the lower-level EA. [17]
stated that the, “key insight from such studies is the robustness of EAs with respect to
their parameter settings. Getting ‘in the ball park’ is generally sufficient for good EA
performance.” Our study herein not only confirms this observation through numerous
experiments, but also presents the novel finding that the ballpark can be quite large.
Of dynamic parameter-setting strategies he opined that, “it is difficult to say anything
definitive and general about the performance improvements obtained through dynamic
parameter setting strategies.” He added, interestingly, “My own view is that there is
not much to be gained in dynamically adapting EA parameter settings when solving
static optimization problems. The real payoff for dynamic parameter setting strategies
is when the fitness landscapes are themselves dynamic ...” [17] also discussed the dif-
ferent aspects of setting various standard parameters: parent population size, offspring
population size, selection, reproductive operators; adapting the representation; and
parameterless EAs.
Kramer [19] provided a survey of self-adaptive parameter control in evolutionary

computation, where—as noted above—control parameters are added to the (evolving)
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genome. He complemented the taxonomy offered by [13], dividing parameter setting into
two main categories: tuning and control. Tuning was further divided into tuning by hand,
tuning by design of experiments, and tuning by meta-evolution; while control was divided
as previously into deterministic, adaptive, and self-adaptive. This paper mainly focused
on function optimization techniques, such as the covariance matrix self-adaptation evo-
lution strategy (CMSA-ES). A mention of meta-evolution noted that they, “have to be
chosen problem-dependent, which is the obvious drawback of the approach.” He con-
cluded with the observation that most theoretical work on self-adaptation concentrated
on mutation, stating that, “A necessary condition for the success of self-adaptation is a
tight link between strategy parameters and fitness.”
Eiben and Smit [6] (see also [20, 21]) presented a conceptual framework for parame-

ter tuning based on a three-tier hierarchy of: a problem, an evolutionary algorithm (EA),
and a tuner. They argued that parameter tuning could be considered from two differ-
ent perspectives, that of configuring an evolutionary algorithm by choosing parameter
values that optimize its performance, and that of analyzing an evolutionary algorithm
by studying how its performance depends on its parameter values. Furthermore, they
distinguished between analyzing an evolutionary algorithm by studying how its perfor-
mance depends on the problems it is solving, and analyzing an evolutionary algorithm by
studying how its performance varies when executing independent repetitions of its run.
They noted the existence of two types of parameters, qualitative (e.g., crossover type) and
quantitative (e.g., crossover rate). They opined that, “using tuning algorithms is highly
rewarding. The efforts are moderate and the gains in performance can be very significant.
Second, by using tuning algorithms one does not only obtain superior parameter val-
ues, but also much information about parameter values and algorithm performance. This
information can be used to obtain a deeper understanding of the algorithm in question.”
The paper discussed a wide range of tuning algorithms, which they classified as sampling
methods, model-based methods, screening methods, and meta-evolutionary algorithms.
Of interest in their discussion of meta-evolutionary GAs was [22], an early (possibly first)
though limited work; and the description of multi-objective meta-GAs, which tuned for
more than a single objective, e.g., speed and accuracy. They opined that, “parameter tun-
ing in EC has been a largely ignored issue for a long time ... In the current EC practice
parameter values are mostly selected by conventions, ad hoc choices, and very limited
experimental comparisons.”[italics added] This latter observation—with which we wholly
concur—forms part of our motivation for the current study.
Arcuri and Fraser [23] carried out “the largest empirical analysis so far on parame-

ter tuning in search-based software engineering.” They performed experiments in the
domain of test generation for object-oriented software using genetic algorithms. The
objective was to derive sets of test cases (suites) for a given class, such that the test suite
maximized a chosen coverage criterion while minimizing the number of tests and their
length. A test case in this domain was a sequence of method calls that constructed objects
and called methods on them. Because their goal was to study the effects of tuning, they
analyzed all the possible combinations of the selected parameter values. They concluded
that, “tuning can improve performance, but default values coming from the literature can
be already sufficient.”
Veček et al. [24] introduced a new tuning method—CRS-Tuning—that is based

on meta-evolution and their novel method for comparing and ranking evolutionary
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algorithms, Chess Rating System for Evolutionary Algorithms (CRS4EAs). They discussed
the approach’s advantages over other tuning methods.
Bergstra and Bengio [25] studied neural networks, showing that random experiments

were more efficient than grid experiments for hyper-parameter optimization in the case
of several learning algorithms on several datasets. They wrote that, “random experiments
are more efficient because not all hyperparameters are equally important to tune ... Ran-
dom experiments are also easier to carry out than grid experiments for practical reasons
related to the statistical independence of every trial.” This paper partly motivated our
choice of random search in “Searching for parameters using random search” section.
Smit and Eiben [26] is perhaps the most relevant paper to our current research, pre-

senting a meta-EA called REVAC (Relevance Estimation and Value Calibration), which
they used on a suite of 25 real-valued benchmark functions (real-parameter optimiza-
tion functions defined for the CEC 2005 Special Session on Real-Parameter Optimization,
including five unimodal functions and twenty multimodal functions [27]). They chose to
improve G-CMA-ES, which they considered a hard-to-improve evolutionary algorithm,
cycling through parent selection-recombination-mutation-survivor selection-evaluation
over a population of G-CMA-ES parameter vectors. They were indeed successful in
improving the algorithm’s performance.
Our aim is to go further, casting our net much wider in terms of problem domains,

seeking to better understand parameter space.

Software and datasets
We chose to work with two very different evolutionary-algorithm packages: Distributed
Evolutionary Algorithms in Python (DEAP) [28]—which uses tree-based GP, and M4GP
[29]—which is a stack-based evolutionary algorithm.We ran our experiments on a cluster
of 224 cores (Intel® Xeon® E5-2650L), with 2 threads per core.
DEAP, available at github.com/DEAP, comes with five sample problems:

1. Symbolic Regression, with data points generated from the quartic polynomial
x4 + x3 + x2 + x.

2. Even-Parity: find the parity, even or odd, of n Boolean inputs (we set n to 8).
3. Multiplexer 3–8: reproduce the behavior of an electronic multiplexer with 3

address bits (inputs) and 8 data lines (outputs).
4. Artificial Ant: evolve simple controllers—“artificial ants”—that are able to eat all

the food located in a given two-dimensional, grid environment.
5. Spambase: return true if an email is spam, false otherwise.

We performed a preliminary investigation of these five problems, essentially running
DEAP with parameters tuned by hand (a common-enough undertaking in the EC com-
munity).We found that for the first four problems one can attain an accuracy level of close
to 1, while for Spambase our preliminary investigation set the attainable accuracy level at
0.93. More detailed descriptions of each problem can be found on the DEAP website.
M4GP is entirely different, based on stack-based GP. This serves to reinforce our

conclusions by running our experiments on two very different types of EC algorithms.
M4GP uses a nearest centroid distance metric to make classifications, with each program
producing multiple outputs. We ran M4GP over problems from PMLB, a new pub-
licly available dataset suite (accessibly hosted on GitHub) initialized with 165 real-world,
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simulated, and toy benchmark datasets for evaluating supervised classification methods
[30]. Note that PMLB focuses on classification benchmarks, whereas of the DEAP sample
problems above only Spambase involves classification. Thus, our study includes different
types of problems.
The preliminary investigation in this case consisted of delving into the data provided by

the PMLB authors. “Once the datasets were scaled,” wrote [30], “we performed a compre-
hensive grid search of each of the MLmethod’s parameters using 10-fold cross-validation
to find the best parameters (according to mean cross-validation balanced accuracy) for
each ML method on each dataset. This process resulted in a total of over 5.5 million
evaluations of the 13 ML methods over the 165 data sets.”
This available data saved us the need to run initial investigative experiments over PMLB.

Each row of the 5.5-million table of results represents a single run, of a single ML algo-
rithm, using a specific set of parameters; a row contains six columns: dataset name,
classifier (machine learning algorithm), parameters, accuracy, macro-averaged F1 score,
balanced accuracy. Given that one usually wants first and foremost to solve a problem we
focused on accuracy, specifically, balanced accuracy (the rightmost value of each row),
which is a normalized version of accuracy that accounts for class imbalance by calculating
accuracy on a per-class basis, then averaging the per-class accuracies [31, 32].
We composed two suites of ten datasets each: 1) 10 datasets for which a balanced accu-

racy of 1 was attained most frequently (Table 1(a)), and 2) 10 datasets whose average
balanced accuracy was in the range [ 0.9, 0.95] (Table 1(b)).

Table 1 PMLB results by [30]

Problem Features Classes Samples

(a) “Easier” problems

mofn-3-7-10 10 2 1324

Clean2 168 2 6598

Clean1 168 2 476

Mushroom 22 2 8124

Irish 5 2 500

Agaricus-lepiota 22 2 8145

Corral 6 2 160

xd6 9 2 973

mux6 6 2 128

ThreeOf9 9 2 512

(b) “Harder” problems

Breast-cancer-wisconsin 30 2 569

wdbc 30 2 569

Tokyo1 44 2 959

New-thyroid 5 3 215

Spambase 57 2 4601

Vote 16 2 435

Soybean 35 18 675

House-votes-84 16 2 435

Breast-w 9 2 699

Molecular-biology_promoters 58 2 106

(a) “Easier” problems: 10 datasets for which a balanced accuracy of 1 was attained most frequently.
(b) “Harder” problems: 10 datasets whose average balanced accuracy was in the range [ 0.9, 0.95]. Shown for each problem:
number of features, number of classes, and number of samples
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Searching for parameters using ameta-genetic algorithm
As done in a number of previous works discussed in “Previous work: Seeking parameters”
section, we ran a meta-level genetic algorithm over the space of EC parameters, of which
we identified five major ones:

1. Population size (∈ N, [100, 3000]),
2. Number of generations (∈ N, [100, 2000]),
3. Crossover rate (∈ R, [0, 1]),
4. Mutation rate (∈ R, [0, 1]),
5. Tournament size (∈ N, [3, 100]).

Figure 1 shows a schematic of the meta-GA’s workings. The meta-GA population
comprised individuals with simple linear genomes that encoded the above five param-
eters as either integers or real values, respectively. An individual’s fitness was obtained
by launching entire GP evolutionary runs with the parameters given in the genome.
The GP in question was either DEAP or M4GP. DEAP’s goal was to solve the five
problems listed in “Software and datasets” section (regression, parity, mux, ant, spam),
while M4GP was set lose on the PMLB datasets. Each GP was run n times, where
n was the number of problems it was set to solve (5 for DEAP, 10 for M4GP).
Fitness was then a simple average of the n highest fitness values obtained during the
n GP runs.
The meta-GA had a population size ranging from 100–300, ran for 50–160 generations,

and used tournament selection with tournament size 3. Variation operators included:
two-point crossover—with probability pxo = 0.5 perform crossover on a pair of parents
by selecting two (of four possible) parameter boundaries and switching the parameters
between them; and value mutation—with probability pm = 0.2 perform mutation on a
single parent by selecting one of the five values at random, and mutating it by generat-
ing a random integer (population size, generation count, size of tournament) or real value
(crossover probability, mutation probability) in the range specified above.

Fig. 1 The meta-genetic algorithm. The population consisted of simple linear genomes that contained five
parameters. An individual’s fitness was obtained by launching an entire GP evolutionary run with the
parameters given in the genome. pop: population size, gen: generation count, xo: crossover probability,mu:
mutation probability, tour: size of tournament for tournament selection
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We experimented with the meta-GA for approximately two months, performing tens
of thousands of evolutionary runs. We noted that numerous good parameter sets kept
emerging, quite often appearing at random generation zero. Hence, we designed several
putative improvements to the algorithmic process. First, we tweaked parameters such
as crossover and mutation, and also added elitism (2%). It seemed that easier problems
were causing the GP to move into local minima. To correct for this effect we introduced
a weighted fitness function, where fitness was computed not as a simple average of the
n GP runs but rather as a weighted one, with weights learned adaptively: examine every
m ∈ [1, 5] generations the average fitness per problem attained by all GP runs over
that particular problem; then increase weights of below-average problems and decrease
weights of above-average problems.
Other tweaks are not described here for brevity. Suffice it to say that after numerous

runs of the various versions of the meta-GA, we eventually concluded that there seemed
to be numerous successful parameter sets.

Searching for parameters using random search
How rife is parameter space with good parameters, i.e., ones whose use by a GP run results
in success (which needs to be carefully defined)? Given the findings by [25] and the high
cost grid search would incur in our case, we opted for random search.
We generated parameter sets at random, ran the following suites of experiments, and

recorded the successful parameter sets:

1. DEAP over the 5 sample problems (regression, parity, mux, ant, spam).

• Generate random parameter sets with parameters in the following ranges:
population size – [100, 1000]; generation count – [100, 1000]; crossover rate –
[0, 1]; mutation rate – [0, 1]; tournament size – [3, 30].

• Total runs (i.e., random parameter sets generated, with 5 GP runs launched
per each, attempting to solve all five problems): 2693; number of successful
parameter sets found: 110.

• Success criterion of a parameter set: accuracy of 0.97 attained for all 5
problems but Spambase, where the accuracy threshold was set to 0.93.

Figure 2 shows our results.
2. M4GP over the 10 problems of Table 1(a).

• Generate random parameter sets with parameters in the following ranges:
population size – [100, 2000]; generation count – [100, 2000]; crossover rate
– [0, 1]; mutation rate – [0, 1]; tournament size – [3, 30].

• Total runs: 2610; number of successful parameter sets found: 207.
• Success criterion of a parameter set: accuracy of 0.97 attained for all 10

problems.

Figure 3 shows our results.
3. M4GP over the 10 problems of Table 1(b).

• Generate random parameter sets with parameters in the following ranges:
population size – [100, 2000]; generation count – [100, 2000]; crossover rate –
[0, 1]; mutation rate – [0, 1]; tournament size – [3, 30].
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Fig. 2 DEAP run over 5 problems. Shown are plots for the successful parameter sets found: population size
(a), generation count (b), population size vs. generation count (c), crossover rate vs. mutation rate (d), and
tournament size (e)

Fig. 3 M4GP over the 10 problems of Table 1(a). Shown are plots for the successful parameter sets found:
population size (a), generation count (b), population size vs. generation count (c), crossover rate vs. mutation
rate (d), and tournament size (e)
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• Total runs: 5432; number of successful parameter sets found: 48.
• Success criterion of a parameter set: accuracy of 0.88 attained for all 10

problems.

Figure 4 shows our results.

The above experiments involved a total of 93,615 GP runs, each with a population size
and generation count that could both be as high as 1000 or 2000.
Perhaps once given a parameter set, evolution is not providing any added value and

simple random search would suffice? This is a standard question one should ask, and to
answer it we used the good parameter sets found, in conjunction with random search
(instead of evolution). Specifically, we performed the following:

1. DEAP: For each of the 110 good parameter sets found, generate
pop_size × gen_count × [1, 5] random solutions and check how many of them pass
the same 5-problem criterion employed above.
Result: none passed.
The total number of random solutions examined was 47,028,011.

2. M4GP: For each of the 48 good Table 1(b) parameter sets found, generate
pop_size × gen_count × [1, 10] random solutions and check how many of them
pass the same 10-problem criterion employed above1.
Result: none passed.
The total number of random solutions examined was 205,377,967.

Random solutions were generated by using the respective software package to generate
generation zero of size pop_size × gen_count. This not only saved programming time but
also prevented any bias vis-a-vis the GP experiments.

Fig. 4 M4GP over the 10 problems of Table 1(b). Shown are plots for the successful parameter sets found:
population size (a), generation count (b), population size vs. generation count (c), crossover rate vs. mutation
rate (d), and tournament size (e)
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Concluding remarks
We performed what is arguably one of the most extensive EC experiments conducted.
Studying our results, the only trend that seems to emerge is there being very little trend
(at least for the problems studied herein). We can further make a number of interesting
observations:

• Good parameters range over the entire spectrum, somewhat in contrast with
common lore, which tends to focus on ad-hoc “good” values.

• While one is usually inclined to increase population size and generation count we
note that this need not be so. At most, the two should not both be very low. We
remark that recent evolutionary findings suggest the use of fewer generations [33].

• A commonly used range for tournament size is 3-7, but our experiments have shown
that many more values work just as well.

• Crossover and mutation rates can take on widely diverse values, departing from the
oft-used high or intermediate crossover rate and low mutation rate. Moreover,
crossover-mutation pairs showed no tendency to aggregate anywhere. At most, such
pairs should not both be low (which makes sense given that an evolutionary
algorithm requires inter-generational variation).

The percentage of good random parameter sets found may seem relatively low, but that
is not the point, rather, our major observation concerns the diversity in parameter space
over a wide range of problems. Moreover, this percentage will likely be far higher in most
situations encountered by evolutionary-algorithm practitioners, as we were aiming at a
broad spectrum of problems—quite a high and somewhat unconventional bar—rather

Fig. 5 Results for single-problem test. For each of the above 15 problems, 100 random parameter sets were
generated, and a GP run executed for every one, recording the best accuracy attained. (a)-(e): DEAP,
(f)-(o): M4GP
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than at the more common case of a single problem. To test this latter hypothesis we ran
two additional sets of experiments:

1. DEAP: For each of the 5 problems, generate 100 random parameter sets and
perform a GP run for each, recording the best accuracy attained.

2. M4GP: For each of the 10 problems of Table 1(b), generate 100 random parameter
sets and perform a GP run for each, recording the best accuracy attained.

Figure 5 shows the results of these 1500 runs, which were very satisfactory.
We emphasize again what we stated in “Introduction” section—the EC practitioner’s

job is far from over, what with solution representation, fitness function, crossover and
mutation operators, and so forth. But perhaps one need not always spend too much time
and resources on tuning hyper-parameters, with random search being a good choice for
such tuning (after which EC will use these random hyper-parameters). Robustness to
hyper-parameter tuning is a desired quality of an evolutionary algorithm and if one’s algo-
rithm requires very specific parameters, the chance of finding them is slim; this would
essentially be a needle-in-a-haystack situation in hyper-parameter space.

Endnote
1Note: The number of actual solutions generated per test point could be less than 5 or

10, respectively, if the criterion failed early on.
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